Что такое кинетическая энергия
Кинетическая энергия – это энергия, создаваемая движущимся телом. На греческом языке кинетика означает «движение», в то время как энергия означает «работа». Другими словами, кинетическая энергия – это работа, которую тело выполняет, когда оно движется.
Мы можем воспользоваться кинетической энергией многих природных явлений. Например, движение воды в реке превращается в электричество благодаря электростанциям. Энергия ветра – это кинетическая энергия воздуха. Когда мы прибиваем гвоздь молотком, мы используем кинетическую энергию молотка при его перемещении.
Кинетическая энергия в физике измеряется в джоулях , сокращенно буквой J.
Формула кинетической энергии
Для расчета кинетической энергии тел используется уравнение:
Это означает, что кинетическая энергия
Мы можем сделать вывод, что чем больше масса, тем больше энергия, и что энергия пропорциональна скорости, умноженной на себя.
Кинетическая энергия не является вектором. Это означает, что если вы бросаете шар со скоростью 5 м / с, шар будет иметь одинаковую кинетическую энергию, независимо от того, бросаете ли вы его влево или вправо или вверх.
Кинетическая энергия зависит от массы и скорости.

Кинетическая энергия зависит от массы и скорости тела. Это означает, что чем больше или быстрее объект, тем больше энергии он производит.
Примером вышесказанного может быть следующее: грузовик больше, чем автомобиль; Если оба едут с одинаковой скоростью и врезаются в стену, урон, нанесенный грузовиком, будет больше. В этом случае грузовик обладает большей кинетической энергией.
А теперь представьте: две одинаковые машины едут, одна со скоростью 50 км / ч, а другая со скоростью 100 км / ч. Чем выше скорость, тем серьезнее авария.
Таким образом, кинетическая энергия зависит от квадрата скорости. Это означает, что когда скорость объекта удваивается, его кинетическая энергия увеличивается в четыре раза.
Автомобиль, движущийся со скоростью 60 км / ч, имеет в четыре раза больше кинетической энергии, чем автомобиль, движущийся со скоростью 30 км / ч, и, следовательно, в четыре раза больший потенциал разрушения в случае аварии.
Как рассчитать кинетическую энергию тела?
В аэропорту хотят рассчитать кинетическую энергию 30-килограммовой упаковки в системе, которая движется со скоростью 0,500 м / с. Как мы это делаем?
Решение
Мы знаем массу и скорость упаковки, поэтому используем формулу:
Подставляя значения, имеем:
Рассуждение
Единицей кинетической энергии является джоуль, которая является той же для единицы работы. Обратите внимание, что, несмотря на то, что он тяжелый, его кинетическая энергия не так велика из-за его низкой скорости.
Ключевые моменты для запоминания
- Тело имеет кинетическую энергию, только если оно находится в движении.
- Кинетическая энергия зависит от массы и скорости тела.
Задачи на кинетическую энергию и решение
Задача 1 на нахождение кинетической энергии
Слон в 6000 кг бежит со скоростью 10 м / с. Какова его кинетическая энергия? Какова скорость пушечного ядра весом 1 кг, если у него была та же самая кинетическая энергия слона?
Ответ
Используя уравнение кинетической энергии, энергия слона равна:
Рассчитав кинетическую энергию, мы можем получить скорость пули, очистив
v:Это означает, что скорость пули равна 775 м / с. Сравните это со скоростью слона: вот это разница!
Задача 2
Мужчина врезался в столб на своей машине. Когда он пошел, чтобы сообщить о катастрофе, он сказал, что ехал с допустимой скоростью во время аварии. Но следователь помнил физику 7 и 8 класса и установил, что скорость транспортного средства была в два раза выше, чем утверждал водитель. Какова взаимосвязь между кинетической энергией и скоростью, сообщаемой человеком, и кинетической энергией со скоростью, рассчитанной следователем?
Ответ
Мы будем рассматривать Ec1 как кинетическую энергию транспортного средства на скорости v1, сообщаемой человеком, и Ec2 как кинетическую энергию со значением скорости v2, рассчитанным исследователем. Соотношение между кинетическими энергиями рассчитывается путем деления энергий следующим образом:
Следователь сказал, что скорость во время аварии была вдвое выше, чем сообщал человек, то есть:
Подставим значение скорости в уравнение:
Исключая похожие термины, мы имеем:
Это означает, что кинетическая энергия в соответствии со скоростью, сообщаемой человеком, составляет четверть кинетической энергии по расчетам следователя. Проще говоря, ущерб, нанесенный автомобилем, был в четыре раза больше, чем сообщал мужчина.
«Что такое кинетическая и потенциальная энергия для «чайников»?» – Яндекс.Кью
Кинетическая энергия — это энергия движения тела. Соотвественно, если у нас есть какой-то объект, обладающий хоть какой-то массой и хоть какой-то скоростью, то он и обладает кинетической энергией. Однако относительно разных систем отсчета эта кинетическая энергия у одного и того же объекта может быть разной.
Пример. Есть бабушка, которая относительно земли нашей планеты находится в состоянии покоя, то есть не движется и, скажем, сидит на остановке в ожидании своего автобуса. Тогда относительно нашей планеты ее кинетическая энергия равна нулю. Но если посмотреть на эту же бабушку с Луны или с Солнца, относительно которых можно наблюдать движение планеты и, соответственно, этой бабушки, которая находится на нашей планете, то бабушка уже будет обладать кинетической энергией относительно упомянутых небесных тел. И тут приезжает автобус. Эта самая бабушка быстро встает и бежит занимать положенное ей место. Теперь относительно планеты она уже не в покое, а вполне себе движется. А значит и обладает кинетической энергией. И чем толще бабушка и быстрее, тем больше ее кинетическая энергия.
Есть несколько фундаментальных видов энергии — основных. Расскажу, например, про механические. К ним относятся энергия кинетическая, которая зависит от скорости и массы объекта, энергия потенциальная, которая зависит от того, где вы возьмете нулевой уровень потенциальной энергии, и от того положения, где находится этот объект относительно нулевого уровня потенциальной энергии. То есть потенциальная энергия — энергия, зависящая от положения объекта. Эта энергия характеризует работу, совершаемую полем, в котором находится объект, по его перемещению.
Пример. Несете вы в руках огромную коробку и падаете. Коробка лежит на полу. Выходит, что нулевой уровень потенциальной энергии у вас будет находится, соответственно, на уровне пола. Тогда верхняя часть коробки будет обладать большей потенциальной энергией, так как она находится выше пола и выше нулевого уровня потенциальной энергии.
Глупо говорить про энергию, не упомянув закон о ее сохранении. Таким образом, по закону сохранения энергии, эти два ее вида, описывающих состояние объекта, ни откуда не берутся и никуда не исчезают, а только переходят друг в друга.
А вот и пример. Падаю я с высоты дома, изначально имея потенциальную энергию относительно земли в момент перед прыжком, а моя кинетическая энергия пренебрежимо мала, поэтому можем приравнять её к нулю. Вот я отрываю ножки от карниза и моя потенциальная энергия начинает уменьшаться, так как высота, на которой я нахожусь, становится все меньше и меньше. В этот же момент при падении вниз я постепенно приобретаю кинетическую энергию, так как падаю вниз все с большей скоростью. В момент падения я уже обладаю максимальной кинетической энергией, но потенциальная равно нулю, такие дела.
«Как кинетическая энергия тела зависит от массы самого тела?» – Яндекс.Кью
Кинетическая энергия — это энергия движения тела. Соотвественно, если у нас есть какой-то объект, обладающий хоть какой-то массой и хоть какой-то скоростью, то он и обладает кинетической энергией. Однако относительно разных систем отсчета эта кинетическая энергия у одного и того же объекта может быть разной.
Пример. Есть бабушка, которая относительно земли нашей планеты находится в состоянии покоя, то есть не движется и, скажем, сидит на остановке в ожидании своего автобуса. Тогда относительно нашей планеты ее кинетическая энергия равна нулю. Но если посмотреть на эту же бабушку с Луны или с Солнца, относительно которых можно наблюдать движение планеты и, соответственно, этой бабушки, которая находится на нашей планете, то бабушка уже будет обладать кинетической энергией относительно упомянутых небесных тел. И тут приезжает автобус. Эта самая бабушка быстро встает и бежит занимать положенное ей место. Теперь относительно планеты она уже не в покое, а вполне себе движется. А значит и обладает кинетической энергией. И чем толще бабушка и быстрее, тем больше ее кинетическая энергия.
Есть несколько фундаментальных видов энергии — основных. Расскажу, например, про механические. К ним относятся энергия кинетическая, которая зависит от скорости и массы объекта, энергия потенциальная, которая зависит от того, где вы возьмете нулевой уровень потенциальной энергии, и от того положения, где находится этот объект относительно нулевого уровня потенциальной энергии. То есть потенциальная энергия — энергия, зависящая от положения объекта. Эта энергия характеризует работу, совершаемую полем, в котором находится объект, по его перемещению.
Пример. Несете вы в руках огромную коробку и падаете. Коробка лежит на полу. Выходит, что нулевой уровень потенциальной энергии у вас будет находится, соответственно, на уровне пола. Тогда верхняя часть коробки будет обладать большей потенциальной энергией, так как она находится выше пола и выше нулевого уровня потенциальной энергии.
Глупо говорить про энергию, не упомянув закон о ее сохранении. Таким образом, по закону сохранения энергии, эти два ее вида, описывающих состояние объекта, ни откуда не берутся и никуда не исчезают, а только переходят друг в друга.
А вот и пример. Падаю я с высоты дома, изначально имея потенциальную энергию относительно земли в момент перед прыжком, а моя кинетическая энергия пренебрежимо мала, поэтому можем приравнять её к нулю. Вот я отрываю ножки от карниза и моя потенциальная энергия начинает уменьшаться, так как высота, на которой я нахожусь, становится все меньше и меньше. В этот же момент при падении вниз я постепенно приобретаю кинетическую энергию, так как падаю вниз все с большей скоростью. В момент падения я уже обладаю максимальной кинетической энергией, но потенциальная равно нулю, такие дела.
Кинетическая энергия — Википедия
Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек
[1]. Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как- T = ∑ m i v i 2 2 {\displaystyle T=\sum {{m_{i}v_{i}^{2}} \over 2}} ,
где индекс i {\displaystyle \ i} нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения[2]. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[3]. Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: T {\displaystyle T} , E k i n {\displaystyle E_{kin}} , K {\displaystyle K} и другие. В системе СИ она измеряется в джоулях (Дж).
История понятия
Впервые понятие кинетической энергии было введено в трудах Готфрида Лейбница (1695 г.), посвящённых понятию «живой силы»[4].
Кинетическая энергия в классической механике
Случай одной материальной точки
По определению, кинетической энергией материальной точки массой m {\displaystyle m} называется величина
- T = m v 2 2 {\displaystyle T={{mv^{2}} \over 2}} ,
при этом предполагается, что скорость точки v {\displaystyle v} всегда значительно меньше скорости света. С использованием понятия импульса ( p → = m v → {\displaystyle {\vec {p}}=m{\vec {v}}} ) данное выражение примет вид T = p 2 / 2 m {\displaystyle \ T=p^{2}/2m} .
Если F → {\displaystyle {\vec {F}}} — равнодействующая всех сил, приложенных к точке, выражение второго закона Ньютона запишется как F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} . Скалярно умножив его на перемещение материальной точки d s → = v → d t {\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} и учитывая, что a → = d v → / d t {\displaystyle {\vec {a}}={\rm {d}}{\vec {v}}/{\rm {d}}t} , причём d ( v 2 ) / d t = d ( v → ⋅ v → ) / d t = 2 v → ⋅ d v → / d t {\displaystyle {\rm {d}}(v^{2})/{\rm {d}}t={\rm {d}}({\vec {v}}\cdot {\vec {v}})/{\rm {d}}t=2{\vec {v}}\cdot {\rm {d}}{\vec {v}}/{\rm {d}}t} , получим F → d s → = d ( m v 2 / 2 ) = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}(mv^{2}/2)={\rm {d}}T} .
Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина T {\displaystyle \ T} остаётся постоянной, то есть кинетическая энергия является интегралом движения.
Случай абсолютно твёрдого тела
При рассмотрении движения абсолютно твёрдого тела его можно представить как совокупность материальных точек. Однако, обычно кинетическую энергию в таком случае записывают, используя формулу Кёнига, в виде суммы кинетических энергий поступательного движения объекта как целого и вращательного движения:
- T = M v 2 2 + I ω 2 2 . {\displaystyle T={\frac {Mv^{2}}{2}}+{\frac {I\omega ^{2}}{2}}.}
Здесь M {\displaystyle \ M} — масса тела, v {\displaystyle \ v} — скорость центра масс, ω → {\displaystyle {\vec {\omega }}} и I {\displaystyle I} — угловая скорость тела и его момент инерции относительно мгновенной оси, проходящей через центр масс[5].
Кинетическая энергия в гидродинамике
В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа ρ = d M / d V {\displaystyle \rho ={\rm {d}}M/{\rm {d}}V} . Тогда кинетическая энергия, приходящаяся на единицу объёма, двигающегося со скоростью v → {\displaystyle {\vec {v}}} , то есть плотность кинетической энергии w T = d T / d V {\displaystyle w_{T}={\rm {d}}T/{\rm {d}}V} (Дж/м3), запишется:
- w T = ρ v α v α 2 , {\displaystyle w_{T}=\rho {\frac {v_{\alpha }v_{\alpha }}{2}},}
где по повторяющемуся индексу α = x , y , z {\displaystyle {\alpha }=x,y,z} , означающему соответствующую проекцию скорости, предполагается суммирование.
Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса[6]. Если, в согласии с методом Рейнольдса, представить ρ = ρ ¯ + ρ ′ {\displaystyle \ \rho ={\overline {\rho }}+\rho ‘} , v α = v α ¯ + v α ′ {\displaystyle v_{\alpha }={\overline {v_{\alpha }}}+v’_{\alpha }} , где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:
- w T ¯ = 1 2 ρ v α v α ¯ = E s + E s t + E t , {\displaystyle {\overline {w_{T}}}={\frac {1}{2}}{\overline {\rho v_{\alpha }v_{\alpha }}}=E_{s}+E_{st}+E_{t},}
где E s = ρ ¯ v α ¯ v α ¯ / 2 {\displaystyle E_{s}={\overline {\rho }}\,{\overline {v_{\alpha }}}\,{\overline {v_{\alpha }}}/2} — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, E t = ρ ¯ v α ′ v α ′ ¯ / 2 + ρ ′ v α ′ v α ′ ¯ / 2 {\displaystyle E_{t}={\overline {\rho }}\,{\overline {v’_{\alpha }\,v’_{\alpha }}}/2+{\overline {\rho ‘v’_{\alpha }v’_{\alpha }}}/2} — плотность кинетической энергии, связанной с неупорядоченным движением («плотность кинетической энергии турбулентности»[6], часто называемой просто «энергией турбулентности»), а E s t = S α v α ¯ {\displaystyle E_{st}=S_{\alpha }{\overline {v_{\alpha }}}} — плотность кинетической энергии, связанная с турбулентным потоком вещества ( S α = ρ ′ v α ′ ¯ {\displaystyle S_{\alpha }={\overline {\rho ‘v’_{\alpha }}}} — плотность флуктуационного потока массы, или «
Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны, порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.
В квантовой механике кинетическая энергия представляет собой оператор, записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором ( p ^ = − j ℏ ∇ {\displaystyle {\hat {p}}=-j\hbar \nabla } , j {\displaystyle \ j} — мнимая единица):
- T ^ = p ^ 2 2 m = − ℏ 2 2 m Δ {\displaystyle {\hat {T}}={\frac {{\hat {p}}^{2}}{2m}}=-{\frac {\hbar ^{2}}{2m}}\Delta }
где ℏ {\displaystyle \hbar } — редуцированная постоянная Планка, ∇ {\displaystyle \nabla } — оператор набла, Δ {\displaystyle \Delta } — оператор Лапласа. Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — уравнение Шрёдингера[7].
Если в задаче допускается движение со скоростями, близкими к скорости света, кинетическая энергия материальной точки определяется как
- T = m c 2 1 − v 2 / c 2 − m c 2 , {\displaystyle T={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}}-mc^{2},}
где m {\displaystyle \ m} — масса, v {\displaystyle \ v} — скорость движения в выбранной инерциальной системе отсчёта, c {\displaystyle \ c} — скорость света в вакууме ( m c 2 {\displaystyle mc^{2}} — энергия покоя). Как и в классическом случае, имеет место соотношение F → d s → = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} , получаемое посредством умножения на d s → = v → d t {\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} выражения второго закона Ньютона (в виде F → = m ⋅ d ( v → / 1 − v 2 / c 2 ) / d t {\displaystyle \ {\vec {F}}=m\cdot {\rm {d}}({\vec {v}}/{\sqrt {1-v^{2}/c^{2}}})/{\rm {d}}t} ).
Выражение для T {\displaystyle \ T} можно переписать в форме T = m v 2 / ( 1 − v 2 / c 2 + 1 − v 2 / c 2 ) . {\displaystyle T=mv^{2}/(1-v^{2}/c^{2}+{\sqrt {1-v^{2}/c^{2}}}).} При малых скоростях ( v ≪ c {\displaystyle v\ll c} ) оно переходит в классическую формулу T = 1 / 2 ⋅ m v 2 {\displaystyle \ T=1/2\cdot mv^{2}} .
Свойства кинетической энергии
- Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему[1].
- Инвариантность по отношению к повороту системы отсчёта. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости[1].
- Неинвариантность по отношению к смене системы отсчёта в общем случае. Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
- Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[8][9].
Физический смысл кинетической энергии
Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[10]:
- A 12 = T 2 − T 1 . {\displaystyle \ A_{12}=T_{2}-T_{1}.}
Это равенство актуально как для классической, так и для релятивистской механики (получается интегрированием выражения F → d s → = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} между состояниями 1 и 2).
Соотношение кинетической и внутренней энергии
Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.
То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана.
См. также
Примечания
- ↑ 1 2 3 4 Айзерман, 1980, с. 49.
- ↑ Тарг С. М. Кинетическая энергия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ Батыгин В. В., Топтыгин И. Н. 3.2. Кинематика релятивистских частиц // Современная электродинамика, часть 1. Микроскопическая теория. — Москва-Ижевск: Институт компьютерных исследований, 2002. — С. 238. — 736 с. — 1000 экз. — ISBN 5-93972-164-8.
- ↑ Мах Э. Механика. Историко-критический очерк её развития. — Ижевск: «РХД», 2000. — С. 252. — 456 с. — ISBN 5-89806-023-5.
- ↑ Голубева О. В. Теоретическая механика. — М.: «Высшая школа», 1968. — С. 243—245.
- ↑ 1 2 Монин А. С., Яглом А. М. Статистическая гидромеханика. Часть 1. — М.: Наука, 1965. — 639 с.
- ↑ Блохинцев Д. И. Основы квантовой механики, 5-е изд. Наука, 1976. — 664 с., см. § 26.
- ↑ Айзерман, 1980, с. 54.
- ↑ Сорокин В. С. «Закон сохранения движения и мера движения в физике» // УФН, 59, с. 325—362, (1956)
- ↑ Сивухин Д. В. § 22. Работа и кинетическая энергия. // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 131. — 520 с.
Литература
10 лучших примеров кинетической энергии
Кинетическая энергия — это энергия движения: если что-то движется, говорят, что оно имеет кинетическую энергию. Согласно классической механике, кинетическая энергия (E) невращающегося объекта зависит от его массы (m) и скорости (v).
E = ½mv 2
Поскольку энергия является скалярной величиной, она не зависит от направления и всегда положительна. Если вы удвоите массу, вы удвоите и энергию. Однако, если вы удвоите скорость, энергия увеличится в четыре раза.
Кинетическую энергию можно разделить на три группы в зависимости от типа движения объекта.
- Поступательная кинетическая энергия: это энергия, обусловленная движением из одного положения в другое. Например, поезд, движущийся по рельсам, или предметы, свободно падающие под действием силы тяжести, обладают поступательной кинетической энергией.
- Вращательная кинетическая энергия: энергия, возникающая из-за вращательного движения. Вращение Земли является прекрасным примером вращательной кинетической энергии.
- Колебательная кинетическая энергия — это энергия, обусловленная колебательным движением. Движение камертона является ярким примером вибрационной кинетической энергии.
Стандартная единица измерения кинетической энергии является Джоуль. Она может передаваться между объектами и преобразовываться в другие виды энергии.
Например, бегун использует химическую энергию (предоставляемую пищей) для ускорения. В этом случае химическая энергия преобразуется в энергию движения, т.е. кинетическую энергию. Однако этот процесс не является полностью эффективным, так как много энергии теряется в тепле.
Кинетическая энергия в основном проявляется в пяти различных формах: механической, электрической, тепловой, излучающей и звуковой. Чтобы лучше объяснить это количественное свойство, мы собрали несколько простейших и наиболее основных примеров кинетической энергии, которая происходит в повседневной жизни.
1. Движущийся автомобиль
Форма механической энергии
Само определение кинетической энергии — это энергия, которой тело обладает в силу движения. По этому определению каждое движущееся транспортное средство обладает определенной кинетической энергией.
Чем больше масса и скорость транспортного средства, тем больше кинетической энергии он будет иметь. У автомобиля будет более высокая кинетическая энергия, чем у мотоцикла (учитывая, что оба движутся с одинаковой скоростью, но у автомобиля больше массы).
Точно так же летающий истребитель или космический корабль (такой как Международная космическая станция на низкой околоземной орбите) обладает очень большим количеством кинетической энергии.
2. Езда на велосипеде
Форма механической энергии
Езда на велосипеде-это богатый источник кинетической энергии. Велосипедист изначально имеет химическую энергию, хранящуюся в его организме в результате приема пищи. По мере того как он прикладывает направленную вниз силу на педаль велосипеда, химическая энергия преобразована в кинетическую энергию.
Однако такое преобразование энергии не очень эффективно. Велосипедист также использует значительное количество химической энергии для получения тепла и преодоления трения и сопротивления воздуха.
3. Падение телефона на пол
Форма механической энергии
Что происходит, когда вы случайно роняете свой телефон? Он ускоряется за счет гравитационной силы, набирая скорость и импульс.
Любой падающий объект будет продолжать ускоряться до тех пор, пока восходящая сила сопротивления воздуха полностью не уравновесит нисходящую силу, действующую из-за гравитации. В этом случае, однако, мы можем пренебречь сопротивлением воздуха, так как оно намного ниже силы тяготения.
Изначально, в самой высокой точке, телефон обладает максимальной потенциальной энергией. При падении эта энергия преобразуется в кинетическую энергию. Чем больше масса телефона, тем больше кинетической энергии он будет достигать .
Когда телефон ударяется о пол, эта кинетическая энергия переходит в производство звука, вызывая отскок телефона, и ломает или деформирует его тело.
4. Пуля, выпущенная из пистолета
Форма механической энергии
Пуля, летящая по воздуху, обладает чрезвычайно высокой кинетической энергией. Ее также называют дульной энергией. Если не принимать во внимание внешние факторы (такие как гравитация и аэродинамика), то дульная энергия примерно указывает на разрушительный потенциал данного огнестрельного оружия или патрона.
Чем быстрее движется пуля и чем она тяжелее, тем выше ее кинетическая энергия и тем больше урона она нанесет.
5. Молния во время грозы
Форма электрической энергии
Электрическая энергия — это вид кинетической энергии, вызываемой потоком отрицательно заряженных электронов. Количество энергии пропорционально скорости движения электронов: чем быстрее они движутся, тем больше энергии они несут. Именно это движение электронов и питает наши электрические устройства.
Молния во время грозы является ярким примером электрической энергии. То, что вы на самом деле видите, это мгновенный разряд электронов, вызванный статическим электричеством в облаках. По мере того, как молния нагревает воздух, она производит ударную волну, вызывая звук грозы.
6. Электричество, обеспечиваемое автомобильной аккумуляторной батареей.
Форма электрической энергии
Автомобильный аккумулятор преобразует химическую энергию в электрическую, доступ к которой осуществляется через клеммы аккумулятора. Химический процесс в разрядной батарее освобождает электроны от анода к катоду. Эти движущиеся электроны обеспечивают электричество для цепей в автомобиле.
Для зарядки батареи поток электронов обратный (от катода к аноду). Кроме того, эти аккумуляторы предназначены для выпуска высокого всплеска тока, а затем быстро заряжается.
7. Вибрирующие стереодинамики
Форма звуковой энергии
Звук — это движение энергии через среду (такую как вода или воздух) и вызвано вибрациями. Звуковая энергия распространяется в виде волн и достигает наших барабанных перепонок, которые затем вибрируют, и наш мозг интерпретирует ее как звук.
тереодинамики (или все, что производит звук) работает таким же образом. Если вы проигрываете его громче и кладете на него руку, вы почувствуете, как он вибрирует. Что на самом деле происходит, так это то, что колонка движется вперед и назад, надавливая на частицы воздуха, что изменяет давление воздуха и генерирует звуковые волны.
Еще одним отличным примером может служить игра на барабанах; когда вы бьете по барабану, его поверхность вибрирует и вызывает звук.
В отличие от света, звук не может проходить через вакуум, так как нет атомов, которые могли бы передавать вибрацию.
8. Фотоны, испускаемые лампой накаливания
Форма излучающей энергии
В традиционной электрической лампочке, также называемой лампой накаливания, электрический ток перемещается от одного металлического контакта к другому. По мере того как течение пропускает через проводы и нить вольфрама, нить нагрюет до пункта где она начинает испустить фотоны, небольшие пакеты видимого света.
Лампа также производит много тепла в дополнение к свету. Лампа накаливания мощностью 60 ватт, например, преобразует 60 джоулей электрической энергии в секунду в световую и тепловую энергию — обе формы излучаемой энергии.
Энергия излучения — это энергия, которая перемещается частицами или волнами. Она генерируется электромагнитными волнами, которые мы обычно испытываем в виде тепла.
9. Радиоволны, движущиеся со скоростью света
Форма излучающей энергии
Радиоволны также движутся в форме волн. Они имеют частоты от 3 кГц до 300 ГГц и соответствующие длины волн 100 километров и 1 миллиметр. Как и другие электромагнитные волны, радиоволны движутся со скоростью света. Радиостанции используют эти волны для передачи их содержания на большие расстояния.
Другим хорошим примером излучаемой энергии являются лучи, исходящие от Солнца. Вот почему вы чувствуете себя жарче в солнечном свете, чем в тени.
10. Кипящая вода
Форма тепловой энергии
Как и энергия излучения, тепловую энергию можно испытать в виде тепла или излучения. Однако между ними есть большая разница: если энергия излучения описывает движение частиц или волн, то тепловая энергия относится к уровню активности между молекулами и атомами в объекте.
Когда атомы и молекулы движутся быстрее и сталкиваются друг с другом, они создают тепловую энергию. Из-за этого движения тепловая энергия считается формой кинетической энергии.
Кипящая вода — лучший способ визуализации тепловой энергии. При нагревании воды кинетическая энергия отдельных молекул воды увеличивается. И она продолжает расти с температурой до тех пор, пока вода не достигнет точки кипения.
Примером кинетической энергии является также геотермальная энергия, получаемая в результате вулканического действия Земли и распада природных минералов.
В каком случае кинетическая энергия тела при колебательном движении имеет наибольшее значение? Почему?
Кинетическая энергия — это энергия движения тела. Соотвественно, если у нас есть какой-то объект, обладающий хоть какой-то массой и хоть какой-то скоростью, то он и обладает кинетической энергией. Однако относительно разных систем отсчета эта кинетическая энергия у одного и того же объекта может быть разной.
Пример. Есть бабушка, которая относительно земли нашей планеты находится в состоянии покоя, то есть не движется и, скажем, сидит на остановке в ожидании своего автобуса. Тогда относительно нашей планеты ее кинетическая энергия равна нулю. Но если посмотреть на эту же бабушку с Луны или с Солнца, относительно которых можно наблюдать движение планеты и, соответственно, этой бабушки, которая находится на нашей планете, то бабушка уже будет обладать кинетической энергией относительно упомянутых небесных тел. И тут приезжает автобус. Эта самая бабушка быстро встает и бежит занимать положенное ей место. Теперь относительно планеты она уже не в покое, а вполне себе движется. А значит и обладает кинетической энергией. И чем толще бабушка и быстрее, тем больше ее кинетическая энергия.
Есть несколько фундаментальных видов энергии — основных. Расскажу, например, про механические. К ним относятся энергия кинетическая, которая зависит от скорости и массы объекта, энергия потенциальная, которая зависит от того, где вы возьмете нулевой уровень потенциальной энергии, и от того положения, где находится этот объект относительно нулевого уровня потенциальной энергии. То есть потенциальная энергия — энергия, зависящая от положения объекта. Эта энергия характеризует работу, совершаемую полем, в котором находится объект, по его перемещению.
Пример. Несете вы в руках огромную коробку и падаете. Коробка лежит на полу. Выходит, что нулевой уровень потенциальной энергии у вас будет находится, соответственно, на уровне пола. Тогда верхняя часть коробки будет обладать большей потенциальной энергией, так как она находится выше пола и выше нулевого уровня потенциальной энергии.
Глупо говорить про энергию, не упомянув закон о ее сохранении. Таким образом, по закону сохранения энергии, эти два ее вида, описывающих состояние объекта, ни откуда не берутся и никуда не исчезают, а только переходят друг в друга.
А вот и пример. Падаю я с высоты дома, изначально имея потенциальную энергию относительно земли в момент перед прыжком, а моя кинетическая энергия пренебрежимо мала, поэтому можем приравнять её к нулю. Вот я отрываю ножки от карниза и моя потенциальная энергия начинает уменьшаться, так как высота, на которой я нахожусь, становится все меньше и меньше. В этот же момент при падении вниз я постепенно приобретаю кинетическую энергию, так как падаю вниз все с большей скоростью. В момент падения я уже обладаю максимальной кинетической энергией, но потенциальная равно нулю, такие дела.
Кинетическая энергия — Википедия. Что такое Кинетическая энергия
Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек[1]. Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как
- T = ∑ m i v i 2 2 {\displaystyle T=\sum {{m_{i}v_{i}^{2}} \over 2}} ,
где индекс i {\displaystyle \ i} нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения[2]. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[3]. Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: T {\displaystyle T} , E k i n {\displaystyle E_{kin}} , K {\displaystyle K} и другие. В системе СИ она измеряется в джоулях (Дж).
История понятия
Впервые понятие кинетической энергии было введено в трудах Готфрида Лейбница (1695 г.), посвящённых понятию «живой силы»[4].
Кинетическая энергия в классической механике
Случай одной материальной точки
По определению, кинетической энергией материальной точки массой m {\displaystyle m} называется величина
- T = m v 2 2 {\displaystyle T={{mv^{2}} \over 2}} ,
при этом предполагается, что скорость точки v {\displaystyle v} всегда значительно меньше скорости света. С использованием понятия импульса ( p → = m v → {\displaystyle {\vec {p}}=m{\vec {v}}} ) данное выражение примет вид T = p 2 / 2 m {\displaystyle \ T=p^{2}/2m} .
Если F → {\displaystyle {\vec {F}}} — равнодействующая всех сил, приложенных к точке, выражение второго закона Ньютона запишется как F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} . Скалярно умножив его на перемещение материальной точки d s → = v → d t {\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} и учитывая, что a → = d v → / d t {\displaystyle {\vec {a}}={\rm {d}}{\vec {v}}/{\rm {d}}t} , причём d ( v 2 ) / d t = d ( v → ⋅ v → ) / d t = 2 v → ⋅ d v → / d t {\displaystyle {\rm {d}}(v^{2})/{\rm {d}}t={\rm {d}}({\vec {v}}\cdot {\vec {v}})/{\rm {d}}t=2{\vec {v}}\cdot {\rm {d}}{\vec {v}}/{\rm {d}}t} , получим F → d s → = d ( m v 2 / 2 ) = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}(mv^{2}/2)={\rm {d}}T} .
Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина T {\displaystyle \ T} остаётся постоянной, то есть кинетическая энергия является интегралом движения.
Случай абсолютно твёрдого тела
При рассмотрении движения абсолютно твёрдого тела его можно представить как совокупность материальных точек. Однако, обычно кинетическую энергию в таком случае записывают, используя формулу Кёнига, в виде суммы кинетических энергий поступательного движения объекта как целого и вращательного движения:
- T = M v 2 2 + I ω 2 2 . {\displaystyle T={\frac {Mv^{2}}{2}}+{\frac {I\omega ^{2}}{2}}.}
Здесь M {\displaystyle \ M} — масса тела, v {\displaystyle \ v} — скорость центра масс, ω → {\displaystyle {\vec {\omega }}} и I {\displaystyle I} — угловая скорость тела и его момент инерции относительно мгновенной оси, проходящей через центр масс[5].
Кинетическая энергия в гидродинамике
В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа ρ = d M / d V {\displaystyle \rho ={\rm {d}}M/{\rm {d}}V} . Тогда кинетическая энергия, приходящаяся на единицу объёма, двигающегося со скоростью v → {\displaystyle {\vec {v}}} , то есть плотность кинетической энергии w T = d T / d V {\displaystyle w_{T}={\rm {d}}T/{\rm {d}}V} (Дж/м3), запишется:
- w T = ρ v α v α 2 , {\displaystyle w_{T}=\rho {\frac {v_{\alpha }v_{\alpha }}{2}},}
где по повторяющемуся индексу α = x , y , z {\displaystyle {\alpha }=x,y,z} , означающему соответствующую проекцию скорости, предполагается суммирование.
Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса[6]. Если, в согласии с методом Рейнольдса, представить ρ = ρ ¯ + ρ ′ {\displaystyle \ \rho ={\overline {\rho }}+\rho ‘} , v α = v α ¯ + v α ′ {\displaystyle v_{\alpha }={\overline {v_{\alpha }}}+v’_{\alpha }} , где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:
- w T ¯ = 1 2 ρ v α v α ¯ = E s + E s t + E t , {\displaystyle {\overline {w_{T}}}={\frac {1}{2}}{\overline {\rho v_{\alpha }v_{\alpha }}}=E_{s}+E_{st}+E_{t},}
где E s = ρ ¯ v α ¯ v α ¯ / 2 {\displaystyle E_{s}={\overline {\rho }}\,{\overline {v_{\alpha }}}\,{\overline {v_{\alpha }}}/2} — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, E t = ρ ¯ v α ′ v α ′ ¯ / 2 + ρ ′ v α ′ v α ′ ¯ / 2 {\displaystyle E_{t}={\overline {\rho }}\,{\overline {v’_{\alpha }\,v’_{\alpha }}}/2+{\overline {\rho ‘v’_{\alpha }v’_{\alpha }}}/2} — плотность кинетической энергии, связанной с неупорядоченным движением («плотность кинетической энергии турбулентности»[6], часто называемой просто «энергией турбулентности»), а E s t = S α v α ¯ {\displaystyle E_{st}=S_{\alpha }{\overline {v_{\alpha }}}} — плотность кинетической энергии, связанная с турбулентным потоком вещества ( S α = ρ ′ v α ′ ¯ {\displaystyle S_{\alpha }={\overline {\rho ‘v’_{\alpha }}}} — плотность флуктуационного потока массы, или «плотность турбулентного импульса»). Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при преобразовании Галилея: кинетическая энергия упорядоченного движения E s {\displaystyle E_{s}} зависит от выбора системы координат, в то время как кинетическая энергия турбулентности E t {\displaystyle E_{t}} от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие внутренней энергии.
Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны, порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.
В квантовой механике кинетическая энергия представляет собой оператор, записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором ( p ^ = − j ℏ ∇ {\displaystyle {\hat {p}}=-j\hbar \nabla } , j {\displaystyle \ j} — мнимая единица):
- T ^ = p ^ 2 2 m = − ℏ 2 2 m Δ {\displaystyle {\hat {T}}={\frac {{\hat {p}}^{2}}{2m}}=-{\frac {\hbar ^{2}}{2m}}\Delta }
где ℏ {\displaystyle \hbar } — редуцированная постоянная Планка, ∇ {\displaystyle \nabla } — оператор набла, Δ {\displaystyle \Delta } — оператор Лапласа. Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — уравнение Шрёдингера[7].
Если в задаче допускается движение со скоростями, близкими к скорости света, кинетическая энергия материальной точки определяется как
- T = m c 2 1 − v 2 / c 2 − m c 2 , {\displaystyle T={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}}-mc^{2},}
где m {\displaystyle \ m} — масса, v {\displaystyle \ v} — скорость движения в выбранной инерциальной системе отсчёта, c {\displaystyle \ c} — скорость света в вакууме ( m c 2 {\displaystyle mc^{2}} — энергия покоя). Как и в классическом случае, имеет место соотношение F → d s → = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} , получаемое посредством умножения на d s → = v → d t {\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} выражения второго закона Ньютона (в виде F → = m ⋅ d ( v → / 1 − v 2 / c 2 ) / d t {\displaystyle \ {\vec {F}}=m\cdot {\rm {d}}({\vec {v}}/{\sqrt {1-v^{2}/c^{2}}})/{\rm {d}}t} ).
Выражение для T {\displaystyle \ T} можно переписать в форме T = m v 2 / ( 1 − v 2 / c 2 + 1 − v 2 / c 2 ) . {\displaystyle T=mv^{2}/(1-v^{2}/c^{2}+{\sqrt {1-v^{2}/c^{2}}}).} При малых скоростях ( v ≪ c {\displaystyle v\ll c} ) оно переходит в классическую формулу T = 1 / 2 ⋅ m v 2 {\displaystyle \ T=1/2\cdot mv^{2}} .
Свойства кинетической энергии
- Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему[1].
- Инвариантность по отношению к повороту системы отсчёта. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости[1].
- Неинвариантность по отношению к смене системы отсчёта в общем случае. Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
- Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[8][9].
Физический смысл кинетической энергии
Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[10]:
- A 12 = T 2 − T 1 . {\displaystyle \ A_{12}=T_{2}-T_{1}.}
Это равенство актуально как для классической, так и для релятивистской механики (получается интегрированием выражения F → d s → = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} между состояниями 1 и 2).
Соотношение кинетической и внутренней энергии
Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.
То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана.
См. также
Примечания
- ↑ 1 2 3 4 Айзерман, 1980, с. 49.
- ↑ Тарг С. М. Кинетическая энергия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ Батыгин В. В., Топтыгин И. Н. 3.2. Кинематика релятивистских частиц // Современная электродинамика, часть 1. Микроскопическая теория. — Москва-Ижевск: Институт компьютерных исследований, 2002. — С. 238. — 736 с. — 1000 экз. — ISBN 5-93972-164-8.
- ↑ Мах Э. Механика. Историко-критический очерк её развития. — Ижевск: «РХД», 2000. — С. 252. — 456 с. — ISBN 5-89806-023-5.
- ↑ Голубева О. В. Теоретическая механика. — М.: «Высшая школа», 1968. — С. 243—245.
- ↑ 1 2 Монин А. С., Яглом А. М. Статистическая гидромеханика. Часть 1. — М.: Наука, 1965. — 639 с.
- ↑ Блохинцев Д. И. Основы квантовой механики, 5-е изд. Наука, 1976. — 664 с., см. § 26.
- ↑ Айзерман, 1980, с. 54.
- ↑ Сорокин В. С. «Закон сохранения движения и мера движения в физике» // УФН, 59, с. 325—362, (1956)
- ↑ Сивухин Д. В. § 22. Работа и кинетическая энергия. // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 131. — 520 с.
Литература
Что такое кинетическая энергия? | Живая наука
Кинетическая энергия — это энергия массы в движении. Кинетическая энергия объекта — это энергия, которую он имеет из-за своего движения.
В ньютоновской (классической) механике, которая описывает макроскопические объекты, движущиеся с малой долей скорости света, кинетическая энергия ( E ) движущегося массивного тела может быть рассчитана как половина его массы ( м ) умноженное на квадрат его скорости ( v ): E = ½mv 2 .Обратите внимание, что энергия — это скаляр , то есть она не зависит от направления и всегда положительна. Когда мы удваиваем массу, мы удваиваем энергию; однако, когда мы удваиваем скорость, энергия увеличивается в четыре раза.
Приступайте к работе
Возможно, наиболее важным свойством кинетической энергии является ее способность выполнять работу . Работа определяется как сила, действующая на объект в направлении движения. Работа и энергия настолько тесно связаны, что могут быть взаимозаменяемыми.В то время как энергия движения обычно выражается как E = ½ mv 2 , работа ( W ) чаще рассматривается как сила ( F ), умноженная на расстояние ( d ): W = Fd . Если мы хотим изменить кинетическую энергию массивного объекта, мы должны поработать с ним.
Например, чтобы поднять тяжелый объект, мы должны выполнить работу, чтобы преодолеть силу тяжести и переместить объект вверх. Если объект вдвое тяжелее, потребуется в два раза больше работы, чтобы поднять его на такое же расстояние.Также требуется в два раза больше работы, чтобы поднять один и тот же объект вдвое дальше. Точно так же, чтобы скользить по полу тяжелым предметом, мы должны преодолеть силу трения между предметом и полом. Требуемая работа пропорциональна весу объекта и расстоянию, на которое он перемещается. (Учтите, что если вы несете пианино на спине по коридору, вы на самом деле не делаете никакой реальной работы.)
Потенциальная энергия
Кинетическая энергия может быть сохранена. Например, нужно потрудиться, чтобы поднять груз и поставить его на полку или сжать пружину.Что тогда происходит с энергией? Мы знаем, что энергия сохраняется, то есть ее нельзя создать или уничтожить; его можно только преобразовать из одной формы в другую. В этих двух случаях кинетическая энергия преобразуется в потенциальную энергию , потому что, хотя на самом деле она не выполняет работу, она может выполнять работу. Если мы уроним объект с полки или отпустим пружину, эта потенциальная энергия снова преобразуется в кинетическую энергию.
Кинетическая энергия также может передаваться от одного тела к другому при столкновении, которое может быть упругим или неупругим .Одним из примеров упругого столкновения может быть удар одного бильярдного шара о другой. Игнорируя трение между шарами и столом или любое вращение, придаваемое битку, в идеале общая кинетическая энергия двух шаров после столкновения равна кинетической энергии битка до столкновения.
Примером неупругого столкновения может быть движущийся вагон поезда, который врезается в такой же неподвижный вагон и сцепляется с ним. Полная энергия останется прежней, но масса новой системы увеличится вдвое.В результате две машины продолжат движение в одном направлении с меньшей скоростью, так что mv 2 2 = ½ mv 1 2 , где m — масса одной машины, v 1 — скорость первой машины, а v 2 — скорость сцепленных машин после столкновения. Разделив на м и извлекая квадратный корень из обеих частей, получим v 2 = √2 / 2 ∙ v 1 .(Обратите внимание, что v 2 ≠ ½ v 1 .)
Кроме того, кинетическая энергия может быть преобразована в другие формы энергии и наоборот. Например, кинетическая энергия может быть преобразована в электрическую энергию с помощью генератора или в тепловую энергию с помощью тормозов автомобиля. И наоборот, электрическая энергия может быть преобразована обратно в кинетическую энергию с помощью электродвигателя, тепловая энергия может быть преобразована в кинетическую энергию с помощью паровой турбины, а химическая энергия может быть преобразована в кинетическую энергию с помощью двигателя внутреннего сгорания.
Джим Лукас — писатель-фрилансер и редактор, специализирующийся на физике, астрономии и инженерии. Он является генеральным менеджером Lucas Technologies .
.Что такое кинетическая энергия? — Определение, формула, примеры, единицы, типы
- Классы
- Класс 1-3
- Класс 4-5
- Класс 6-10
- Класс 11-12
- КОНКУРСНЫЙ ЭКЗАМЕН
- BNAT 000 NC
- 000 NC Книги
- Книги NCERT для класса 5
- Книги NCERT для класса 6
- Книги NCERT для класса 7
- Книги NCERT для класса 8
- Книги NCERT для класса 9
- Книги NCERT для класса 10
- Книги NCERT для класса 11
- Книги NCERT для класса 12
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
- NCERT 9000 9000
- NCERT Exemplar Class
- Решения RS Aggarwal, класс 12
- Решения RS Aggarwal, класс 11
- Решения RS Aggarwal, класс 10 90 003 Решения RS Aggarwal класса 9
- Решения RS Aggarwal класса 8
- Решения RS Aggarwal класса 7
- Решения RS Aggarwal класса 6
- Решения RD Sharma
- RD Sharma Class 6 Решения
- Решения RD Sharma Решения RD Sharma класса 8
- Решения RD Sharma класса 9
- Решения RD Sharma класса 10
- Решения RD Sharma класса 11
- Решения RD Sharma класса 12
- PHYSICS
- Механика
- Оптика
- Термодинамика Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- MATHS
- Теорема Пифагора 0004
- 000300030004
- Простые числа
- Взаимосвязи и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убыток
- Полиномиальные уравнения
- Деление фракций
- 000
- 000
- 000
- 000
- 000
- 000 Microology
- 000
- 000 Microology
- 000 BIOG3000
- FORMULAS
- Математические формулы
- Алгебраические формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- 0003000 PBS4000
- 000300030002 Примеры калькуляторов химии Класс 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 11
- Образцы документов CBSE чел для класса 12
- CBSE Контрольный документ за предыдущий год
- CBSE Контрольный документ за предыдущий год Класс 10
- Контрольный документ за предыдущий год CBSE, класс 12
- HC Verma Solutions
- HC Verma Solutions Class 11 Physics
- Решения HC Verma, класс 12, физика
- Решения Лакмира Сингха
- Решения Лакмира Сингха, класс 9
- Решения Лакмира Сингха, класс 10
- Решения Лакмира Сингха, класс 8
- Заметки CBSE
- , класс
- CBSE Notes
- Примечания CBSE класса 8
- Примечания CBSE класса 9
- Примечания CBSE класса 10
- Примечания CBSE класса 11
- Примечания CBSE класса 12
- Примечания к редакции CBSE
- Примечания к редакции
- CBSE Class
- Примечания к редакции класса 10 CBSE
- Примечания к редакции класса 11 CBSE 9000 4
- Примечания к редакции класса 12 CBSE
- Дополнительные вопросы CBSE
- Дополнительные вопросы по математике класса 8 CBSE
- Дополнительные вопросы по науке 8 класса CBSE
- Дополнительные вопросы по математике класса 9 CBSE
- Дополнительные вопросы по науке класса 9 CBSE Дополнительные вопросы по математике для класса 10
- Дополнительные вопросы по науке, класс 10 по CBSE
- CBSE, класс
- , класс 3
- , класс 4
- , класс 5
- , класс 6
- , класс 7
- , класс 8
- , класс 9 Класс 10
- Класс 11
- Класс 12
- Учебные решения
- CBSE Class
- Решения NCERT
- Решения NCERT для класса 11
- Решения NCERT для класса 11 по физике
- Решения NCERT для класса 11 Химия Решения для биологии класса 11
- Решения NCERT для математики класса 11 9 0003 NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Business Studies
- NCERT Solutions Class 11 Economics
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Commerce
- NCERT Solutions For Class 12
- NCERT Solutions For Класс 12 по физике
- Решения NCERT для химии класса 12
- Решения NCERT для класса 12 по биологии
- Решения NCERT для класса 12 по математике
- Решения NCERT Класс 12 Бухгалтерия
- Решения NCERT, класс 12, бизнес-исследования
- Решения NCERT, класс 12 Экономика
- NCERT Solutions Class 12 Accountancy Part 1
- NCERT Solutions Class 12 Accountancy Part 2
- NCERT Solutions Class 12 Micro-Economics
- NCERT Solutions Class 12 Commerce
- NCERT Solutions Class 12 Macro-Economics
- NCERT Solutions For Класс 4
- Решения NCERT для математики класса 4
- Решения NCERT для класса 4 EVS
- Решения NCERT для класса 5
- Решения NCERT для математики класса 5
- Решения NCERT для класса 5 EVS
- Решения NCERT для класса 6
- Решения NCERT для математики класса 6
- Решения NCERT для науки класса 6
- Решения NCERT для социальных наук класса 6
- Решения NCERT для класса 6 Английский
- Решения NCERT для класса 7
- Решения NCERT для класса 7 Математика
- Решения NCERT для класса 7 Наука
- Решения NCERT для класса 7 по социальным наукам
- Решения NCERT для класса 7 Английский
- Решения NCERT для класса 8
- Решения NCERT для класса 8 Математика
- Решения NCERT для класса 8 Science
- Решения NCERT для социальных наук 8 класса
- Решение NCERT ns для класса 8 Английский
- Решения NCERT для класса 9
- Решения NCERT для социальных наук класса 9
- Решения NCERT для математики класса 9
- Решения NCERT для математики класса 9 Глава 1
- Решения NCERT для Математика класса 9 Глава 2
- Решения NCERT для математики класса 9 Глава 3
- Решения NCERT для математики класса 9 Глава 4 Решения NCERT
- для математики класса 9 Глава 5
- Решения NCERT для математики класса 9 Глава 6
- Решения NCERT для Математика класса 9 Глава 7
- Решения NCERT для математики класса 9 Глава 8 Решения NCERT
- для математики класса 9 Глава 9 Решения NCERT
- для математики класса 9 Глава 10
- Решения NCERT для математики класса 9 Глава 11
- Решения NCERT для Математика класса 9 Глава 12
- Решения NCERT для математики класса 9 Глава 13 Решения
- NCERT для математики класса 9 Глава 14
- Решения NCERT для математики класса 9 Глава 15
- Решения NCERT для науки класса 9
- Решения NCERT для науки класса 9 Глава 1
- Решения NCERT для науки класса 9 Глава 2
- Решения NCERT для класса 9 Наука Глава 3
- Решения NCERT для Науки Класса 9 Глава 4
- Решения NCERT для Науки Класса 9 Глава 5
- Решения NCERT для Науки Класса 9 Глава 6
- Решения NCERT для Науки Класса 9 Глава 7
- Решения NCERT для Класса 9 Наука Глава 8
- Решения NCERT для Науки Класса 9 Глава 9
- Решения NCERT для Науки Класса 9 Глава 10
- Решения NCERT для Науки Класса 9 Глава 12
- Решения NCERT для Науки Класса 9 Глава 11
- Решения NCERT для Класса 9 Наука Глава 13
- Решения NCERT для класса 9 Наука Глава 14
- Решения NCERT для класса 9 по науке Глава 15
- Решения NCERT для класса 10
- Решения NCERT для класса 10 по социальным наукам
- Решения NCERT для математики класса 10
- Решения NCERT для математики класса 10 Глава 1
- Решения NCERT для математики класса 10 Глава 2
- Решения NCERT для математики класса 10 Глава 3
- Решения NCERT для математики класса 10 Глава 4
- Решения NCERT для математики класса 10 Глава 5
- Решения NCERT для математики класса 10 Глава 6
- Решения NCERT для математики класса 10 Глава 7
- Решения NCERT для математики класса 10 Глава 8
- Решения NCERT для математики класса 10 Глава 9 Решения NCERT
- для математики класса 10 Глава 10 Решения
- NCERT для математики класса 10 Глава 11
- Решения NCERT для математики класса 10 Глава 12
- Решения NCERT для математики класса 10 Глава 13
- NCERT Sol Унции для класса 10 по математике Глава 14
- Решения NCERT для класса 11
- Примечания к редакции
- Примечания CBSE класса 7
- 000 NC Книги
- BNAT 000 NC
- Классы