Нерешаемые уравнения – Нерешённые проблемы математики — это… Что такое Нерешённые проблемы математики?

уравнения Навье-Стокса, гипотеза Ходжа, гипотеза Римана. Задачи тысячелетия

Нерешаемые задачи — это 7 интереснейших математических проблем. Каждая из них была предложена в свое время известными учеными, как правило, в виде гипотез. Вот уже много десятилетий над их решением ломают головы математики во всем мире. Тех, кто добьется успеха, ждет вознаграждение в миллион американских долларов, предложенное институтом Клэйя.

уравнения Навье Стокса

Предыстория

В 1900 году великий немецкий математик-универсал Дэвид Гильберт, представил список из 23-х проблем.

Исследования, осуществленные с целью их решения, оказали огромное влияние на науку 20 века. На данный момент большинство из них уже перестали быть загадками. В числе нерешенных или решенных частично остались:

  • проблема непротиворечивости арифметических аксиом;
  • общий закон взаимности на пространстве любого числового поля;
  • математическое исследование физических аксиом;
  • исследование квадратичных форм при произвольных алгебраических числовых коэффициентах;
  • проблема строгого обоснования исчислительной геометрии Федора Шуберта;
  • и пр.

Неисследованными являются: проблема распространения на любую алгебраическую область рациональности известной теоремы Кронекера и гипотеза Римана.

Институт Клэйя

Под таким названием известна частная некоммерческая организация, штаб-квартира которой находится в Кембридже, штат Массачусетс. Она была основана в 1998 году гарвардским математиком А. Джеффи и бизнесменом Л. Клэйем. Целью деятельности института является популяризация и развитие математических знаний. Для ее достижения организация выдает премии ученым и спонсирует многообещающие исследования.

В начале 21 столетия Математический институт Клэйя предложил премию тем, кто решит проблемы, которые известны, как самые сложные нерешаемые задачи, назвав свой список Millennium Prize Problems. Из «Списка Гильберта» в него вошла только гипотеза Римана.

Задачи тысячелетия

В список института Клэйя изначально входили:

  • гипотеза о циклах Ходжа;
  • уравнения квантовой теории Янга — Миллса;
  • гипотеза Пуанкаре;
  • проблема равенства классов Р и NP;
  • гипотеза Римана;
  • уравнения Навье Стокса, о существовании и гладкости его решений;
  • проблема Берча — Свиннертон-Дайера.

Эти открытые математические проблемы представляют огромный интерес, так как могут иметь множество практических реализаций.

нерешаемые задачи

Что доказал Григорий Перельман

В 1900 году известный ученый-философ Анри Пуанкаре предположил, что всякое односвязное компактное 3-мерное многообразие без края гомеоморфно 3-мерной сфере. Ее доказательство в общем случае не находилось в течение века. Лишь в 2002-2003 годах петербургский математик Г. Перельман опубликовал ряд статей с решением проблемы Пуанкаре. Они произвели эффект разорвавшейся бомбы. В 2010 году гипотеза Пуанкаре была исключена из списка «Нерешенные задачи» института Клэйя, а самому Перельману было предложено получить полагающееся ему немалое вознаграждение, от которого последний отказался, не объяснив причин своего решения.

Самое понятное объяснение того, что удалось доказать российскому математику, можно дать, представив, что на бублик (тор), натягивают резиновый диск, а затем пытаются стянуть края его окружности в одну точку. Очевидно, что это невозможно. Другое дело, если произвести этот эксперимент с шаром. В таком случае вроде бы трехмерная сфера, получившаяся из диска, окружность которого стянули в точку гипотетическим шнуром, будет трехмерной в понимании обычного человека, но двумерной с точки зрения математики.

Пуанкаре предположил, что трехмерная сфера является единственным трехмерным «предметом», поверхность которой можно стянуть в одну точку, а Перельману удалось это доказать. Таким образом, список «Нерешаемые задачи» сегодня состоит из 6 проблем.

теория Янга Миллса

Теория Янга-Миллса

Эта математическая проблема была предложена ее авторами в 1954-м году. Научная формулировка теории имеет следующий вид: для любой простой компактной калибровочной группы квантовая пространственная теория, созданная Янгом и Милльсом, существует, и при этом имеет нулевой дефект массы.

Если говорить на языке, понятном для обычного человека, взаимодействия между природными объектами (частицами, телами, волнами и пр.) делятся на 4 типа: электромагнитное, гравитационное, слабое и сильное. Уже много лет физики пытаются создать общую теорию поля. Она должна стать инструментом для объяснения всех этих взаимодействий. Теория Янга-Миллса — это математический язык, с помощью которого стало возможно описать 3 из 4-х основных сил природы. Она не применима к гравитации. Поэтому нельзя считать, что Янгу и Миллсу удалось создать теорию поля.

Кроме того, нелинейность предложенных уравнений делает их крайне сложными для решения. При малых константах связи их удается приближенно решить в виде ряда теории возмущений. Однако пока непонятно, как можно решить эти уравнения при сильной связи.

открытые математические проблемы

Уравнения Навье-Стокса

С помощью этих выражений описываются такие процессы, как воздушные потоки, течение жидкостей и турбулентность. Для некоторых частных случаев аналитические решения уравнения Навье-Стокса уже были найдены, однако сделать это для общего пока никому не удалось. В то же время, численное моделирование для конкретных значений скорости, плотности, давления, времени и так далее позволяет добиться прекрасных результатов. Остается надеяться, что у кого-нибудь получится применить уравнения Навье-Стокса в обратном направлении, т. е. вычислить с их помощью параметры, либо доказать, что метода решения нет.

Задача Берча — Свиннертон-Дайера

К категории «Нерешенные задачи» относится и гипотеза, предложенная английскими учеными из Кембриджского университета. Еще 2300 лет назад древнегреческий ученый Эвклид дал полное описание решений уравнения x2 + y2 = z2.

Если для каждого из простых чисел посчитать количество точек на кривой по его модулю, получится бесконечный набор целых чисел. Если конкретным образом «склеить» его в 1 функцию комплексной переменной, тогда получится дзета-функция Хассе-Вейля для кривой третьего порядка, обозначаемая буквой L. Она содержит информацию о поведении по модулю всех простых чисел сразу.

Брайан Берч и Питер Свиннертон-Дайер выдвинули гипотезу относительно эллиптических кривых. Согласно ей, структура и количество множества ее рациональных решений связаны с поведением L-функции в единице. Недоказанная на данный момент гипотеза Берча — Свиннертон-Дайера зависит от описания алгебраических уравнений 3 степени и является единственным сравнительно простым общим способом расчета ранга эллиптических кривых.

Чтобы понять практическую важность этой задачи, достаточно сказать, что в современной криптографии на эллиптических кривых основан целый класс асимметричных систем, и на их применении основаны отечественные стандарты цифровой подписи.

равенство классов p и np

Равенство классов p и np

Если остальные «Задачи тысячелетия» относятся к чисто математическим, то эта имеет отношение к актуальной теории алгоритмов. Проблема, касающаяся равенства классов р и np, известная также, как проблема Кука-Левина, понятным языком может быть сформулирована следующим образом. Предположим, что положительный ответ на некий вопрос можно проверить достаточно быстро, т. е. за полиномиальное время (ПВ). Тогда правильно ли утверждение, что ответ на него можно довольно быстро отыскать? Еще проще эта задача звучит так: действительно ли решение задачи проверить не труднее, чем его найти? Если равенство классов р и np будет когда-либо доказано, то все проблемы подбора можно будет решать за ПВ. На данный момент многие специалисты сомневаются в истинности этого утверждения, хотя не могут доказать обратное.

математика гипотеза Римана

Гипотеза Римана

Вплоть до 1859 года не было выявлено какой-либо закономерности, которая описывала бы, как распределяются простые числа среди натуральных. Возможно, это было связано с тем, что наука занималась другими вопросами. Однако к середине 19 столетия ситуация изменилась, и они стали одними из наиболее актуальных, которыми начала заниматься математика.

Гипотеза Римана, появившаяся в этот период — это предположение о том, что в распределении простых чисел существует определенная закономерность.

Сегодня многие современные ученые считают, что если она будет доказана, то придется пересмотреть многие фундаментальные принципы современной криптографии, составляющие основу значительной части механизмов электронной коммерции.

Согласно гипотезе Римана, характер распределения простых чисел, возможно, существенно отличается от предполагаемого на данный момент. Дело в том, что до сих пока не было обнаружено какой-либо системы в распределения простых чисел. Например, существует проблема «близнецов», разность между которыми равна 2. Этими числами являются 11 и 13, 29. Другие простые числа образуют скопления. Это 101, 103, 107 и др. Ученые давно подозревали, что подобные скопления существуют и среди очень больших простых чисел. Если их найдут, то стойкость современных криптоключей окажется под вопросом.

гипотеза Ходжа

Гипотеза о циклах Ходжа

Эта нерешенная до сих пор задача сформулирована в 1941 году. Гипотеза Ходжа предполагает возможность аппроксимации формы любого объекта путем «склеивания» вместе простых тел большей размерности. Этот способ был известен и успешно применяется достаточно давно. Однако не известно, до какой степени можно производить упрощение.

Теперь вы знаете, какие нерешаемые задачи существуют на данный момент. Они являются предметом исследования тысяч ученых во всем мире. Остается надеяться, что в ближайшее время они будут решены, а их практическое применение поможет человечеству выйти на новый виток технологического развития.

fb.ru

Задачи тысячелетия. Просто о сложном / Habr


Привет, хабралюди!

Сегодня я бы хотел затронуть такую тему как «задачи тысячелетия», которые вот уже десятки, а некоторые и сотни лет волнуют лучшие умы нашей планеты.

После доказательства гипотезы (теперь уже теоремы) Пуанкаре Григорием Перельманом, основным вопросом, который заинтересовал многих, был: «А что же он собственно доказал, объясните на пальцах?» Пользуясь возможностью, попробую объяснить на пальцах и остальные задачи тысячелетия, или по крайней мере подойти в ним с другой более близкой к реальности стороны.

Равенство классов P и NP

Все мы помним из школы квадратные уравнения, которые решаются через дискриминант. Решение этой задачи относится к классу P (Polynomial time) — для нее существует быстрый (здесь и далее под словом «быстрый» подразумевается как выполняющийся за полиномиальное время) алгоритм решения, который и заучивается.

Также существуют NP-задачи (Non-deterministic Polynomial time), найденное решение которых можно быстро проверить по определенному алгоритму. Для примера проверка методом перебора компьютером. Если вернуться к решению квадратного уравнения, то мы увидим, что в данном примере существующий алгоритм решения проверяется так же легко и быстро как и решается. Из этого напрашивается логичный вывод, что данная задача относится как к одному классу так и ко второму.

Таких задач много, но основным вопросом является, все или не все задачи которые можно легко и быстро проверить можно также легко и быстро решить? Сейчас для некоторых задач не найдено быстрого алгоритма решения, и неизвестно существует ли такой вообще.

На просторах интернета также встретил такую интересную и прозрачную формулировку:

Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей.

В данном случае вопрос стоит все тот же, есть ли такой алгоритм действий, благодаря которому даже не имея информации о том, где находится человек, найти его так же быстро, как будто зная где он находится.

Данная проблема имеет большое значение для самых различных областей знаний, но решить ее не могут уже более 40 лет.

Гипотеза Ходжа

В реальности существуют множество как простых так и куда более сложных геометрических объектов. Очевидно, что чем сложнее объект тем более трудоемким становится его изучение. Сейчас учеными придуман и вовсю применяется подход, основная идея которого заключается в том, чтобы вместо самого изучаемого объекта использовать простые «кирпичики» с уже известными свойствами, которые склеиваются между собой и образуют его подобие, да-да, знакомый всем с детства конструктор. Зная свойства «кирпичиков», становится возможным подступиться и к свойствам самого объекта.

Гипотеза Ходжа в данном случае связана с некоторыми свойствами как «кирпичиков» так и объектов.

Гипотеза Римана

Всем нам еще со школы известны простые числа которые делятся только на себя и на единицу (2,3,5,7,11...). С давних времен люди пытаются найти закономерность в их размещении, но удача до сих пор так никому и не улыбнулась. В результате ученые применили свои усилия к функции распределения простых чисел, которая показывает количество простых чисел меньше или равных определенного числа. Например для 4 — 2 простых числа, для 10 — уже 4 числа. Гипотеза Римана как раз устанавливает свойства данной функции распределения.

Многие утверждения о вычислительной сложности некоторых целочисленных алгоритмов, доказаны в предположении верности этой гипотезы.

Теория Янга — Миллса

Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения, объединяющие теории электромагнитного, слабого и сильного взаимодействий. Одно время теория Янга-Миллса рассматривалась лишь как математический изыск, не имеющий отношения к реальности. Однако, позже теория начала получать экспериментальные подтверждения, но в общем виде она все еще остается не решенной.

На основе теории Янга-Миллса построена стандартная модель физики элементарных частиц в рамках которой был предсказан и не так давно обнаружен нашумевший бозон Хиггса.

Существование и гладкость решений уравнений Навье — Стокса

Течение жидкостей, воздушные потоки, турбулентность. Эти, а также множество других явлений описываются уравнениями, известными как уравнения Навье — Стокса. Для некоторых частных случаев уже найдены решения, в которых как правило части уравнений отбрасываются как не влияющие на конечный результат, но в общем виде решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать.
Гипотеза Бёрча — Свиннертон-Дайера

Для уравнения x2 + y2 = z2 в свое время еще Эвклид дал полное описание решений, но для более сложных уравнений поиск решений становится чрезвычайно трудным, достаточно вспомнить историю доказательства знаменитой теоремы Ферма, чтобы убедиться в этом.

Данная гипотеза связана с описанием алгебраических уравнений 3 степени — так называемых эллиптических кривых и по сути является единственным относительно простым общим способом вычисления ранга, одного из важнейших свойств эллиптических кривых.

В доказательстве теоремы Ферма эллиптические кривые заняли одно из важнейших мест. А в криптографии они образуют целый раздел имени себя, и на них основаны некоторые российские стандарты цифровой подписи.

Гипотеза Пуанкаре

Думаю если не все, то большинство точно о ней слышали. Чаще всего встречается, в том числе и на центральных СМИ, такая расшифровка как «резиновую ленту натянутую на сферу можно плавно стянуть в точку, а натянутую на бублик — нельзя». На самом деле эта формулировка справедлива для гипотезы Тёрстона, которая обобщает гипотезу Пуанкаре, и которую в действительности и доказал Перельман.

Частный случай гипотезы Пуанкаре говорит нам о том, что любое трехмерное многообразие без края (вселенная, например) подобно трехмерной сфере. А общий случай переводит это утверждение на объекты любой мерности. Стоит заметить, что бублик, точно так же как вселенная подобна сфере, подобен обычной кофейной кружке.

Заключение

В настоящее время математика ассоциируется с учеными, имеющими странный вид и говорящие о не менее странных вещах. Многие говорят о ее оторванности от реального мира. Многие люди как младшего, так и вполне сознательного возраста говорят, что математика ненужная наука, что после школы/института, она нигде не пригодилась в жизни.

Но на самом деле это не так — математика создавалась как механизм с помощью которого можно описать наш мир, и в частности многие наблюдаемые вещи. Она повсюду, в каждом доме. Как сказал В.О. Ключевский: «Не цветы виноваты, что слепой их не видит».

Наш мир далеко не так прост, как кажется, и математика в соответствии с этим тоже усложняется, совершенствуется, предоставляя все более твердую почву для более глубокого понимания существующей реальности.

habr.com

7 величайших математических загадок тысячелетия.

Часто, беседуя со старшеклассниками об исследовательских работах по математике, слышу следующее: "Что можно нового открыть в математике?" А действительно: может быть все великие открытия сделаны, а теоремы доказаны?

8 августа 1900 года на международном математическом конгрессе в Париже математик Дэвид Гилберт (David Hilbert) изложил список проблем, которые, как он полагал, предстояло решить в ХХ веке. В списке было 23 пункта. Двадцать один из них на данный момент решены. Последней решенной проблемой из списка Гилберта была знаменитая теорема Ферма, с которой ученые не могли справиться в течение 358 лет. В 1994 году свое решение предложил британец Эндрю Уайлз. Оно и оказалось верным.

По примеру Гилберта в конце прошлого века многие математики пытались сформулировать подобные стратегические задачи на ХХI век. Один из таких списков приобрел широкую известность благодаря бостонскому миллиардеру Лэндону Клэю (Landon T. Clay). В 1998 году на его средства в Кембридже (Массачусетс, США) был основан Математический институт Клэя (Clay Mathematics Institute) и установлены премии за решение ряда важнейших проблем современной математики. 24 мая 2000 года эксперты института выбрали семь проблем - по числу миллионов долларов, выделенных на премии. Список получил название Millennium Prize Problems:

1. Проблема Кука (сформулирована в 1971 году)

Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей. Это говорит о том, что решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения.

Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки. Эта проблема также является одной из нерешенных задач из области логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

2. Гипотеза Римана (сформулирована в 1859 году)

Некоторые целые числа не могут быть выражены как произведение двух меньших целых чисел, например 2, 3, 5, 7 и так далее. Такие числа называются простыми и играют важную роль в чистой математике и ее приложениях. Распределение простых чисел среди ряда всех натуральных чисел не подчиняется никакой закономерности. Однако немецкий математик Риман высказал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.

3. Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 году)

Связана с описанием множества решений некоторых алгебраических уравнений от нескольких переменных с целыми коэффициентами. Примером подобного уравнения является выражение x2 + y2 = z2. Эвклид дал полное описание решений этого уравнения, но для более сложных уравнений поиск решений становится чрезвычайно трудным.

4. Гипотеза Ходжа (сформулирована в 1941 году)

В ХХ веке математики открыли мощный метод исследования формы сложных объектов. Основная идея заключается в том, чтобы использовать вместо самого объекта простые "кирпичики", которые склеиваются между собой и образуют его подобие. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких "кирпичиков" и объектов.

5. Уравнения Навье - Стокса (сформулированы в 1822 году)

Если плыть в лодке по озеру, то возникнут волны, а если лететь в самолете, в воздухе возникнут турбулентные потоки. Предполагается, что эти и другие явления описываются уравнениями, известными как уравнения Навье - Стокса. Решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Решение этой проблемы позволит существенно изменить способы проведения гидро- и аэродинамических расчетов.

6. Проблема Пуанкаре (сформулирована в 1904 году)

Если натянуть резиновую ленту на яблоко, то можно, медленно перемещая ленту без отрыва от поверхности, сжать ее до точки. С другой стороны, если ту же самую резиновую ленту соответствующим образом натянуть вокруг бублика, то никаким способом невозможно сжать ленту в точку, не разрывая ленту или не ломая бублик. Говорят, что поверхность яблока односвязна, а поверхность бублика - нет. Доказать, что односвязна только сфера, оказалось настолько трудно, что математики ищут правильный ответ до сих пор.

7. Уравнения Янга - Миллса (сформулированы в 1954 году)

Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий. Из уравнений Янга - Миллса следовало существование частиц, которые действительно наблюдались в лабораториях во всем мире, поэтому теория Янга - Миллса принята большинством физиков несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.

Думаю, что этот материал, опубликованный в блоге

интересен не только студентам, но и школьникам, серьёзно занимающимся математикой. Есть над чем подумать, выбирая темы и направления исследовательских работ.

matematika88888.blogspot.com

Задачи тысячелетия, Нерешенные математические проблемы

Всем привет!

Бытует мнение, что сегодня наукой заниматься не выгодно – богатым не стать! Но надеюсь, что сегодняшний пост покажет вам, что это далеко не так. Сегодня я расскажу вам как, занимаясь фундаментальными исследованиями, можно заработать кругленькую сумму.

На любом этапе развития перед любой из наук всегда стоял ряд нерешенных проблем и задач, которые не давали покоя ученым. Физика – холодный термоядерный синтез, математика – гипотеза Гольдбаха, медицина – лекарство от рака и тд. Некоторые из них настолько важны (по тем или иным причинам), что за их решение полагается вознаграждение. И порой это вознаграждение весьма и весьма приличное.

В ряде наук этим вознаграждением может служить Нобелевская премия. Но за математические открытия ее не дают, а поговорить сегодня хотелось бы именно о математике.

Математика – царица наук, предлагает вашему вниманию море нерешенных проблем и интереснейших задач, но поговорим мы сегодня только о семи. Их еще называют «Задачами тысячелетия».

Казалось бы, задачи, да и задачи? Что в них особенного? Дело в том, что решение их не найдено на протяжении уже многих лет, да и за решение каждой из них институт имени Клэя пообещал вознаграждение в размере 1 миллиона долларов! Согласитесь, не мало. Конечно не «Нобелевка», размер которой, примерно, 1,5 миллиона, но тоже сойдет.

Вот их список:

  • Равенство классов P и NP
  • Гипотеза Ходжа
  • Гипотеза Пуанкаре (решена)
  • Гипотеза Римана
  • Квантовая теория Янга — Миллса
  • Существование и гладкость решений уравнений Навье — Стокса
  • Гипотеза Бёрча — Свиннертон-Дайера

Итак, давайте рассмотрим подробнее каждую из них.

 

1.Равенство классов P и NP

Эта задача является одной из важнейших задач в теории алгоритмов, и, держу пари, многие из вас хоть и косвенно о ней слышали. Что это за проблема и в чем ее суть? Представьте, что есть некий класс задач, на которые мы можем быстро давать ответ, то есть быстро находить для них решение. Этот класс задач в теории алгоритмов называю P классом. А есть класс задач, для которых мы можем быстро проверить правильность их решения – это NP класс. И доселе, не известно равны ли эти классы или нет. То есть не известно, можно ли, хоть в теории, найти такой алгоритм по которому мы сможем так же быстро находить решение поставленной задачи, как и проверять его правильность.

Классический пример. Пусть дано множество чисел, например: 50, 2, 47, 5, 21, 4, 78, 1. Задача: можно ли подобрать среди этих чисел такие, что их сумма даст 100? Ответ: можно, например 50+47+2+1 = 100. Проверить верность решения просто. Четыре раза применим операцию сложения и все. Толи дело подобрать эти числа. На первый взгляд это сделать гораздо сложнее. То есть найти решение задачи сложнее, чем его проверить. С точки зрения банальной эрудиции так оно и есть, но математически это не доказано, и остается надежда на то что это не так.

И что с этого? Что с того, если окажется что классы P и NP  окажутся равны? Все просто. Равенство классов означает то, что существуют алгоритмы решения многих задач, которые работают гораздо быстрее, чем ныне известные (как было сказано выше).

Естественно, была предпринята далеко не одна попытка доказать или опровергнуть эту гипотезу, но ни одна не увенчалась успехом. Последней была попытка индийского математика Винэя Деолаликара. По мнению автора формулировки проблемы, Стивена Кука, это решение было «относительно серьёзной попыткой решить проблему P vs NP». Но, к сожалению, в представленном доказательстве был найден ряд ошибок, которые автор пообещал исправить.

 

2.Гипотеза Ходжа

Сложное есть сумма простых составляющих. В результате изучения сложных объектов математики разработали методы их аппроксимации посредствам склеивания объектов возрастающей размерности. Но пока не выяснено, до какой степени можно проводить подобного рода аппроксимацию, и остается неясна геометрическая природа некоторых объектов, которые используются при аппроксимации.

3.Гипотеза Пуанкаре

Гипотеза Пуанкаре на сегодняшний момент является единственной из семи задач тысячелетия, которая была решена. Отрадно заметить, что автором решения стал наш соотечественник Григорий Яковлевич Перельман, по совместительству гений-затворник. О нем можно много и интересно рассказывать, но сосредоточимся на самой гипотезе.

Формулировка:

Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере.

Или обобщенная гипотеза Пуанкаре:

Для любого натурального числа n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей.

По-простому, суть проблемы в следующем. Если взять яблоко и обтянуть его резиновой пленкой, то мы, с помощью деформаций, не разрывая пленку, можем превратить яблоко в точку или кубик, но никоим образом не сможем превратить его в бублик. Кубик, трехмерная сфера и даже трехмерное пространство идентичны друг другу, с точностью до деформации.

Не смотря на столь простую формулировку, гипотеза оставалась не доказанной на протяжении сотни лет. Хотя в математике, порой, чем проще формулировка, тем сложнее доказательство (все помним о Великой теореме Ферма).

Вернемся к товарищу Перельману. Этот господин знаменит еще тем, что отказался от положенного ему миллиона, заявив следующее: «Зачем мне ваши деньги, если у меня в руках вся Вселенная?» Я бы так не смог. Вследствие отказа выделенный миллион был пожалован молодым французским и американским математикам.

Напоследок хотелось бы заметить, что гипотеза Пуанкаре не имеет совершенно никакого практического применения(!!!).

 

4.Гипотеза Римана.

Гипотеза Римана является, наверное, самой известной (на ряду с гипотезой Пуанкаре) из семи задач тысячелетия. Одной из причин ее известности среди людей профессионально не занимающихся математикой в том, что она имеет весьма простую формулировку.

Все нетривиальные нули дзета-функции Римана имеют действительную часть равную ?.

Согласитесь, весьма просто. И кажущаяся простота являлась причиной многих попыток доказать сею гипотезу. К сожалению, пока безрезультатно.

Большое количество безрезультатных попыток доказать гипотезу Римана породило сомнение о ее справедливости среди некоторых математиков. Среди них Джон Литлвуд. Но ряды скептиков не столь много числены и большая часть математического сообщества склонны считать, что гипотеза Римана, все же, верна. Косвенным подтверждением этого является справедливость ряда схожих утверждений и гипотез.

Многие алгоритмы и утверждения в теории чисел были сформулированы с допущением, что вышеуказанная гипотеза верна. Таким образом доказательство справедливости гипотезы Римана утвердит фундамент теории чисел, а ее опровержение теорию чисел «пошатнет» в самом основании.

И, напоследок, один довольно известный, но весьма интересный факт. Однажды у Давида Гильберта спросили: «Каковы будут ваши первые действия, если вы проспите 500 лет и проснетесь?» — «Я спрошу, доказана ли гипотеза Римана».

 

5.  Теория Янга — Миллса

Одна из калибровочных теорий квантовой физики с неабелевой калибровочной группой. Данная теория была предложена в середине прошлого века, но долгое время рассматривалась как чисто математический прием, не имеющий никакого отношения к реальной природе вещей. Но позже на основе теории Янга-Миллса были построены основные теории Стандартной модели — квантовая хромодинамика и теория слабых взаимодействий.

 

Формулировка проблемы:

 

Для любой простой компактной калибровочной группы  квантовая теория Янга — Миллса для пространства  существует и имеет ненулевой дефект массы.

Теория отлично подтверждается результатами экспериментов и результатам компьютерного моделирования, но теоретического доказательства не получила.

 

6.  Существование и гладкость решений уравнений Навье — Стокса

Одна из самых важных задач гидродинамики, и последняя из нерешенных проблем классической механики.

Уравнение Навье—Стокса дополненное уравнениями Максвелла, уравнениями переноса тепла и тд, используется при решении многих задач электрогидродинамики, магнитогидродинамики, конвекции жидкосте и газов, теплодифузии и тд.

Сами уравнения представляют из себя систему уравнений в частных производных. Уравнения состоят из двух частей:

  • уравнения движения
  • уравнения неразрывности

Нахождение полного аналитического решения уравнений Навье—Стокса сильно осложняется их нелинейностью и сильной зависимостью от граничных и начальных условий.

 

7. Гипотеза Бёрча — Свиннертон-Дайера

Последняя из проблем тысячелетия — это гипотеза Бёрча — Свиннертон-Дайера.

Гипотеза утверждает, что

ранг эллиптической кривой r над Q равен порядку нуля дзета-функции Хассе—Вейля

E(L,s) в точке s = 1.

Данная гипотеза единственный относительно простой способ определения ранга эллиптических кривых, которые, в свою очередь, являются основными объектами изучения современной теории чисел и криптографии.

 

Вот и все проблемы тысячелетия. Прошу прощения, за то, что некоторые проблемы освещены гораздо меньше остальных. Это связано с отсутствием информации по данным проблемам и невозможностью довольно просто (без привлечения громоздкой и сложной математики) изложить их суть.  За решение каждой из проблем институт Клея объявил награду в 1 миллион долларов. Дерзайте! Есть шанс неплохо заработать, двигая вперед фундаментальную науку, ведь шесть из семи проблем пока так и не дождались своего решения.

neudoff.net

Отправить ответ

avatar
  Подписаться  
Уведомление о