Найти координаты вектора – Онлайн калькулятор. Координаты вектора по двум точкам.

Направляющий вектор прямой, координаты направляющего вектора прямой

С понятием прямой линии тесно связано понятие ее направляющего вектора. Часто в задачах бывает удобнее рассматривать его вместо самой прямой. В рамках данного материала мы разберем, что же такое направляющий вектор прямой в пространстве и на плоскости, и расскажем, для чего можно его использовать.

В первом пункте мы сформулируем определение и покажем основные понятия на иллюстрациях, дополнив их конкретными примерами направляющего вектора. Далее мы посмотрим, как прямая и направляющие векторы взаимодействуют в прямоугольной системе координат и как можно вычислить координаты этого вектора, если мы знаем уравнение прямой. Все правила, как всегда, будут проиллюстрированы примерами решений задач.

Что такое направляющий вектор прямой

Для того чтобы понять эту тему, нам нужно хорошо представлять, что такое вообще прямая и как она может размещаться в пространстве и на плоскости. Кроме того, важно вспомнить ранее изученное понятие вектора. Об этом мы уже писали в отдельном материале. Если нужно, найдите и перечитайте эти статьи.

Сформулируем, что такое направляющий вектор.

Определение 1

Направляющим вектором прямой является любой вектор, не равный нулю, который размещается на данной прямой или же на прямой, параллельной ей.

Что такое направляющий вектор прямой

Получается, что у каждой прямой есть бесконечное множество направляющих векторов. При этом все они будут являться коллинеарными в силу озвученного определения, ведь они лежат на одной прямой или параллельной ей другой прямой. Выходит, что если a→ является направляющий вектором прямой a, то другой направляющий вектор мы можем обозначить как t·a→ при любом значении t, соответствующем действительному числу.

Также из определения выше можно сделать вывод, что направляющие векторы двух параллельных прямых будут совпадать: если прямые a и a1 являются параллельными, то вектор a→ будет направляющим и для a, и для a1

zaochnik.com

Нормальный вектор прямой, координаты нормального вектора прямой

Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.

Нормальный вектор прямой – определение, примеры, иллюстрации

Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами.  Для начала ознакомимся с понятием вектора прямой.

Определение 1

Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.

Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.

Нормальный вектор прямой – определение, примеры, иллюстрации

Получаем, что прямая является перпендикулярной одной из двух заданных параллельных прямых, тогда ее перпендикулярность распространяется и на вторую параллельную прямую. Отсюда получаем, что множества нормальных векторов этих параллельных прямых совпадают. Когда прямые a и а1 параллельные, а n→ считается нормальным вектором прямой a, также считается нормальным вектором для прямой a1.  Когда прямая а имеет прямой вектор, тогда вектор t·n→ является ненулевым при любом значении параметра t, причем также является нормальным для прямой a.

Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.

Если задана плоскость Оху, то множеством векторов для Ох является координатный вектор j→. Он считается ненулевым и принадлежащим координатной оси Оу, перпендикулярной Ох. Все множество нормальных векторов относительно Ох можно записать, как t·j→

zaochnik.com

Координаты точки и вектора — урок. Геометрия, 11 класс.

Координаты точки

Три попарно перпендикулярные прямые с выбранными направлениями и единицей измерения образуют систему координат в пространстве. Точка пересечения всех прямых является началом системы координат.

 

Koord_sist2.png

 

Оси координат \(Ox\), \(Oy\) и \(Oz\) называются соответственно: \(Ox\) — ось абсцисс, \(Oy\) — ось ординат, \(Oz\) — ось аппликат. 

Через две пересекающиеся прямые можно провести плоскость. Получаем три координатные плоскости: \((Oxy)\), \((Oyz)\) и \((Oxz)\).

 

Koord_sist3.png

 

Положение точки \(A\) в пространстве определяется тремя координатами: \(x\), \(y\) и \(z\).

 

Koord_sist1.png

 

Координата \(x\) называется абсциссой точки \(A\), координата \(y\) — ординатой точки \(A\), координата \(z\) — аппликатой точки \(A\).

Записываются так: \(A(x; y; z)\).


Если точка находится на оси \(Ox\), то её координаты \(X(x; 0; 0)\).

Если точка находится на оси \(Oy\), то её координаты \(Y(0; y; 0)\).

Если точка находится на оси \(Oz\), то её координаты \(Z(0; 0; z)\).

 

Если точка находится в плоскости \(Oxy\), то её координаты A1x;y;0.

Если точка находится в плоскости \(Oyz\), то её координаты A20;y;z.

Если точка находится в плоскости \(Oxz\), то её координаты A3x;0;z.

Координаты вектора

Koord_sist_vekt.png

 

Если в системе координат от начальной точки отложить единичные векторы i→, j→ и k→, то можно определить прямоугольный базис. Любой вектор можно разложить по единичным векторам и представить в виде OA→=x⋅i→+y⋅j→+z⋅k→.

Коэффициенты \(x\), \(y\) и \(z\) определяются одним-единственным образом и называются координатами вектора.

 

Записываются так: OA→x;y;z.

Рассмотрим правила о том, как с помощью координат записать:

 

— координаты суммы векторов, если даны координаты векторов:

a→x1;y1;z1, b→x2;y2;z2, a→+b→x1+x2;y1+y2;z1+z2;

 

— координаты разности векторов, если даны координаты векторов:

 a→−b→x1−x2;y1−y2;z1−z2;

 

— координаты произведения вектора на число, если даны координаты вектора:

n⋅a→n⋅x1;n⋅y1;n⋅z1;

 

— длину вектора:

a→=x12+y12+z12;

Koord_sist4.png

— координаты вектора, если даны координаты начальной и конечной точек вектора:

AxA;yA;zA, BxB;yB;zB, AB→xB−xA;yB−yA;zB−zA;

 

— расстояние между двумя точками, если даны координаты точек:

AB→=AB=xB−xA2+yB−yA2+zB−zA2;

 

— координаты серединной точки отрезка, если даны координаты начальной и конечной точек отрезка:

xC=xA+xB2;yC=yA+yB2;zC=zA+zB2.

www.yaklass.ru

Координаты точки и координаты вектора. Как найти координаты вектора

Прямоугольная система координат

Чтобы определить понятие координат точек, нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.

Возьмем в пространстве точку $O$ и введем для нее координаты $(0,0,0)$. Назовем ее началом системы координат. Проведем через нее три взаимно перпендикулярные оси $Ox$, $Oy$ и $Oz$, как на рисунке 1. Эти оси будут называться осями абсцисс, ординат и аппликат, соответственно. Осталось только ввести масштаб на осях (единичный отрезок) – прямоугольная система координат в пространстве готова (рис. 1)

Рисунок 1. Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ

Координаты точки

Теперь разберем, как определяют в такой системе координаты любой точки. Возьмем произвольную точку $M$ (рис. 2).

Рисунок 2. Произвольная точка. Автор24 — интернет-биржа студенческих работ

Построим на координатных осях прямоугольный параллелепипед, так, что точки $O$ и $M$ противоположные его вершины (рис. 3).

Рисунок 3. Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ

Тогда точка $M$ будет иметь координаты $(X,Y,Z)$, где $X$ – значение на числовой оси $Ox$, $Y$ – значение на числовой оси $Oy$, а $Z$ – значение на числовой оси $Oz$.

Пример 1

Необходимо найти решение следующей задачи: написать координаты вершин параллелепипеда, изображенного на рисунке 4.

Рисунок 4. Параллелепипед. Автор24 — интернет-биржа студенческих работ

Решение.

Точка $O$ начало координат, следовательно, $O=(0,0,0)$.

Точки $Q$, $N$ и $R$ лежат на осях $Ox$, $Oz$ и $Oy$, соответственно, значит

$Q=(2,0,0)$, $N=(0,0,1.5)$, $R=(0,2.5,0)$

Точки $S$, $L$ и $M$ лежат в плоскостях $Oxz$, $Oxy$ и $Oyz$, соответственно, значит

$S=(2,0,1.5)$, $L=(2,2.5,0)$, $R=(0,2.5,1.5)$

Точка $P$ имеет координаты $P=(2,2.5,1.5)$

Координаты вектора по двум точкам и формула нахождения

Чтобы узнать, как найти вектор по координатам двух точек, необходимо рассмотреть введенную нами ранее систему координат. В ней от точки $O$ по направлению оси $Ox$ отложим единичный вектор $\overline{i}$, по направлению оси $Oy$ — единичный вектор $\overline{j}$, а единичный вектор $\overline{k}$ нужно направлять по оси $Oz$.

Для того чтобы ввести понятие координат вектора, введем следующую теорему (здесь ее доказательство мы рассматривать не будем).

Теорема 1

Произвольный вектор в пространстве может быть разложен по трем любым векторам, которые не лежат в одной плоскости, причем коэффициенты в таком разложении будут единственным образом определены.

Математически это выглядит следующим образом:

$\overline{δ}=m\overline{α}+n\overline{β}+l\overline{γ}$

Так как векторы $\overline{i}$, $\overline{j}$ и $\overline{k}$ построены на координатных осях прямоугольной системы координат, то они, очевидно, не будут принадлежать одной плоскости. Значит любой вектор $\overline{δ}$ в этой системе координат, по теореме 1, может принимать следующий вид

$\overline{δ}=m\overline{i}+n\overline{j}+l\overline{k}$ (1)

где $n,m,l∈R$.

Определение 1

Три вектора $\overline{i}$, $\overline{j}$ и $\overline{k}$ будут называться координатными векторами.

Определение 2

Коэффициенты перед векторами $\overline{i}$, $\overline{j}$ и $\overline{k}$ в разложении (1) будут называться координатами этого вектора в заданной нами системе координат, то есть

$\overline{δ}=(m,n,l)$

Линейные операции над векторами

Теорема 2

Теорема о сумме: Координаты суммы любого числа векторов определяются суммой их соответствующих координат.

Доказательство.

Будем доказывать эту теорему для 2-х векторов. Для 3-х и более векторов доказательство строится аналогичным образом. Пусть $\overline{α}=(α_1,α_2,α_3)$, $\overline{β}=(β_1,β_2 ,β_3)$.

Эти вектора можно записать следующим образом

$\overline{α}=α_1\overline{i}+ α_2\overline{j}+α_3\overline{k}$, $\overline{β}=β_1\overline{i}+ β_2\overline{j}+β_3\overline{k}$

$\overline{α}+\overline{β}=α_1\overline{i}+α_2\overline{j}+α_3\overline{k}+β_1\overline{i}+ β_2\overline{j}+β_3\overline{k}=(α_1+β_1 )\overline{i}+(α_2+β_2 )\overline{j}+(α_3+β_3)\overline{k}$

Следовательно

$\overline{α}+\overline{β}=(α_1+β_1,α_2+β_2,α_3+β_3)$

Теорема доказана.

Замечание 1

Замечание: Аналогично, находится решение разности нескольких векторов.

Теорема 3

Теорема о произведении на число: Координаты произведения произвольного вектора на действительное число определяется произведением координат на это число.

Доказательство.

Возьмем $\overline{α}=(α_1,α_2,α_3)$, тогда $\overline{α}=α_1\overline{i}+α_2\overline{j}+α_3\overline{k}$, а

$l\overline{α}=l(α_1\overline{i}+ α_2\overline{j}+α_3\overline{k})=lα_1\overline{i}+ lα_2\overline{j}+lα_3\overline{k}$

Значит

$k\overline{α}=(lα_1,lα_2,lα_3)$

Теорема доказана.

Пример 2

Пусть $\overline{α}=(3,0,4)$, $\overline{β}=(2,-1,1)$. Найти $\overline{α}+\overline{β}$, $\overline{α}-\overline{β}$ и $3\overline{α}$.

Решение.

$\overline{α}+\overline{β}=(3+2,0+(-1),4+1)=(5,-1,5)$

$\overline{α}-\overline{β}=(3-2,0-(-1),4-1)=(1,1,3)$

$3\overline{α}=(3\cdot 3,3\cdot 0,3\cdot 4)=(9,0,12)$

spravochnick.ru

Координаты вектора, онлайн калькулятор

Наш онлайн калькулятор позволяет найти координаты вектора по двум точкам всего за пару минут. Для нахождения координат вектора выберите его размерность, заполните координаты точек его начала и конца, и нажмите кнопку «Вычислить», калькулятор выдаст детальное решение и ответ! Каждый шаг будет подробно расписан, это поможет вам проверить свое решение и понять, как был получен ответ.

Введите данные для нахождения координат вектора  

Размерность векторов:

2 3

Формула :

Решили сегодня: раз, всего раз
Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Найти координаты вектора в базисе

Задание.
Даны векторы a (1; 2; 1), b (2; —2; 1), c (1; —2; 0) и d (0; 3; 1). Проверить, образуют ли векторы a, b, c базис, и если да, то найти координаты вектора d в этом базисе.

Решение.
Запишем соотношение для векторов , которое будет справедливым для каждой проекции вектора на оси. Для этого подставим соответствующие координаты заданных векторов:

   

   

   

В результате получили алгебраическая система из трёх уравнений с тремя неизвестными. Рассматривать возможные способы решения сейчас не будем. Лишь упомяну, что удобнее в данном случае корни вычислить с помощью нескольких методов, например, метода Крамера или же метода обратной матрицы. Мы же воспользуемся следующим методом:

   

К первому уравнению добавим третье и запишем результат на месте первого:

   

От второго уравнения отнимем первое:

   

Выразим из второго уравнения :

   

Подставим это значение в третье уравнение и вычислим значение :

   

   

   

Подставим последнее полученное значение в первое уравнение, чтобы вычислить значение :

   

   

Запишем решение данной системы:

   

   

   

Следовательно, вектор d также будет иметь разложение в базисе векторов a, b, c:

   

Ответ. .

ru.solverbook.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *