О2 это в химии: Кислород — Википедия – O2 — Кислород | Химия соединений

Что такое CO2 в химии . Ну типа кислота какая-то , а вот какая ???

Углекислый газ.

Это углекислый газ

углекислота, если с водой соединить

Оксид углерода (углекислый газ, диоксид углерода, двуокись углерода, угольный ангидрид)

Это оксид, кислотный. Не кислота. Кислота вот h3CO3 — угольная

Это оксид углерода (IV), которому соответствует угольная кислота Н2СО3!!! Это кислотный оксид, второе название углекислый газ!

углекислый газ

углекислород…

Углекислый газ — это… Что такое Углекислый газ?

Диоксид углерода
Carbon dioxideCarbon dioxide
Другие названияуглекислый газ, углекислота,
сухой лед(твердый)
ФормулаCO2
Молярная масса44.0095(14) г/моль
В твердом видесухой лед
Видбесцветный газ
Номер CAS[124-38-9]
Свойства
Плотность и фазовое состояние1.98 кг/м³, при н.у.;
771 кг/м³, жидкий;
1512 кг/м³, твёрдый
Растворимость в воде1.45 кг/м³
Удельная теплота плавления25.13 кДж/моль
Точка плавления−57 °C (216 K), под давлением
Точка кипения−78 °C (195 K), возгоняется
Константа диссоциации кислоты (pKa)6.35 and 10.33
Вязкость0.07 пз при −78 °C
Строение
Форма молекулылинейная
Кристаллическая решёткакварцевидная
Дипольный моментноль
Техника безопасности
MSDSExternal MSDS
Главные опасностиудушающее, раздражающее
NFPA 704 Carbon dioxide

0

0

0

 

(жидкость)

R-phrases R: As, Fb
S-phrasesS9, S23, S36 (ж)
RTECS numberFF6400000
Страница дополнительных сведений
Структура и свойстваn, εr, и т. д.
СпектрУФ, ИК, ЯМР, Масс-спектроскопия
Родственные соединения
ОксидыCO
C3O2
C2O
CO3
Если не указано иное, данные даны для
материалов при стандартных условиях (25 °C, 100 кПа)
Infobox disclaimer and references

Диокси́д углеро́да (двуо́кись углеро́да, углеки́слый газ, окси́д углеро́да (IV), диокси́д углеро́да, у́гольный ангидрид, углекислота́) — CO2, бесцветный газ со слегка кисловатым запахом и вкусом.

Концентрация углекислого газа в атмосфере Земли составляет 0,038 %.

Не следует путать с Диоксин.

Свойства

Физические

Плотность при нормальных условиях 1,98 г/л. При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения.

Углекислый газ легко пропускает ультрафиолетовые лучи и лучи видимой части спектра, которые поступают на Землю от Солнца и обогревают её. В то же время он поглощает испускаемые Землёй инфракрасные лучи и является одним из парниковых газов, вследствие чего принимает участие в процессе глобального потепления. Постоянный рост уровня содержания этого газа в атмосфере наблюдается с начала индустриальной эпохи.

Химические

По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту. Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом — реакция Кольбе) и нуклеофильного присоединения (например, с магнийорганическими соединениями).

Биологические

Диоксид углерода играет одну из главных ролей в живой природе, участвуя во многих процессах метаболизма живой клетки. Диоксид углерода получается в результате множества окислительных реакций у животных, и выделяется в атмосферу с дыханием. Углекислый газ атмосферы — основной источник углерода для растений. Однако, ошибкой будет утверждение, что животные только выделяют углекислый газ, а растения — только поглощают его. Растения поглощают углекислый газ в процессе фотосинтеза, а без освещения они тоже его выделяют.

Диоксид углерода не токсичен, но не поддерживает дыхание. Большая концентрация в воздухе вызывает удушье (см. Гиперкапния). Недостаток углекислого газа тоже опасен (см. Гипокапния)

Углекислый газ в организмах животных имеет и физиологическое значение, например, участвует в регуляции сосудистого тонуса (см. Артериолы).

Получение

В промышленности получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). Смесь газов промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании разлагается, высвобождая углекислоту. При промышленном производстве закачивается в баллоны.

В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора с соляной кислотой.

Применение

В пищевой промышленности диоксид углерода используется как консервант и обозначается на упаковке под кодом Е290, а также в качестве разрыхлителя теста.

Жидкая углекислота (жидкая пищевая углекислота) — сжиженный углекислый газ, хранящийся под высоким давлением (~ 65-70 Атм). Бесцветная жидкость. При выпуске жидкой углекислоты из баллона в атмосферу часть её испаряется, а другая часть образует хлопья сухого льда.

Баллоны с жидкой углекислотой широко применяются в качестве огнетушителей и для производства газированной воды и лимонада. Углекислый газ используется в качестве активной среды при сварке проволокой так как при температуре дуги углекислота разлагается на угарный газ СО и кислород который в свою очередь и входит в заимодействие с жидким металом окисляя его. Углекислота в баллончиках применяется в пневматическом оружии и в качестве источника энергии для двигателей в авиамоделировании.

Твёрдая углекислота — сухой лёд — используется в качестве хладагента в ледниках и морозильных установках.

Методы регистрации

Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях — анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO

2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта.

Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем. Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф.

Концентрация

  • Подземное животное голый землекоп отличается терпимостью к большим (смертельным для других животных) концентрациям углекислого газа.[1]

Примечания

См. также

Ссылки

Wikimedia Foundation. 2010.

Диоксид триуглерода — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 декабря 2018; проверки требуют 5 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 декабря 2018; проверки требуют 5 правок.

Диокси́д триуглеро́да (1,3-диоксопропадиен, надоксид углерода, недоокись углерода, трикарбодиоксид) С3О2 — органическое соединение, бесцветный ядовитый газ (при нормальных условиях) с резким, удушливым запахом, легко полимеризующийся в обычных условиях с образованием продукта, нерастворимого в воде, жёлтого, красного или фиолетового цвета.

Молекула С3О2 имеет линейное строение О=С=С=С=О с длиной связи С=С 130 пм и С=О 120 пм.

Диоксид триуглерода является внутренним ангидридом малоновой кислоты — при взаимодействии с водой в течение 1 часа количественно даёт малоновую кислоту:

O=C=C=C=O+2h3O→HOOC-Ch3-COOH{\displaystyle {\mathsf {O{\text{=}}C{\text{=}}C{\text{=}}C{\text{=}}O+2H_{2}O\rightarrow HOOC{\text{-}}CH_{2}{\text{-}}COOH}}}

По остальным свойствам он также сходен с кетенами из-за алленообразного строения молекулы — легко реагирует с нуклеофилами с образованием производных малоновой кислоты. Реакция проходит через образование енолов (нуклеофильное присоединение по карбонильной группе):

O=C=C=C=O+HX→HO(X)C=C=C(X)OH→X(O)C-Ch3-C(O)X,  X=Hal,OH,OR,OCOR,Nh3,NHR,NR2,CN,SH,SR{\displaystyle {\mathsf {O{\text{=}}C{\text{=}}C{\text{=}}C{\text{=}}O+HX\rightarrow HO(X)C{\text{=}}C{\text{=}}C(X)OH\rightarrow X(O)C{\text{-}}CH_{2}{\text{-}}C(O)X,\ \ X=Hal,OH,OR,OCOR,NH_{2},NHR,NR_{2},CN,SH,SR}}}

Полимеризуется при сжижении или хранении при давлении выше 100 мм рт.ст. в красный полимер. Полимеризация ускоряется в присутствии пентаоксида фосфора.

Получают С3О2 пиролизом ангидрида диацетилвинной кислоты, дегидратацией малоновой кислоты или её эфиров, например, фосфорным ангидридом, и другими методами[1]:

Ch3(COOH)2+P2O5→h5P2O7+C3O2↑{\displaystyle {\mathsf {CH_{2}(COOH)_{2}+P_{2}O_{5}\rightarrow H_{4}P_{2}O_{7}+C_{3}O_{2}\uparrow }}}
\mathsf{CH_2(COOH)_2 + P_2O_5 \rightarrow H_4P_2O_7 + C_3O_2\uparrow} Обнаруженные в организме 6- и 8-членные макроциклические полимеры недокиси углерода являются эндогенными дигоксиноподобными соединениями, ингибиторами Na+/K±АТФ-азы, кальций-зависимой АТФ-азы, эндогенными натриуретиками, антиоксидантами и антигипертензивными веществами

Диоксид триуглерода может образовываться в малых количествах как побочный продукт во всех биохимических процессах, в которых обычно образуется окись углерода (CO), в частности при окислении гема ферментом гемоксигеназой. Кроме того, диоксид триуглерода в организме может также образовываться из малоновой кислоты, внутренним ангидридом которой он является. Показано, что в организме диоксид триуглерода способен полимеризоваться в макроциклические структуры вида (C3O2)n (в основном (C3O2)6 и (C3O2)8), причём эти макроциклические соединения обладают дигоксин-подобной активностью, способностью угнетать активность Na+/K+-АТФ-азы и кальций-зависимой АТФ-азы и натрийуретической активностью и, очевидно, являются эндогенными аналогами дигоксина и уабаина в клетках животных и эндогенными регуляторами функции Na+/K+-АТФ-азы и натрийуреза, а также эндогенными антигипертензивными веществами[2][3][4]. Кроме того, этим макроциклическим соединениям диоксида триуглерода приписывают также способность защищать клетки от свободнорадикального повреждения и оксидативного стресса (что логично, учитывая «недоокисленность» углерода в них) и роль эндогенной противоопухолевой защиты, в частности, в подвергающихся высокой степени воздействия оксидативного стресса светочувствительных клетках сетчатки глаза[5].

  1. Дашкевич Л. Б., Бейлин В. Г. Недокись углерода в органическом синтезе // Успехи химии. — 1967. — Т. 36, вып. 6. — С. 947—964.
  2. Franz Kerek. The structure of the digitalislike and natriuretic factors identified as macrocyclic derivatives of the inorganic carbon suboxide // Hypertension Research. — Sep 2000. — Т. 23, вып. 23 Suppl S33, № Suppl S33. — С. S33-38. — DOI:10.1291/hypres.23.Supplement_S33. — PMID 11016817.
  3. Robert Stimac, Franz Kerek, Hans-Jurgen Apell. Macrocyclic carbon suboxide oligomers as potent inhibitors of the Na,K-ATPase // Annals of the New York Academy of Sciences. — Apr 2003. — Т. 986. — С. 327-329. — DOI:10.1111/j.1749-6632.2003.tb07204.x. — PMID 12763840.
  4. Franz Kerek, Robert Stimac, Hans-Jürgen Apell, Frank Freudenmann, Luis Moroder. Characterization of the macrocyclic carbon suboxide factors as potent Na,K-ATPase and SR Ca-ATPase inhibitors // Biochimica et Biophysica Acta (BBA) — Biomembranes. — 23 December 2002. — Т. 1567, № 1—2. — С. 213—220. — DOI:10.1016/S0005-2736(02)00609-0. — PMID 12488055.
  5. Tubaro E. Carbon suboxide, the probable precursor of an antitumor cellular sustance: retina (italian) // Boll Chim Farm. — Jun 1966. — Т. 105, вып. 105(6), № 6. — С. 415-416. — PMID 6005012.
  • «Dictionary of organic compounds». — Vol.1, Abadole-Cytosine. — New York, 1953. — С. 428
  • «Руководство по неорганическому синтезу». — Т.3, под ред. Брауэра Г. — М.: Мир, 1985. — С. 682—684
  • «Справочник химика». — 2 изд., Т.1. — Л.-М.: Химия, 1966. — С. 605 (давление паров)
  • «Справочник химика». — Т.2. — Л.-М.: Химия, 1964. — С. 228—229
  • Binneweis M., Milke E. «Thermochemical Data of Elements and Compounds». — 2ed, 2002. — С. 267
  • Некрасов Б. В. «Основы общей химии». — Т.1. — М.: Химия, 1973. — С. 513
  • Реми Г. «Курс неорганической химии». — Т.1. — М., 1963. — С. 481
  • Успехи химии. — 1967. — Т.36, № 6. — С. 947—964

Оксид бора — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 октября 2017; проверки требуют 12 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 октября 2017; проверки требуют 12 правок.

Окси́д бо́ра B2O3{\displaystyle {\ce {B2O3}}} — ангидрид борной кислоты, бесцветное, довольно тугоплавкое, стекловидное или кристаллическое вещество, диэлектрик.

Стеклообразный оксид бора имеет слоистую структуру (расстояние между слоями 0,185 нм), в слоях атомы бора расположены внутри равносторонних треугольников BO3{\displaystyle {\ce {BO3}}} (d В—О=0,145 нм). Эта модификация плавится в интервале температур 325—450 °C и обладает высокой твёрдостью. Она получается при нагревании бора на воздухе 700 °C или обезвоживанием ортоборной кислоты. Кристаллический B2O3{\displaystyle {\ce {B2O3}}}, который получают осторожным отщеплением воды от метаборной кислоты HBO2{\displaystyle {\ce {HBO2}}}, существует в двух модификациях — с гексагональной кристаллической решёткой, при 400 °C и 2200 МПа переходящей в моноклинную.

  • Борный ангидрид гигроскопичен, он бурно растворяется в воде, образуя вначале различные метаборные кислоты общей формулы (HBO2)n{\displaystyle {\ce {(HBO2)_n}}}. Дальнейшее оводнение приводит к образованию ортоборной кислоты h4BO3{\displaystyle {\ce {h4BO3}}}.
Расплавленный B2O3{\displaystyle {\ce {B2O3}}} хорошо растворяет оксиды многих элементов. С оксидами металлов образует соли бораты.
2B2O3+P4O10→4BPO4{\displaystyle {\mathsf {2B_{2}O_{3}+P_{4}O_{10}\rightarrow 4BPO_{4}}}}
B2O3+3h3O→2h4BO3{\displaystyle {\mathsf {B_{2}O_{3}+3H_{2}O\rightarrow 2H_{3}BO_{3}}}}
  • С соляной кислотой реагирует при нагревании (t>100∘C{\displaystyle {\ce {t>100^{\circ }C}}}):
    B2O3+6HCl →t∘  2BCl3+3h3O{\displaystyle {\mathsf {B_{2}O_{3}+6HCl\ {\xrightarrow {t^{\circ }\ }}\ 2BCl_{3}+3H_{2}O}}}
  • Сам оксид бора не восстанавливается углеродом даже при температуре белого каления, однако разлагается, если одновременно ввести в реакцию вещества, способные заместить кислород (хлор или азот):
B2O3+3C+3Cl2→2BCl3+3CO{\displaystyle {\mathsf {B_{2}O_{3}+3C+3Cl_{2}\rightarrow 2BCl_{3}+3CO}}}
  • При нагревании оксида бора с элементарным бором выше 1000о в парах существуют термически устойчивые линейные молекулы O=B—B=O. При быстром охлаждении паров ниже 300о может быть получен белый твёрдый полимер состава (B2O2)n{\displaystyle {\ce {(B2O2)_n}}}, не имеющий определённой точки плавления и сильно реакционноспособный. Под давлением в 60 тыс. ат. и температуре 1500о оксид бора взаимодействует с элементарным бором по реакции:
B2O3+4B→3B2O{\displaystyle {\mathsf {B_{2}O_{3}+4B\rightarrow 3B_{2}O}}}
Этот низший оксид бора имеет графитоподобную слоистую структуру.

Образуется при нагревании бора в атмосфере кислорода или на воздухе

4B+3O2→2B2O3,{\displaystyle {\mathsf {4B+3O_{2}\rightarrow 2B_{2}O_{3},}}}

А также при обезвоживании борной кислоты:

2h4BO3→B2O3+3h3O.{\displaystyle {\mathsf {2H_{3}BO_{3}\rightarrow B_{2}O_{3}+3H_{2}O.}}}

Флюсы для стекла и эмали

Исходный материал для синтеза других соединений бора, таких как карбид бора

Добавка, используемая в стекловолокне (оптических волокнах)

Используется в производстве боросиликатного стекла

Используется в качестве кислотного катализатора в органическом синтезе

  • Карапетьянц М. Х. Дракин С. И. Общая и неорганическая химия. М.: Химия 1994
  • Реми Г. «Курс неорганической химии» М.: Иностранная литература, 1963

Карбонат кальция — Википедия

Карбона́т ка́льция (углеки́слый кальций) — неорганическое химическое соединение, соль угольной кислоты и кальция. Химическая формула CaCO3{\displaystyle {\mathsf {CaCO_{3}}}}.

В природе встречается в виде многочисленных минералов, например, кальцита, арагонита и ватерита, является главной составной частью известняка, мрамора, мела, входит в состав скорлупы яиц птиц.

Нерастворим в воде и этаноле.

Зарегистрирован как белый пищевой краситель (E170).

Используется как белый пищевой краситель Е170. Являясь основой мела, используется для письма на досках. Используется в быту для побелки потолков, покраски стволов деревьев, для подщелачивания почвы в садоводстве.

Массовое производство/использование[править | править код]

{\displaystyle {\mathsf {CaCO_{3}}}} Таблетки из карбоната кальция

Очищенный от примесей, карбонат кальция широко используется в бумажной и пищевой промышленности, в качестве наполнителя при производстве пластмасс, красок, резины, продукции бытовой химии, в строительстве.

При производстве бумаги карбонат кальция применяют одновременно в качестве отбеливателя, наполнителя, а также раскислителя.

Используется при производстве силикатного стекла, — материала для производства оконного стекла, стеклянных бутылок, стекловолокна.

Применяется при производстве предметов гигиены (например, зубной пасты), в медицине.

В пищевой промышленности часто используется в качестве препарата препятствующего слеживанию и для препятствования слипания в комки сухих молочных продуктах.

При употреблении сверх рекомендованной дозы (1,5 г в день) может вызывать молочно-щелочной синдром (синдром Бернетта). Рекомендован при болезнях костных тканей[источник не указан 455 дней].

Производители пластмассы — одни из основных потребителей чистого карбоната кальция (более 50% всего потребления). Используемый в качестве наполнителя и красителя, карбонат кальция необходим при производстве поливинилхлорида (PVC), полиэфирных волокон (кримплен, лавсан, и т. п.), полиолефинов. Изделия из данных видов пластмасс распространены повсеместно — это трубы, сантехника, кафельная плитка, черепица, линолеум, ковровые покрытия, и т.п. Карбонат кальция составляет порядка 20% красящего пигмента, используемого при производстве красок[источник не указан 455 дней].

В строительстве[править | править код]

Строительство — ещё один из основных потребителей карбоната кальция. Например, в качестве наполнителя шпаклёвок и герметиков.

Также карбонат кальция является важным составным элементом при производстве продукции бытовой химии — средств для чистки сантехники, кремов для обуви.

Карбонат кальция широко применяется для раскисления кислых почв.

{\displaystyle {\mathsf {CaCO_{3}}}}

Карбонат кальция находится в минералах в виде полиморфов:

Тригональная кристаллическая структура кальцита является наиболее распространенной.

Минералы карбоната кальция находятся в следующих горных породах:

  • {\displaystyle {\mathsf {CaCO_{3}}}}
  • {\displaystyle {\mathsf {CaCO_{3}}}}
  • {\displaystyle {\mathsf {CaCO_{3}}}}
  • {\displaystyle {\mathsf {CaCO_{3}}}}

Залежи карбоната кальция в виде меловых пластов — отложений известковых раковин моллюсков, в основном, мелового периода является распространенным минералом на всех континентах.

В природе встречаются три кристаллические модификации (минералы с одинаковым химическим составом, но с различной кристаллической структурой): кальцит, арагонит и фатерит (ватерит).

Некоторые горные породы (известняк, мел, мрамор, травертин и другие известковые туфы) практически полностью состоят из карбоната кальция с различными примесями.

Кальцит является устойчивой кристаллической модификацией карбоната кальция и встречается в самых разнообразных геологических условиях: в осадочных, метаморфических и магматических горных породах.

Около 10 % всех осадочных пород составляют известняки, сложенные преимущественно кальцитовыми остатками раковин морских организмов. Арагонит является второй по распространённости кристаллической модификацией CaCO3 и в основном формируется в раковинах моллюсков и скелетах некоторых других организмов[каких?].

Также арагонит может образовываться и в неорганических процессах, например в карстовых пещерах или гидротермальных источниках.

Фатерит является наименее стабильной разновидностью этого карбоната, и очень быстро превращается в воде либо в кальцит, либо в арагонит. В природе встречается относительно редко, когда его кристаллическая структура стабилизирована теми или иными примесями.

Подавляющее количество карбоната кальция, добывающееся из полезных ископаемых, используется в промышленности. Чистый карбонат кальция (например, для производства продуктов питания или использования в фармацевтических целях), может быть изготовлен из природного минерала с малым количеством вредных примесей, например, из мрамора.

В лаборатории карбонат кальция может быть приготовлен предварительным гашением оксида кальция — негашеной извести. При этом образуется гидроксид кальция, и затем в суспензию продувается углекислый газ для получения карбоната кальция[2]:

CaO+h3O⟶Ca(OH)2,{\displaystyle {\mathsf {CaO+H_{2}O\longrightarrow Ca(OH)_{2}}},}
Ca(OH)2+CO2⟶CaCO3+h3O.{\displaystyle {\mathsf {Ca(OH)_{2}+CO_{2}\longrightarrow CaCO_{3}+H_{2}O}}.}

При нагревании до 900—1000 °C разлагается на кислотный оксид — углекислый газ CO2 и основный оксид — негашёную известь CaO:

CaCO3⟶CaO+CO2↑.{\displaystyle {\mathsf {CaCO_{3}\longrightarrow CaO+CO_{2}\uparrow }}.}

Растворяется в воде при избытке углекислого газа образуя кислую соль — гидрокарбонат кальция Ca(HCO3)2:

CaCO3+CO2+h3O⟶Ca(HCO3)2.{\displaystyle {\mathsf {CaCO_{3}+CO_{2}+H_{2}O\longrightarrow Ca(HCO_{3})_{2}}}.}.

Из-за этой реакции образуются сталактиты, сталагмиты. Природные подземные воды, обильные углекислом газом, растворяют плохо растворимый карбонат кальция с образованием много лучше растворимого в воде гидрокарбоната кальция, при выделении подземной воды в виде капель с потолков пещер при попадании в воздух с низкой концентрацией углекислого газа происходит обратная реакция превращения гидрокарбоната кальция в плохо растворимый осадок карбоната кальция, образующего красивые природные формы в пещерах, и из-за этого же механизма образуются карстовые пещеры.

При обжиге с температурой свыше 1500 °C с углеродом, например, в форме кокса, образует карбид кальция и угарный газ:

CaCO3+4C⟶CaC2+3CO↑{\displaystyle {\mathsf {CaCO_{3}+4C\longrightarrow CaC_{2}+3CO\uparrow }}}.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *