Общее решение дифференциального уравнения онлайн с подробным решением – The page is temporarily unavailable

Производная онлайн с подробным решением

Калькулятор решает производные c описанием действий ПОДРОБНО бесплатно!

Найти производную функции он-лайн

Это он-лайн сервис в один шаг:

  • Ввести функцию, для которой надо найти производную

Перейти: Онлайн сервис «Производная функции»

Найти частную производную функции он-лайн

Это он-лайн сервис в один шаг:

  • Ввести функцию, для которой надо найти частные производные

Перейти:

Онлайн сервис «Частная производная функции»

Производная функции, заданной параметрически он-лайн

Это он-лайн сервис в три шага:

  • Ввести функцию x = x(t)
  • Ввести функцию y = y(t)

Перейти: Онлайн сервис «Производной параметрической функции»

Таблица производных

Вы также можете воспользоваться таблицей производных, чтобы самостоятельно вычислить любую производную, перейти:

Таблица производных онлайн

Введите функцию, заданную в неявном виде, вы получите соответствующую производную

Производная сложной функции

Производную сложной функции онлайн вы сможете вычислить с помощью калькулятора производных здесь

Найти вторую производную функции онлайн

Это он-лайн сервис в два шага:

  • Ввести функцию, для которой надо найти производную
  • Ввести найденную первую производную в форму

Перейти: Онлайн сервис «Вторая производная функции»

Найти третью производную функции онлайн Это он-лайн сервис в три шага:
  • Ввести функцию, для которой надо найти производную
  • Ввести найденную первую производную в форму
  • Ввести найденную вторую производную функции в форму
Перейти: Онлайн сервис «Третья производная функции»

www.kontrolnaya-rabota.ru

Дифференциальные уравнения: виды, методы решения

Существует целый ряд задач, в которых установить прямую связь между величинами, применяемыми для описания процесса, не получается. Единственное, что можно сделать, это получить равенство, запись которого включает производные исследуемых функций, и решить его. Решение дифференциального уравнения позволяет установить непосредственную связь между величинами.

В этом разделе мы займемся разбором решений дифференциальных уравнений, неизвестная функция в которых является функцией одной переменной. Мы построили теоретическую часть таким образом, чтобы даже человек с нулевым представлением о дифференциальных уравнениях мог без труда получить необходимые знания и справиться с приведенными задачами.

Если какие-то термины окажутся для вас новыми, обратитесь к разделу «Определения и понятия теории дифференциальных уравнений». А тем временем перейдем к рассмотрению вопроса о видах дифференциальных уравнений.

Для каждого из видов дифференциальных уравнений применяется свой метод решения. В этом разделе мы рассмотрим все эти методы, приведем примеры с подробными разборами решения. После ознакомления с темой вам необходимо будет определять вид дифференциального уравнения и выбирать наиболее подходящий из методов решения поставленной задачи.

Возможно, прежде чем приступить к решению дифференциальных уравнений, вам придется освежить в памяти такие темы как «Методы интегрирования» и «Неопределенные интегралы».

Начнем ознакомление с темой мы с видов обыкновенных дифференциальных уравнений 1-го порядка. Эти уравнения могут быть разрешены относительно производной. Затем перейдем в ОДУ 2-го и высших порядков. Также мы уделим внимание системам дифференциальных уравнений.

Напомним, что y’=dxdy, если y является функцией аргумента x.

Дифференциальные уравнения первого порядка

Простейшие дифференциальные уравнения первого порядка вида y’=f(x)

Начнем с примеров таких уравнений.

Пример 1

y’=0, y’=x+ex-1, y’=2xx2-73

Оптимальным для решения дифференциальных уравнений f(x)·y’=g(x) является метод деления обеих частей на f(x). Решение относительно производной позволяет нам прийти к уравнению вида y’=g(

zaochnik.com

Дифференциальные уравнения

Одной из дисциплин, входящих в курс Высшей математики, является курс дифференциальных уравнений, решение которых у студентов традиционно вызывают трудности. В данной статье постараюсь показать примеры решения некоторых видов таких уравнений.

Итак, дифференциальным уравнением (иногда, студенты называют их любя – “дифуры”) называют уравнение, которое содержит неизвестные функции, их аргументы и производные от неизвестных функций по этим аргументам (или дифференциалы неизвестных функций). 

Подавляющее большинство задач в прикладных науках, если формулируют их на языке математики, приводят именно к различным дифференциальным уравнениям. Мы рассматриваем лишь обычные дифференциальные уравнения, одной из характерных особенностей которых есть то, что неизвестные функции в этих уравнениях зависят лишь от одной переменной.

Общий вид обычного дифференциального уравнения n — го порядка такой: F(x, y, y’,…, y(

n-1), y(n)) = 0, где x — независимая переменная, y — неизвестная функция переменной x, а y, y’,…,y(n) — производные неизвестной функции по переменной x.

Порядком дифференциального уравнения называют порядок старшей производной, которая входит в это уравнение.

Решением дифференциального уравнения называют функцию y = φ(x), которая при подстановке в уравнение на место неизвестной функции превращает это уравнение в тождество. Решение дифференциального уравнения, заданное неявным соотношением, Ф(x,y) = 0 называют интегралом этого уравнения.

В этой статье будем употреблять термин проинтегрировать дифференциальное уравнение, которое означает найти все его решения. 

§1. Дифференциальное уравнение I-го порядка 

Общий вид дифференциального уравнения I-го порядка выглядит следующим образом:

F(x, y, y’) = 0 (1.1)

Если соотношение (1.1) решить относительно производной, как вариант дифференциала, то получим уравнение такого вида:

y’ = f(x, y) (1.2)

Такое уравнение называют дифференциальным уравнением, решенным относительно производной. Дифференциальное уравнение I-го порядка имеет, вообще говоря, не одно, а бесконечное множество число решений. Чтобы из этого множества решений выделить определенное решение, задают значение неизвестной функции y = y0  при некотором значении аргумента x = x0.

Условие, что при x = x0 функция упринимает заранее заданное значение y0, называют начальным условием. Мы это условие запишем в виде 

y|x=x0 = y0или y(

x0) = y(1.3)

Проблему нахождения решения дифференциального y’ = f(x,y) уравнения, которое удовлетворяет начальному условию y(x0) = y0, называют задачей Коши.

Теорема 1.1. Если в уравнении y’ = f(x,y)  функция f(x,y)  и ее частная производная f’y(x,y)  непрерывны в некоторой области G плоскости Oxy, которая содержит точку (x0,y0), то существует и при этом единственное решение y=φ(x) такого уравнения, которое удовлетворяет условию y(x0) = y0.

Введем теперь еще несколько основных определений.

Определение 1.1. Общим решением (в дальнейшем, для краткости ОР) дифференциального уравнения I-го порядка называется функция

y = φ(x, C) (1.4)

которая зависит от одной произвольной постоянной С и удовлетворяет таким условиям:

1) она удовлетворяет уравнению при любом конкретном значении постоянной С;

2) каким бы не было начальное условие y(x0) = y0, всегда можно найти такое значение С = С0, так что функция y= φ(x, C0) будет удовлетворять этому начальному условию.

Замечание. При построении общего решения «дифура» очень часто приходят к соотношению вида

Ф(x, y, c) = 0 (1.5)

не решаемому относительно y.

Равенство Ф(x, y, c) = 0, которое неявно задает общее решение (в дальнейшем, для краткости ОР), называют общим интегралом (в дальнейшем, для краткости ОИ) дифференциального уравнения.

Определение 1.2. Частным решением дифференциального уравнения I-го порядка называется функцияy= φ(x, C0), которую получаем из его общего решения y= φ(x, C) при определенном значении C = C0.

Соотношение Ф(x, y, C0) = 0называют частным интегралом дифференциального уравнения I-го порядка. 

§2. Дифференциальные уравнения I-го порядка с разделяющимися переменными

Определение 2.1. Дифференциальное уравнение I-го порядка вида

φ(y)dy = f(x)dx (2.1)

называется уравнением с переменными, которые можно разделить.

Непосредственно (дифференцированием) устанавливается, что ОИ

уравнения (2.1) является соотношение

∫ φ(y)dy = ∫ f(x)dx (2.2)

где — C=const.

Пример 2.1. Решить “дифур” 2y2dy = 3xdx.

Решение. Найдем неопределенные интегралы от правой и, конечно же, левой части

Легко увидеть, что это решение, при желании, можно записать в явной форме , но обычно его оставляют в той форме, в которой получили, кое-что упростив получим 4y3 = 9x2 + C.

Пример 2.2. Решить “дифур”  

Решение. Найдем неопределенные интегралы от правой и, конечно же, левой части

Поскольку C=const, то зачастую в такой форме решения для удобства записи, вместо C пишут ln |C|, а дальше выражение потенцируют

ln|y — 1| = ln|x| + ln C

ln|y — 1| = ln|Cx|

y – 1 = Cx

y = Cx + 1. 

Определение 2.2. Дифференциальное уравнение I-го порядка называется уравнением с переменными, которые можно разделить, если его правая часть является произведением двух функций, одна из которых зависит лишь от аргумента х, а вторая от неизвестной функции у:

 

Здесь мы считаем, что функция φ(x) определена и непрерывна для всех ϵ (a,b) а функция ѱ(y) определена и непрерывна и не равна нулю для всех ϵ (c,d).

Если переписать уравнение (2.2) в виде  , то левая часть зависит только от переменной у, а правая часть зависит только от переменной х, то есть переменные отделены. Тогда общий интеграл запишется в виде

,

где С=const.

Пример 2.3. Решить “дифур”

Решение. Перед нами уравнение с переменными, которые можно разделить,. Запишем производную в виде соотношения дифференциалов: y’ = dy/dx, умножим обе части уравнения на dx  и разделим на lny. В результате проделанной замены и “перемещения” переменных получим уравнение, в котором разделены переменные

После вычисления интегралов, имеем

y= eCx  ОР искомого уравнения.

Пример 2.4. Эффективность рекламы.

Пусть фирма продает продукцию B, про которую на момент времени tиз числа возможных клиентов знает лишь xклиентов. Далее, для увеличения продажи продукции, были сделаны рекламные объявления на радио и телевидении. Далее информация о товаре распространяется между клиентами через общение. После рекламы скорость изменения числа клиентов, которые знают о продукции B, пропорциональная не только числу клиентов, которые знают о товаре, но и числу клиентов, которые еще не знают.

Если допустить, что счет времени начинается после рекламных объявлений, когда о продукции узнало N/ɣ  человек, то получаем дифференциальное уравнением с переменными, которые можно разделить

При таких начальных условиях: x = N/ɣ , если t = 0. Здесь k— положительной коэффициент пропорциональности.

Интегрируя уравнение, имеем:

В экономической литературе это выражение называют уравнением логистической кривой.

С учетом начальных условий, получим

Замечание. Уравнение с переменными, которые можно разделить, можно также задать в симметричной относительно и y дифференциальной форме

M(x) · N(y)dx+ P(x) · Q(y)dy=0 (2.4)

где функции M(x), P(x), N(y), Q(y) непрерывны соответственно в интервалах x ϵ (a,b), y ϵ (c,d).

Для нахождения решений необходимо разделить правую, (желательно, конечно) и левую части на произведение: N(y) · P(x).

и интегрируют полученное так соотношение

Если для x ϵ (a,b), y ϵ (c,d) функции P(x) и N(y) отличающиеся от нуля, то соотношение (2.6) является ОИ уравнения (2.4).

Пример 2.5. Решить “дифур” x(1 + y2)dx– y(1 + x2)dy = 0

Решение. Поступим также, как и в серии предыдущих примеров (разделим обе части уравнения на (1 + y2) · (1 + x2)

Интегрируя каждое из слагаемых (для этого не обязательно один из них переносить в правую часть), приравниваем сумму первообразных постоянной, которую обозначаем через ½ ln C, имеем:

Пример 2.6. Решить “дифур” y’ + 2x2y’ + 2xy– 2x = 0.

Решения. Представим производные в виде соотношения dy/dxи далее все члены уравнения домножим на dx:

Сгруппируем члены с разными дифференциалами и вынесем за скобки дифференциалы.

(1 + 2x2)dx +2x(y– 1)dx = 0

В результате деления на (1 + 2x2) (y– 1). Получим:

Интегрируем каждое из слагаемых:

Сумму первообразных приравниваем постоянной:

тогда

– ОИ уравнения.

В следующей своей статье я расскажу Вам об Однородных дифференциальных уравнениях I-го порядка и о Линейных дифференциальных уравнениях I-го порядка, уравнении Бернулли.

Если у Вас есть желание более детально изучить данный материал, научиться решать задания по данным разделам, записывайтесь на мои занятия на сайте. Буду рад Вам помочь. Онлайн репетитор Андрей Зварыч.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *