Ne в химии это – Список химических элементов по электронной конфигурации — Википедия

Технеций — Википедия

Технеций
← Молибден | Рутений →
Серебристо-белый радиоактивный металл
Technetium.jpg

Элементарный технеций

Название, символ, номер Техне́ций / Technetium (Tc), 43
Атомная масса
(молярная масса)
97,9072 а. е. м. (г/моль)
Электронная конфигурация [Kr] 4d5 5s2
Радиус атома 136 пм
Ковалентный радиус 127 пм
Радиус иона (+7e)56 пм
Электроотрицательность 1,9 (шкала Полинга)
Электродный потенциал 0
Степени окисления от −1 до +7; наиболее устойчива +7
Энергия ионизации
(первый электрон)
 702,2 (7,28) кДж/моль (эВ)
Плотность (при н. у.) 11,5[1] г/см³
Температура плавления 2430 K (2157 °C, 3915 °F)[1]
Температура кипения 4538 K (4265 °C (7709 °F)[1]
Уд. теплота плавления 23,8 кДж/моль
Уд. теплота испарения 585 кДж/моль
Молярная теплоёмкость 24 Дж/(K·моль)
Молярный объём 8,5 см³/моль
Структура решётки гексагональная
Параметры решётки a=2,737 c=4,391 Å
Отношение c/a 1,602
Температура Дебая 453 K
Теплопроводность (300 K) 50,6 Вт/(м·К)
Номер CAS 7440-26-8
43

Технеций

4d65s1

Техне́ций — элемент седьмой группы (по устаревшей классификации — побочной подгруппы седьмой группы), пятого периода периодической системы химических элементов, атомный номер — 43. Обозначается символом Tc (лат. Technetium). Простое вещество технеций — радиоактивный переходный металл серебристо-серого цвета. Самый лёгкий элемент, не имеющий стабильных изотопов. Первый из синтезированных химических элементов. Только около 18 000 тонн естественно образовавшегося технеция могут быть найдены в любой момент времени в земной коре. Природный технеций является продуктом самопроизвольного деления урановой руды и ториевой руды или продуктом захвата нейтронов в молибденовых рудах. Наиболее распространенным природным изотопом является Tc-99. Весь остальной технеций на Земле произведен синтетически как продукт деления урана-235 и других делящихся ядер в ядерных реакторах всех типов (энергетических, военных, исследовательских, пропульсационных и т.п.) и в случае переработки отработанного ядерного топлива извлекается из ядерных топливных стержней. Либо, при отсутствии переработки, обеспечивает их остаточную радиоактивность 2 млн и более лет.

Поиски элемента 43

С 1860-х по 1871 год ранние формы периодической таблицы, предложенные Дмитрием Менделеевым, содержали разрыв между молибденом (элемент 42) и рутением (элемент 44). В 1871 году Менделеев предсказал, что этот недостающий элемент займет пустующее место под марганцем и будет иметь аналогичные химические свойства. Менделеев дал ему предварительное название ekamanganese (от eka-, санскритское слово для одного), потому что предсказанный элемент был на одно место ниже известного элемента марганец.

C развитием ядерной физики стало понятно, почему технеций никак не удаётся обнаружить в природе: в соответствии с правилом Маттауха-Щукарева этот элемент не имеет стабильных изотопов. Технеций был синтезирован из молибденовой мишени, облучённой на ускорителе-циклотроне ядрами дейтерия в Национальной лаборатории им. Лоуренса в Беркли в США, а затем был обнаружен в Палермо в Италии: 13 июня 1937 года датируется заметка итальянских исследователей К. Перрье

[es] и Э. Сегре в журнале «Nature», в которой указано, что в этой мишени содержится элемент с атомным номером 43[2]. Название «технеций» новому элементу было предложено первооткрывателями в 1947 году[3][4]. До 1947 года помимо предложенного Д. И. Менделеевым названия «эка-марганец» (т.е., «подобный марганцу») применялось также название «мазурий» (лат. Masurium, обозначение — Ma)[5].

В 1952 году Пол Меррилл открыл набор линий поглощения (403,1 нм, 423,8 нм, 426,2 нм, и 429,7 нм), соответствующий технецию (точнее, изотопу

98Tc[6]), в спектрах некоторых звёзд S-типа, в частности, хи Лебедя, AA Лебедя, R Андромеды, R Гидры, омикроне Кита и особенно интенсивные линии — у звезды R Близнецов[7], это означало, что технеций присутствует в их атмосферах, и явилось доказательством происходящего в звёздах ядерного синтеза[8], ныне подобные звёзды называются технециевыми звёздами.

От др.-греч. τεχνητός — искусственный, отражая пионерское открытие элемента путём синтеза.

На Земле встречается в следовых количествах в урановых рудах, 5⋅10−10 г на 1 кг урана. Методами спектроскопии выявлено содержание технеция в спектрах некоторых звёзд созвездий Андромеды и Кита (технециевые звезды).

Технеций получают из радиоактивных отходов химическим способом. В России первый технеций был получен в работах Анны Федоровны Кузиной совместно с работниками ПО «Маяк»[9].

Кроме урана-235, технеций образуется при делении нуклидов

232Th, 233U, 238U, 239Pu. Суммарное накопление во всех действующих на Земле реакторах за год составляет более 10 тонн[10].

Технеций — радиоактивный переходный металл серебристо-серого цвета с гексагональной решёткой (a = 2,737 Å, с = 4,391 Å). По химическим свойствам технеций близок к марганцу и рению, в соединениях проявляет степени окисления от −1 до +7. При взаимодействии с кислородом образует оксиды Tc2O7 и TcO2, с хлором и фтором — галогениды TcX6, TcX5, TcX4, с серой — сульфиды Tc2S7 и TcS2. Технеций входит в состав координационных и элементоорганических соединений. В ряду напряжений технеций стоит правее водорода, не реагирует с соляной, но легко растворяется в азотной и серной кислотах.

Радиоактивные свойства некоторых изотопов технеция[11]:

Изотоп (m — изомер)Период полураспадаТип распада
924,3 минβ+, электронный захват
93m43,5 минЭлектронный захват (18%), изомерный переход (82%)
932,7 чЭлектронный захват (85%), β+ (15%)
94m52,5 минЭлектронный захват (21%), изомерный переход (24%), β+ (55%)
944,9 чβ+ (7%), электронный захват (93%)
95m60 сутЭлектронный захват, изомерный переход (4%), β+
9520 часЭлектронный захват
96m52 минИзомерный переход
964,3 сутЭлектронный захват
97m90,5 сутИзомерный переход
972,6⋅106
лет
Электронный захват
984,2⋅106 летβ
99m6,04 чИзомерный переход
992,12⋅105 летβ
10015,8 сβ
10114,3 минβ
1024,5 мин / 5 сβ / γ/β
10350 сβ
10418 минβ
1057,8 минβ
10637 сβ
10729 сβ

Широко используется в ядерной медицине для исследований мозга, сердца, щитовидной железы, лёгких, печени, жёлчного пузыря, почек, костей скелета, крови, а также для диагностики опухолей

[12].

Пертехнетаты (соли технециевой кислоты HTcO4) обладают антикоррозионными свойствами, так как ион TcO4, в отличие от ионов MnO4 и ReO4, является самым эффективным ингибитором коррозии для железа и стали.

Не играет биологической роли.

С химической точки зрения технеций и его соединения малотоксичны. Опасность технеция вызывается его радиотоксичностью.

Технеций при введении в организм попадает почти во все органы, но в основном задерживается в желудке и щитовидной железе. Поражение органов вызывается его β-излучением с дозой до 0,1 Р/(ч·мг).

При работе с технецием используются вытяжные шкафы с защитой от его β-излучения или герметичные боксы.

  1. 1 2 3 Technetium: physical properties (англ.). WebElements. Дата обращения 16 августа 2013.
  2. Perrier C., Segrè E.
    Radioactive Isotopes of Element 43 (англ.) // Nature. — 1937. — Vol. 140. — P. 193—194. — DOI:10.1038/140193b0.
  3. Трифонов Д. Н. От элемента 43 до антипротона // Химия. — 2005. — № 19.
  4. Perrier C., Segrè E. Technetium: The Element of Atomic Number 43 (англ.) // Nature. — 1947. — Vol. 159, no. 4027. — P. 24. — DOI:10.1038/159024a0. — Bibcode: 1947Natur.159…24P. — PMID 20279068.
  5. ↑ Химия // 1941 год. Календарь-справочник / Сост. Е. Лихтенштейн. — М.: ОГИЗ — Государственное социально-экономическое издательство, 1941. — С. 299—303.
  6. Shaviv G. The Synthesis of the Elements: The Astrophysical Quest for Nucleosynthesis and What It Can Tell Us About the Universe (англ.). — Springer, 2012. — P. 266.
  7. Paul W. Merrill. Spectroscopic Observations of Stars of Class S (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 1952. — Vol. 116. — P. 21—26. — DOI:10.1086/145589. — Bibcode: 1952ApJ…116…21M.
  8. ↑ Технеций // Энциклопедический словарь юного химика. 2-е изд. / Сост. В. А. Крицман, В. В. Станцо. — М.: Педагогика, 1990. — С. 241—242. — ISBN 5-7155-0292-6.
  9. ↑ (PDF) Proceedings and selected lectures of the 10th International Symposium on Technetium and Rhenium – Science and Utilization, October 3-6, 2018 — Moscow – Russia, Eds: K. German, X. Gaona, M. Ozawa, Ya. Obruchnikova, E. Johnstone, A. Maruk, M. Chotkowski, I. Troshkina, A. Safonov. Moscow: Publishing House Granica, 2018, 525 p. ISBN 978-5-9933-0132-7 (англ.). ResearchGate. Дата обращения 21 января 2019.
  10. ↑ Трошкина И.Д., Озава М., Герман К.Э. Развитие химии технеция // глава в сборнике «Редкие элементы в ядерном топливном цикле» стр. 39-54. Москва, Издательство РХТУ им. Д.И. Менделеева
  11. ↑ Изотопы технеция (неопр.). nucleardata. Дата обращения 16 августа 2013. Архивировано 17 августа 2013 года.
  12. ↑ И. А. Леенсон. Технеций: что нового. «Химия и жизнь — XXI век», 2008, № 12
⛭

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Химия | Наука | Fandom

https://ru.wikipedia.org/wiki/%D0%A5%D0%B8%D0%BC%D0%B8%D1%8F


Хи́мия (от араб. کيمياء‎‎, произошедшего, предположительно, от египетского слова km.t (чёрный), откуда возникло также название Египта, чернозёма и свинца — «черная земля»; другие возможные варианты: др.-греч. χυμος — «сок», «эссенция», «влага», «вкус», др.-греч. χυμα — «сплав (металлов)», «литье», «поток», др.-греч. χυμευσις — «смешивание») — одна из важнейших и обширных областей естествознания, наука о веществах, их свойствах, строении и превращениях, происходящих в результате химических реакций, а также законах, которым эти превращения подчиняются. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается в основном изучением взаимодействий между атомами и молекулами, полученными в результате таких взаимодействий. Предмет химии — химические элементы и их соединения, а также закономерности, которым подчиняются различные химические реакции. Химия[1] имеет много общего с физикой и биологией, по сути граница между ними условна. Современная химия является одной из самых обширных дисциплин среди всех естественных наук.

    Зачатки химии возникли ещё со времён появления человека разумного. Поскольку человек всегда так или иначе имел дело с химическими веществами, то его первые эксперименты с огнём, дублением шкур, приготовлением пищи можно назвать зачатками практической химии. Постепенно практические знания накапливались, и в самом начале развития цивилизации люди умели готовить некоторые краски, эмали, яды и лекарства. Вначале человек использовал биологические процессы, такие, как брожение, гниение, но с освоением огня начал использовать процессы горения, спекания, сплавления. Использовались окислительно-восстановительные реакции, не протекающие в живой природе — например, восстановление металлов из их соединений.

    Такие ремёсла, как металлургия, гончарство, стеклоделие, крашение, парфюмерия, косметика, достигли значительного развития ещё до начала нашей эры. Например, состав современного бутылочного стекла практически не отличается от состава стекла, применявшегося в 4000 году до н. э. в Египте. Хотя химические знания тщательно скрывались жрецами от непосвящённых, они всё равно медленно проникали в другие страны. К европейцам химическая наука попала главным образом от арабов после завоевания ими Испании в 711 году. Они называли эту науку «алхимией», от них это название распространилось и в Европе.

    Известно, что в Египте уже в 3000 году до н. э. умели получать медь из её соединений, используя древесный уголь в качестве восстановителя, а также получали серебро и свинец. Постепенно в Египте и Месопотамии было развито производство бронзы, а в северных странах — железа. Делались также теоретические находки. Например, в Китае с XXII века до н. э. существовала теория об основных элементах (Вода, Огонь, Дерево, Золото, Земля). В Месо

    Иод — Википедия

    О реке в Республике Коми см. Ёд.
    Иод
    ← Теллур | Ксенон →
    Блестящий тёмно-серый неметалл. В газообразном состоянии — фиолетовый.
    Iod kristall.jpg

    Образец йода

    Название, символ, номер Иод / Iodum (I), 53
    Атомная масса
    (молярная масса)
    126,90447(3)[1] а. е. м. (г/моль)
    Электронная конфигурация [Kr] 4d10 5s2 5p5
    Радиус атома 136 пм
    Ковалентный радиус 133 пм
    Радиус иона (+7e) 50 (-1e) 220 пм
    Электроотрицательность 2,66 (шкала Полинга)
    Электродный потенциал +0,535 В
    Степени окисления +7, +5, +3, +1, 0, −1
    Энергия ионизации
    (первый электрон)
     1008,3 (10,45) кДж/моль (эВ)
    Плотность (при н. у.) 4,93 г/см³
    Температура плавления 113,5 °C
    Температура кипения 184,35 °C
    Уд. теплота плавления 15,52 (I—I) кДж/моль
    Уд. теплота испарения 41,95 (I—I) кДж/моль
    Молярная теплоёмкость 54,44[2] Дж/(K·моль)
    Молярный объём 25,7 см³/моль
    Структура решётки орторомбическая
    Параметры решётки a=7,18 b=4,71 c=9,81[3]
    Отношение c/a
    Теплопроводность (300 K) (0,45) Вт/(м·К)
    Номер CAS 7553-56-2

    Ио́д[4] (тривиальное (общеупотребительное) название — йод[5]; от греч. ἰώδης — «фиалковый (фиолетовый)») — химический элемент с атомным номером 53[6]. Принадлежит к 17-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VII группы, или к группе VIIA), находится в пятом периоде таблицы. Атомная масса элемента 126,90447 а. е. м.[1]. Обозначается символом I (от лат. Iodum). Химически активный неметалл, относится к группе галогенов.

    Простое вещество иод при нормальных условиях — кристаллы чёрно-серого цвета с фиолетовым металлическим блеском, легко образует фиолетовые пары, обладающие резким запахом. Элементарный йод высокотоксичен в больших дозах[7]. Молекула простого вещества двухатомна (формула I2).

    Название элемента предложено Гей-Люссаком и происходит от др.-греч. ἰο-ειδής (букв. «фиалкоподобный»), что связано с цветом пара, который наблюдал французский химик Бернар Куртуа, нагревая маточный рассол золы морских водорослей с концентрированной серной кислотой. В медицине и биологии данный элемент и простое вещество обычно называют йодом, например, «раствор йода», в соответствии со старым вариантом названия, существовавшим в химической номенклатуре до середины XX века.

    В современной химической номенклатуре используется наименование иод. Такое же положение существует в некоторых других языках, например, в немецком: общеупотребительное Jod и терминологически корректное Iod. Одновременно с изменением названия элемента в 1950-х годах Международным союзом общей и прикладной химии символ элемента J был заменён на I[8].

    Иод был открыт в 1811 г. Куртуа. При кипячении серной кислоты с рассолом золы морских водорослей он наблюдал выделение фиолетового пара, при охлаждении превращающегося в тёмные кристаллы с ярким блеском.

    Элементная природа иода установлена в 1811—1813 гг. Л. Ж. Гей-Люссаком (а чуть позже и Х. Дэви). Гей-Люссак получил также многие производные (HI, HIO3, I2O5, ICl и др.). Важнейшим природным источником иода служат буровые воды нефтяных и газовых скважин.

    Иод — редкий элемент. Его кларк — всего 400 мг/т. Однако он чрезвычайно сильно рассеян в природе и, будучи далеко не самым распространённым элементом, присутствует практически везде. Иод находится в виде иодидов в морской воде (20—30 мг на тонну морской воды). Присутствует в живых организмах, больше всего в водорослях (2,5 г на тонну высушенной морской капусты, ламинарии). Известен в природе также в свободной форме, в качестве минерала, но такие находки единичны, — в термальных источниках Везувия и на острове Вулькано (Италия). Запасы природных иодидов оцениваются в 15 млн тонн, 99 % запасов находятся в Чили и Японии. В настоящее время в этих странах ведётся интенсивная добыча иода, например, чилийская Atacama Minerals производит свыше 720 тонн иода в год. Наиболее известный из минералов иода — лаутарит Ca(IO3)2. Некоторые другие минералы иода — иодобромит Ag(Br, Cl, I), эмболит Ag(Cl, Br), майерсит CuI·4AgI.

    Сырьём для промышленного получения иода в России служат нефтяные буровые воды[9], тогда как в зарубежных странах, не обладающих нефтяными месторождениями, используются морские водоросли, а также маточные растворы чилийской (натриевой) селитры, щёлок калийных и селитряных производств, что намного удорожает производство иода из такого сырья[10].

    Iod kristall.jpg Жидкий иод на дне химического стакана

    Природный иод состоит только из одного изотопа — иода-127 (см. Изотопы иода). Конфигурация внешнего электронного слоя — 5s2p5. В соединениях проявляет степени окисления −1, 0, +1, +3, +5 и +7 (валентности I, III, V и VII).

    Радиус нейтрального атома иода 0,136 нм, ионные радиусы I, I5+ и I7+ равны, соответственно, 0,206; 0,058-0,109; 0,056-0,067 нм. Энергии последовательной ионизации нейтрального атома иода равны, соответственно: 10,45; 19,10; 33 эВ. Сродство к электрону −3,08 эВ. По шкале Полинга электроотрицательность иода — 2,66, иод принадлежит к числу неметаллов.

    Иод при обычных условиях — твёрдое вещество, чёрно-серые или тёмно-фиолетовые кристаллы со слабым металлическим блеском и специфическим запахом.

    Пары имеют характерный фиолетовый цвет, так же, как и растворы в неполярных органических растворителях, например, в бензоле — в отличие от бурого раствора в полярном этиловом спирте. Слабо растворяется в воде (0,28 г/л), лучше растворяется в водных растворах иодидов щелочных металлов с образованием трииодидов (например трииодида калия KI3).

    При нагревании при атмосферном давлении иод сублимирует (возгоняется), превращаясь в пары фиолетового цвета; при охлаждении при атмосферном давлении пары иода кристаллизуются, минуя жидкое состояние. Этим пользуются на практике для очистки иода от нелетучих примесей.

    Жидкий иод можно получить, нагревая его под давлением.

    Изотопы[править | править код]

    Известны 37 изотопов иода с массовыми числами от 108 до 144. Из них только 127I является стабильным, период полураспада остальных изотопов иода составляет от 103 мкс до 1,57⋅107 лет[11]; отдельные изотопы используются в терапевтических и диагностических целях.

    Радиоактивный нуклид 131I распадается с испусканием β-частиц (наиболее вероятные максимальные энергии — 0,248, 0,334 и 0,606 МэВ), а также с излучением γ-квантов с энергиями от 0,08 до 0,723 МэВ[12].

    Иод относится к группе галогенов.

    Электронная формула (Электронная конфигурация) иода: 1s22s22p63s23p63d104s24p64d105s25p5.

    Образует ряд кислот: иодоводородную (HI), иодноватистую (HIO), иодистую (HIO2), иодноватую (HIO3), иодную (HIO4).

    Химически иод довольно активен, хотя и в меньшей степени, чем хлор и бром.

    • Довольно известной качественной реакцией на иод является его взаимодействие с крахмалом[13], при котором наблюдается синее окрашивание в результате образования соединения включения. Эту реакцию открыли в 1814 году Жан-Жак Колен (Jean-Jacques Colin) и Анри-Франсуа Готье де Клобри (Henri-François Gaultier de Claubry)[14].
    • С металлами иод при лёгком нагревании энергично взаимодействует, образуя иодиды:
    Hg+I2→HgI2{\displaystyle {\mathsf {Hg+I_{2}\rightarrow HgI_{2}}}}
    h3+I2{\displaystyle {\mathsf {H_{2}+I_{2}}}} ⇄ 2HI{\displaystyle {\mathsf {2HI}}}
    I2+h3S→S+2HI{\displaystyle {\mathsf {I_{2}+H_{2}S\rightarrow S+2HI}}}
    I2+2Na2S2O3→2NaI+Na2S4O6{\displaystyle {\mathsf {I_{2}+2Na_{2}S_{2}O_{3}\rightarrow 2NaI+Na_{2}S_{4}O_{6}}}}

    Последняя реакция также используется в аналитической химии для определения иода.

    • При растворении в воде иод частично реагирует с ней (По «Началам Химии» Кузьменко: реакция не идёт даже при нагревании, текст нуждается в проверке)
    I2+h3O→HI+HIO,{\displaystyle {\mathsf {I_{2}+H_{2}O\rightarrow HI+HIO}},} pKc=15,99
    3I2+5Nh4→3Nh5I+Nh4⋅NI3↓{\displaystyle {\mathsf {3I_{2}+5NH_{3}\rightarrow 3NH_{4}I+NH_{3}\cdot NI_{3}\downarrow }}}

    Это вещество почти не имеет практического значения и известно лишь своей способностью разлагаться со взрывом от малейшего прикосновения.

    • Иодиды щелочных металлов очень склонны в растворах присоединять (растворять) молекулы галогенов с образованием полииодидов (периодидов) — трииодид калия, дихлороиодат(I) калия:
    KI+I2→KI3{\displaystyle {\mathsf {KI+I_{2}\rightarrow KI_{3}}}}

    В медицине[править | править код]

    \mathsf{ KI +  I_2 \rightarrow KI_3 } 5 % спиртовой раствор иода

    5-процентный спиртовой раствор иода используется для дезинфекции кожи вокруг повреждения (рваной, резаной или иной раны), но не для приёма внутрь при дефиците иода в организме. Продукты присоединения иода к крахмалу (т. н. «Синий йод» — Йодинол, Йокс, Бетадин и др.) являются более мягкими антисептиками.

    При большом количестве внутримышечных инъекций, на их месте пациенту делается йодная сетка — йодом рисуется сетка на площади, в которую делаются инъекции (например, на ягодицах). Это нужно для того, чтобы быстро рассасывались «шишки», образовавшиеся в местах внутримышечных инъекций.

    В рентгенологических и томографических исследованиях широко применяются йодсодержащие контрастные препараты.

    Иод-131, как и некоторые радиоактивные изотопы иода (125I, 132I) применяются в медицине для диагностики и лечения заболеваний щитовидной железы[2]. Изотоп широко применяется при лечении диффузно-токсического зоба (болезни Грейвса), некоторых опухолей. Согласно нормам радиационной безопасности НРБ-99/2009, принятым в России, выписка из клиники пациента, лечившегося с использованием иода-131, разрешается при снижении общей активности этого нуклида в теле пациента до уровня 0,4 ГБк[16].

    В криминалистике[править | править код]

    В криминалистике пары иода применяются для обнаружения отпечатков пальцев на бумажных поверхностях, например, на купюрах.

    В технике: рафинирование металлов[править | править код]

    Источники света[править | править код]

    Иод используется в источниках света:

    Производство аккумуляторов[править | править код]

    Иод используется в качестве компонента положительного электрода (окислителя) в литиево-ионных аккумуляторах для автомобилей.

    Лазерный термоядерный синтез[править | править код]

    Некоторые иодорганические соединения применяются для производства сверхмощных газовых лазеров на возбуждённых атомах иода (исследования в области лазерного термоядерного синтеза).

    Радиоэлектронная промышленность[править | править код]

    В последние годы резко повысился спрос на иод со стороны производителей жидкокристаллических дисплеев.

    Динамика потребления иода[править | править код]

    Мировое потребление иода в 2005 году составило 25,8 тыс. тонн[источник не указан 1132 дня].

    Йод (I, Iodum) относится к макроэлементам[7]. Как правило, он присутствует во всех живых организмах. Его содержание в растениях зависит от присутствия его соединений в почве и водах. Некоторые морские водоросли (морская капуста, ламинария, фукус и другие) накапливают до 1 % иода. Богаты иодом водные растения семейства рясковых. Иод входит в скелетный белок губок и скелетопротеинов морских многощетинковых червей.[источник не указан 247 дней]

    Йод и щитовидная железа[править | править код]

    У животных и человека йод входит в состав так называемых тиреоидных гормонов, вырабатываемых щитовидной железой — тироксина и трииодтиронина, оказывающих многостороннее воздействие на рост, развитие и обмен веществ организма.

    В организме человека (масса тела 70 кг) содержится 20—50 мг йода[7]. Суточная потребность человека в йоде определяется возрастом, физиологическим состоянием и массой тела. Для человека среднего возраста нормальной комплекции (нормостеник) суточная доза иода составляет 0,15 мг[17]. У женщин, суточная потребность в йоде несколько выше — > 150-250 мкг<ref.name=»xumuk.ru»/>.

    Отсутствие или недостаток йода в рационе (что типично для некоторых местностей) приводит к заболеваниям (эндемический зоб, кретинизм, гипотиреоз). В связи с этим к поваренной соли, поступающей в продажу в местностях с естественным геохимическим дефицитом йода, с профилактической целью добавляют иодид калия, иодид натрия или иодат калия (иодированная соль).

    Недостаток йода приводит к заболеваниям щитовидной железы (например, к базедовой болезни, кретинизму). Также при небольшом недостатке йода отмечается усталость, головная боль, подавленное настроение, природная лень, нервозность и раздражительность; слабеет память и интеллект. Со временем появляется аритмия, повышается артериальное давление, падает уровень гемоглобина в крови.

    Избыток йода в пище обычно легко переносится организмом, однако в отдельных случаях в людях с повышенной чувствительностью этот избыток может также привести к расстройствам щитовидной железы[18].

    Токсичность[править | править код]

    Skull and Crossbones.svg NFPA 704 four-colored diamond

    Йод в виде свободного вещества токсичен[7] (крайне ядовит). Смертельная доза (LD50) — 3 г. Вызывает поражение почек и сердечно-сосудистой системы. При вдыхании паров йода появляется головная боль, кашель, насморк, может быть отёк лёгких. При попадании на слизистую оболочку глаз появляется слезотечение, боль в глазах и покраснение. При попадании внутрь появляется общая слабость, головная боль, повышение температуры, рвота, понос, бурый налёт на языке, боли в сердце и учащение пульса. Через день появляется кровь в моче. Через 2 дня появляются почечная недостаточность и миокардит. Без лечения наступает летальный исход[19].

    ПДК йода в воде 0,125 мг/дм³, в воздухе 1 мг/м³.

    Радиоактивный йод-131 (радиойод), являющийся бета- и гамма-излучателем, особенно опасен для организма человека, так как радиоактивные изотопы биохимически не отличаются от стабильных. Поэтому почти весь радиоактивный йод, как и обычный, концентрируется в щитовидной железе, что приводит к её облучению и дисфункции. Основным источником загрязнения атмосферы радиоактивным йодом являются атомные станции и фармакологическое производство[20]. В то же время это свойство радиойода позволяет использовать его для борьбы с опухолями щитовидной железы и диагностики её заболеваний (см. выше).

    1. 1 2 Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047—1078. — DOI:10.1351/PAC-REP-13-03-02.
    2. 1 2 Ксензенко В. И., Стасиневич Д. С. Иод // Химическая энциклопедия: в 5 т. / Кнунянц И. Л.. — М.: Советская энциклопедия, 1990. — Т. 2: Даффа—Меди. — С. 251—252. — 671 с. — 100 000 экз. — ISBN 5-85270-035-5.
    3. ↑ WebElements Periodic Table of the Elements | Iodine | crystal structures
    4. ↑ Такое написание термина зафиксировано в химической номенклатуре, Иод — статья из Большой советской энциклопедии.  и БРЭ.
    5. ↑ Такое написание зафиксировано в нормативных Архивная копия от 20 октября 2011 на Wayback Machine словарях русского языка — «Орфографическом словаре русского языка» Б. З. Букчиной, И. К. Сазоновой, Л. К. Чельцовой (6-е издание, 2010; ISBN 978-5-462-00736-1) и «Грамматическом словаре русского языка» А. А. Зализняка (6-е издание, 2009; ISBN 978-5-462-00766-8).
    6. ↑ Таблица Менделеева на сайте ИЮПАК.
    7. 1 2 3 4 Ошибка в сносках?: Неверный тег <ref>; для сносок xumuk.ru не указан текст
    8. Леенсон И. А.

    Нерешённые проблемы химии — Википедия

    Материал из Википедии — свободной энциклопедии

    Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 сентября 2019; проверки требуют 5 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 сентября 2019; проверки требуют 5 правок.

    К нерешенным проблемам химии чаще всего относятся вопросы типа: «Можно ли создать химическое соединение Х», «Можно ли его разложить?», «Можно ли очистить его от примесей?» и т. д. Подобные проблемы обычно решаются достаточно быстро. Однако существуют ряд куда более сложных вопросов и проблем в химии, многие из которых до сих пор не были решены и являются областью активного исследования. В химии проблема считается нерешенной, если эксперт в этой области считает проблему нерешенной, либо если несколько экспертов расходятся во мнениях по поводу её решения. В данной статье приводится список таких проблем.

    • Сольволиз норборнильного катиона: Почему норборнильный катион так устойчив? Является ли симметричным? Если да, то почему? Для незамещённого норборнильного катиона ответы на все поставленные вопросы уже были найдены. Ситуация с замещённым катионом остается неясной.
    • В водных реакциях: Почему некоторые органические реакции ускоряются на водно-органических поверхностях?[1]
    • Каково происхождение барьера вращения вокруг связи в этане — стерические препятствия или гиперконъюгация (сверхсопряжение)?
    • Каково происхождение альфа-эффекта? Нуклеофилы с электроотрицательным атомом или же одной и более неподеленной парой, смежной нуклеофильному центру, особенно реакционноспособны.
    • Многие механизмы, предложенные для каталитических процессов, с трудом поддаются пониманию и зачастую не объясняют природу всех сопровождающих явлений.
    • «Лучше, чем идеальные» энзимы: Почему скорость реакций с некоторыми энзимами выше, чем скорость диффузии?[2] См. Кинетика энзимов.
    • Каково происхождение гомохиральности в аминокислотах и сахарах?
    • Фолдинг белка: Можно ли предсказать вторичную, третичную или же четвертичную структуру полипептидной цепи, основываясь только на информации о последовательности полипептидов и условиях среды? Обратная сторона вопроса: Является ли возможным спроектировать полипептидный ряд, который примет данную структуру при определенных условиях среды?[3][4]
    • Фолдинг РНК: Можно ли в точности предсказать вторичную, третичную или же четвертичную структуру полирибонуклеиновой кислоты, основываясь на первичной последовательности и условиях среды?
    • Химическая картина происхождения Жизни: Как неживые химические соединения образовали сложные, самовоспроизводящиеся формы жизни?
    • Что представляет собой электронная структура высокотемпературных сверхпроводников в различных точках фазовой диаграммы? Можно ли довести переходную температуру до комнатной температуры? См. Сверхпроводимость.
    • Ионная сверхпроводимость электролитов или сверхпроводимость второго рода. Теоретически предсказанная, но ни разу не наблюдавшаяся.
    • Фейнманиум: Что будет происходить с химическим элементом, атомный номер которого окажется выше 137, вследствие чего 1s-электрону придется двигаться со скоростью, превышающей скорость света? Является ли «Фейнманиум» последним химическим элементом, способным существовать физически? Проблема может проявиться приблизительно на 137 элементе, где расширение дистрибуции заряда ядра достигает финальной точки. Смотрите статью Extension of the periodic table beyond the seventh period и секцию Relativistic effects of Atomic orbital.
    • Как можно наиболее эффективно преобразовать электромагнитную энергию (фотоны) в химическую? (Например, путем расщепления воды на водород и кислород, используя солнечную энергию)[5][6]
    • Какова природа связей в гипервалентных молекулах?
    • Возможно ли создание Единой теории катализа (ЕТК)?
    • Структура воды: По данным Science Magazine (2005), одной из 100 главных нерешенных проблем науки является вопрос о том, как одни молекулы воды формируют водородные связи с другими своими соседями там, где их много.[3] См. Водный кластер.
    • Какой процесс создает септарию в септарных узлах?
    1. Unique Reactivity of Organic Compounds in Aqueous Suspension (недоступная ссылка) Sridhar Narayan, John Muldoon, M. G. Finn, Valery V. Fokin, Hartmuth C. Kolb, K. Barry Sharpless Angew. Chem. Int. Ed. 21/2005 p 3157
    2. Hsieh M., Brenowitz M. Comparison of the DNA association kinetics of the Lac repressor tetramer, its dimeric mutant LacIadi, and the native dimeric Gal repressor (англ.) // J. Biol. Chem. : journal. — 1997. — August (vol. 272, no. 35). — P. 22092—22096. — DOI:10.1074/jbc.272.35.22092. — PMID 9268351.
    3. 1 2 So much more to know (англ.) // Science. — 2005. — July (vol. 309, no. 5731). — P. 78—102. — DOI:10.1126/science.309.5731.78b. — PMID 15994524.
    4. ↑ MIT OpenCourseWare 7.88J / 5.48J / 7.24J / 10.543J Protein Folding Problem, Fall 2003 Lecture Notes — 1 (неопр.) (недоступная ссылка — история ) (2003).
    5. Duffie, John A. Solar Engineering of Thermal Processes (неопр.). — Wiley-Interscience, 2006. — С. 928. — ISBN 978-0471698678.
    6. Brabec, Christoph; Vladimir Dyakonov, Jurgen Parisi, Niyazi Serdar Sariciftci. Organic Photovoltaics: Concepts and Realization (англ.). — Springer, 2006. — P. 300. — ISBN 978-3540004059.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *