Парамагнетизм и диамагнетизм – 11.Магнитные свойства тел. Диамагнетизм. Парамагнетизм. Ферромагнетизм.

Парамагнетизм и диамагнетизм

Физика > Парамагнетизм и диамагнетизм

 

Рассмотрите природу и действие парамагнетизма и диамагнетизма: силы притягивания и отталкивания в магнитном поле, определения, примеры, магнитная сила.

Парамагнетизм – притягивание материала в магнитном поле, а диамагнетизм – отталкивание.

Задача обучения

  • Охарактеризовать диамагнитные и парамагнитные материалы.

Основные пункты

  • Парамагнетики функционируют как магниты при наличии внешнего магнитного поля.
  • Диамагнетики создают магнитное поле, противоположное внешнему, поэтому отталкивают магниты.
  • Все материалы обладают диамагнетизмом, который слабо влияет на реакцию материала в магнитном поле.

Термины

  • Ферромагнетизм – явление, когда вещества способны трансформироваться в постоянные магниты из-за влияния магнитного поля.
  • Парамагнетизм – стремление магнитных диполей выровняться с внешним магнитным полем. Подобные материалы становятся временными магнитами.
  • Диамагнетизм – слабая форма магнетизма, присутствующая только при наличии внешнего магнитного поля.

Парамагнетизм

Парамагнетизма — форма магнетизма, где материал будет притягиваться только, если есть внешнее магнитное поле. В парамагнитных материалах есть относительная магнитная проницаемость, больше или равная 1. Созданный магнитный момент выступает линейным и также слаб.

Атомы и молекулы обладают постоянными магнитными моментами (диполи) даже, если приложенное поле отсутствует. Обычно постоянный момент гарантируется вращением неспаренных электронов на атомных и молекулярных электронных орбиталях.

В условиях чистого парамагнетизма диполи не контактируют и ориентируются беспорядочно при термическом возбуждении, если нет внешнего поля. То есть, чистый магнитный момент приближается к нулю. Когда же магнитное поле активировано, то диполи стараются выровняться и формируют чистый магнитный момент в сторону приложенного поля.

Парамагнитные материалы обладают небольшой положительной восприимчивостью к магнитным полям. Они лишь немного притягиваются и не сохраняют приобретенных свойств, если нет внешнего поля.

Ориентация в парамагнитном материале при наличии электрического поля (справа) и его удалении (слева)

Среди парамагнитных материалов стоит вспомнить магний, молибден, литий и тантал. Однако, как только внешнее магнитное поле исчезает, парамагнетики теряют свои свойства, потому что тепловое движение рандомизирует вращательные позиции. Некоторые сохраняют вращательный беспорядок при абсолютном нуле. Поэтому и суммарная намагниченность опускается к нулю, если убрать поле.

Диамагнетизм

Диамагнетизм отмечает умение объекта формировать магнитное поле, вступающее в сопротивление к внешнему. Поэтому они не притягиваются, а отталкиваются, что приводит к таким поразительным вещам, как левитация диамагнитного материала, если его установить над мощным магнитом.

Пиролитический углерод, левитирующий над постоянным магнитом

По большей части диамагнетизм присутствует во всех материалах, и он всегда слабо влияет на реакцию материала по отношению к магнитному полю. У всех проводников заметен эффективный диамагнетизм, если магнитное поле меняется.  К примеру, сила Лоренца на электронах заставит их циркулировать вокруг вихревых токов. Далее токи создадут индуцированное магнитное поле, сопротивляющееся перемещению проводника.


Глава I. Диамагнетизм и парамагнетизм.

Опр.Магнетизм это квантово механическое свойство, так как часто классическая система в состоянии теплового равновесия не может обладать магнитным моментом даже при наличии внешнего магнитного поля. (теорема Ван-Леевена), то есть если бы постоянная Планка обратилась в ноль, то магнетизма бы не было.

Происхождение магнитного момента свободного атома связано с тремя главными обстоятельствами:

  1. наличие спина, которым обладают все электроны.

  2. наличие у всех электронов орбитального момента количества движения, связанного с их движением вокруг ядра.

  3. изменение орбитального момента при наложении внешнего магнитного поля.

Первые два обстоятельства приводят к образованию парамагнитной составляющей намагниченности, а третье к диамагнитной составляющей. У атомов с заполненными электронными оболочками спиновые орбитальные моменты равны нулю, возможен лишь индуцированный момент. Не равенство нулю спинового и орбитального моментов обычно связанно с незаполненными электронными оболочками.

Намагниченность определяется как магнитный момент единицы объема. А магнитная восприимчивость в единице объема равна:

(1.0)

Вещества с называются диамагнетиками, сназываются парамагнетиками (). С ядерными магнитными моментами связаны явления ядерного парамагнетизма.

§1.1. Магнитные моменты электронов и атомов.

При рассмотрении магнитного поля в веществе свойства среды учитываются формально с помощью магнитной проницаемости .

Известно, что все вещества помещенные в магнитное поле намагничиваются. Ампер выдвинул гипотезу, что в любом теле существуют молекулярные токи, обусловленные движением заряженных частиц (электронов) в атомах и молекулах.

Движение электрона по орбите эквивалентно круговому току, поэтому электрон обладает орбитальным моментом:

(4.1)

вектор нормали к контуру.

частота вращения электрона.

Векторперпендикулярен плоскости орбиты электрона, направление определяется по правилу «правого винта». С другой стороны, движущийся по орбите электрон обладает механическим моментом:

(4.2)

,

Направление также определяется по правилу «правого винта».– орбитальный механический момент электрона.

(4.3)

(4.4)

гиромагнитное отношение орбитальных моментов.

(4.4) справедливо для круговых и эллиптических орбит.

Электрон обладает еще собственным механическим моментом импульса или спином,, который является неотъемлемой частью электрона. Спину электрона соответствует собственный или спиновый магнитный момент:

(4.5)

гиромагнитное отношение гиромагнитных моментов.

Проекция на направлениеможет принимать два направления.

,,

является единицей магнитного момента электрона.

В общем случае:

Для атома магнитный момент будет равен:

(4.6)

– магнитный момент ядра.

23. Природа ферромагнетизма, диамагнетизма и парамагнетизма.

. Природа ферромагнетизма.

Согласно гипотезе Ампера внутри атомов и молекул текут молекулярные токи, а следовательно, имеются магнитные диполи. По сути дела гипотеза Ампера блестяще подтвердилась, когда была понята электронная структура атома. Движение электронов вокруг ядер атомов является элементарными токами, создающими магнитные моменты.

Более строгое рассмотрение элементарных магнитных моментов свидетельствует о том, что у атома имеются магнитные моменты ядер, орбитальные магнитные моменты электронов и спиновые магнитные моменты электронов. Магнитные моменты ядер атомов ничтожно малы по сравнению с магнитными моментами электронов, поэтому их влиянием на магнитные свойства материалов можно пренебречь. Орбитальные магнитные моменты электронов также заметно меньше спиновых магнитных моментов. Поэтому магнитные свойства материалов в основном определяются спиновыми магнитными моментами электронов.

Согласно правилу Хунда заполнение электронных орбиталей производится таким образом, чтобы магнитный и механический моменты электронов были максимальны. У переходных металлов внутренние электронные орбитали (3d или 5f) заполнены не полностью. Поэтому у атомов таких элементом имеется значительный магнитный момент.

В том случае, когда внутренние орбитали атомов заполнены, не полностью происходит обмен электронами незаполненных орбиталей соседних атомов. При этом энергия атомов понижается на величину обменной энергии (Uобм). Величина обменной энергии зависит от квантовомеханической функции — обменного интеграла (А) и взаимной ориентации суммарных спиновых моментов соседних атомов:

Uобм = -А (s1s2) (3.2)

Обменное взаимодействие может привести к взаимной ориентации магнитных моментов соседних атомов. В зависимости от ориентации магнитных моментов соседних атомов все вещества делят на ферромагнетики, антиферромагнетики и парамагнетики. Рассмотрим влияние обменного взаимодействия на ориентацию магнитных моментов соседних атомов подробнее.

Обменный интеграл зависит от расстояния между соседними атомами (а) и от радиуса незаполненных орбиталей (r) или в обобщенном виде от отношения (а/r). Зависимость обменного интеграла от отношения а/r показана на рисунке 46.

Рис. 46. Зависимость обменного интеграла (А) от расстояния между атомами, отнесенного к радиусу незаполненной электронной оболочки (a/r).

При отношении расстояния между атомами к радиусу незаполненных оболочек большем 3 обменный интеграл положителен и для того чтобы обменная энергия вычиталась из общей энергии системы необходимо параллельная ориентация спиновых магнитных моментов соседних атомов. Такие вещества являются ферромагнетиками. При отношении а/r меньшем 3 обменный интеграл отрицателен и для того чтобы энергия системы была минимальной скалярное произведение магнитных моментов соседних атомов должно быть отрицательным. В этом случае магнитные моменты соседних атомов антипараллельны и такие вещества принято называть антиферромагнетиками. При равенстве отношения а/r 3 обменная энергия нулевая и взаимная ориентация магнитных моментов произвольна. Такие вещества являются парамагнетиками.

Таким образом, для того чтобы вещество было ферромагнитным необходимо выполнение двух условий:

1). В состав материала должны входить атомы переходных металлов, обладающих большими магнитными моментами;

2). Отношение расстояния между атомами к радиусу незаполненных электронных оболочек должно превышать 3.

 намагничивающиеся во внешнем магнитном поле против направления поля, называются диамагнетиками.

В отсутствие внешнего магнитного поля диамагнетик немагнитен, поскольку в данном случае магнитные моменты электронов взаимно компенсируются, и суммарный магнитный момент атома [он равен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов] равен нулю. К диамагнетикам относятся многие металлы (например, Bi, Ag, Аu, Сu), большинство органических соединений, смолы, углерод и т.д.

Так как диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнетиками существуют и парамагнетики —вещества, намагничивающиеся во внешнем магнитном поле по направлению поля.

У парамагнитных веществ при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнетиков всегда обладают магнитным моментом. Однако вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому парамагнитные вещества магнитными свойствами не обладают. При внесении парамагнетика во внешнее магнитное поле устанавливается преимущественная ориентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его. Этот эффект называетсяпарамагнитным.

При ослаблении внешнего магнитного поля до нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается. К парамагнетикам относятся редкоземельные элементы, Pt, A1 и т.д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и поэтому остается незаметным.

Помимо рассмотренных двух классов веществ — диа- и парамагнетиков, называемых слабомагнитнымивеществами, существуют еще сильномагнитные вещества — ферромагнетики  вещества, обладающие спонтанной намагниченностью, т.е. они намагничены даже при отсутствии внешнего магнитного поля. К ферромагнетикам кроме основного их представителя — железа (от него и идет название «ферромагнетизм») — относятся, например, кобальт, никель, гадолиний, их сплавы и соединения.

Ферромагнетики помимо способности сильно намагничиваться обладают еще и другими свойствами, существенно отличающими их от диа- и парамагнетиков. Если для слабомагнитных веществ зависимость от линейна, то для ферромагнетиков эта зависимость является довольно сложной. По мере возрастания H намагниченность J сначала растет быстро, затем медленнее и, наконец, достигается так называемое магнитное насыщение Jнаc, уже не зависящее от напряженности поля.

Рис. 2

Подобный характер зависимости J от Н можно объяснить тем, что по мере увеличения намагничивающего поля возрастает степень ориентации молекулярных магнитных моментов по полю. Однако этот процесс начнет замедляться, когда остается все меньше и меньше несориентированных моментов, и, наконец, когда все моменты будут ориентированы по полю, дальнейшее увеличение Н прекращается и наступает магнитное насыщение.

Рис. 3

Магнитная индукция В = μ0(Н+ J) в слабых полях растет быстро с увеличением Н вследствие возрастания J, а в сильных полях, поскольку второе слагаемое постоянно (J= JHac), В возрастает с увеличением Н по линейному закону.

Существенная особенность ферромагнетиков — не только большие значения μ (например, для железа — 5000, для сплава супермаллоя — 800 000!), но и зависимость μ от Н (рис. 3). Вначале μ растет с увеличением Н, затем, достигая максимума, начинает уменьшаться, стремясь в случае сильных полей к 1 (, поэтому приJ= JHac = const с ростом Н отношение , а μ 1).

Рис.4

Характерная особенность ферромагнетиков состоит также в том, что для них зависимость J от Н (а следовательно, иВ от Н) определяется предысторией намагничивания ферромагнетика. Это явление получило название магнитного гистерезиса. Если намагнитить ферромагнетик до насыщения (рис. 4, точка 1), а затем начать уменьшать напряженность Н намагничивающего поля, то, как показывает опыт, уменьшение описывается кривой 1 — 2,лежащей выше кривой 1 — 0. При Н = 0 , J отличается от нуля, т. е. в ферромагнетике наблюдается остаточное намагничивание Joc.

С наличием остаточного намагничения связано существование постоянных магнитов. Намагничивание обращается в нуль под действием поля Нс, имеющего направление, противоположное полю, вызвавшему намагничивание. Напряженность Нс называется коэрцитивной силой.

При дальнейшем увеличении противоположного поля ферромагнетик перемагничивается (кривая 3 — 4), и при Н = -Н нас достигается насыщение (точка 4). Затем ферромагнетик можно опять размагнитить (кривая 4 — 5—6) и вновь перемагнитить до насыщения (кривая 6— 1).

Таким образом, при действии на ферромагнетик переменного магнитного поля намагниченность J изменяется в соответствии с кривой 1—2—3—4— 5—6—1, которая называется петлей гистерезиса (от греч. «запаздывание»). Гистерезис приводит к тому, что намагничивание ферромагнетика не является однозначной функцией Н, т. е. одному и тому же значению Н соответствует несколько значений J.

Ферромагнетики обладают еще одной существенной особенностью: для каждого ферромагнетика имеется определенная температура, называемая точкой Кюри, при которой он теряет свои магнитные свойства. При нагревании образца выше точки Кюри ферромагнетик превращается в обычный парамагнетик. Переход вещества из ферромагнитного состояния в парамагнитное, происходящий в точке Кюри, не сопровождается поглощением или выделением теплоты, т.е. в точке Кюри происходит фазовый переход II рода.

Наконец, процесс намагничивания ферромагнетиков сопровождается изменением его линейных размеров и объема. Это явление получило название магнитострикции. Величина и знак эффекта зависят от напряженности Hнамагничивающего поля, от природы ферромагнетика и ориентации кристаллографических осей по отношению к полю.

11.Магнитные свойства тел. Диамагнетизм. Парамагнетизм. Ферромагнетизм.

Магнитные свойства вещества:

-Антиферромагнетики — магнитные моменты вещества направлены противоположно и равны по силе.

-Диамагнетики — вещества, намагничивающиеся против направления внешнего магнитного поля.

-Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

-Ферромагнетики — вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов

-Ферримагнетики — материалы, у которых магнитные моменты вещества направлены противоположно, но не равны по силе.

Диамагнетизм — один из видов магнетизма, который проявляется в намагничивании вещества навстречу направлению действующего на него внешнего поля.

Термин «Парамагнетизм» ввёл в 1845 году Майкл Фарадей, который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные. Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля. Парамагнетики относятся к слабомагнитным веществам.

Ферромагнетик — такое вещество, которое при охлаждении ниже определённой температуры приобретает магнитные свойства.

12. Электромагнитная индукция. Закон Фарадея и правило Ленца.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Согласно закону электромагнитной индукции Фарадея (в системе СИ):

,

где электродвижущая сила, действующая вдоль произвольно выбранного контура — , магнитный поток через поверхность, натянутую на этот контур — .

Правило Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

13. Характеристики магнитного поля. Взаимосвязь электрических и магнитных полей.

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.

Магнитная индукция — векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства.

Магнитный поток — поток как интеграл вектора магнитной индукции через конечную поверхность

Магнитная проницаемость — физическая величина, характеризующая связь между магнитной индукцией B и напряжённостью магнитного поля H в веществе.

Напряжённость магнитного поля — это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности J.

Электромагнитное поле — фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, представимое как совокупность электрического и магнитного полей, которые могут при определённых условиях порождать друг друга.

14. Законы электромагнитного поля. Уравнения Максвелла.

Обычно, говоря об уравнениях Максвелла, имеют в виду законы электромагнитного поля, которое понимается как объединение электрического и магнитного полей.

Уравнения Максвелла — система дифференциальных уравнений, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

, , ,

9.4. Диамагнетизм и парамагнетизм твердых тел

Разделим условно все твердые тела на неметаллы и металлы. Предположим, что кристаллическая решетка построена из атомов, не имеющих недостроенных внутренних оболочек. Как в случае металлов, так и в случае неметаллов решетка проявляет диамаг­нетизм. На диамагнитный момент внутренних, заполненных обо­лочек атомов близость других атомов влияния не оказывает. Поэтому вклад этих оболочек в результирующий магнитный мо­мент такой же, как у изолированных атомов.

Если в неметаллическом кристалле имеются атомы с частично заполненными внутренними оболочками, то вещество представляет собой парамагнетик. Однако магнитный момент незаполненных оболочек в кристалле может отличаться от момента изолированно­го атома. Поэтому найти парамагнитный момент кристалла путем суммирования моментов всех входящих в него свободных атомов в большинстве случаев нельзя.

По классификации, предложенной Дж. Ван-Флеком, следует различать три типа кристаллических парамагнетиков неметаллов:

  1. Кристаллы со слабой межионной связью. К ним относят твердые тела, в которых связь между ионами столь слаба, что парамагнитный момент может быть вычислен суммированием мо­ментов свободных атомом (как в газе). Данному условию удовлет­воряют многие соли редкоземельных элементов.

  2. Кристаллы с «замороженными» орбитальными моментами. Здесь межатомные взаимодействия «замораживают» орбитальные моменты, но при этом спиновые моменты остаются практически свободными. Такая ситуация имеет место в большинстве солей ме­таллов переходной группы железа.

  3. Кристаллы с «замороженными» орбитальными и спиновыми моментами. К этому типу веществ относят кристаллы, в которых имеется столь сильная внутренняя магнитная связь, что межатом­ные силы «замораживают» как орбитальный, так и спиновый мо­менты. Этот случай осуществляется в солях переходных металлов группы платины и группы палладия.

В металлах вклад в магнитную восприимчивость кроме атом­ных остовов, расположенных в узлах решетки, вносят коллективи­зированные электроны проводимости. Экспериментальные данные свидетельствуют, например, о том, что все щелочные металлы па­рамагнитны. При этом их парамагнитная восприимчивость не за­висит от температуры. Поскольку решетка щелочных металлов диамагнитна, парамагнетизм может быть обусловлен только пара­магнетизмом электронного газа. Из независимости парамагнетизма щелочных металлов от температуры следует сделать вывод о независимости от температуры парамагнитной восприимчивости электронного газа.

Парамагнетизм электронного газа связан с наличием у электро­нов спинового магнитного момента, равного магнетону Бора. В магнитном поле спиновые магнитные моменты ориентируются преимущественно по полю, создавая результирующий магнитный момент. Если для вычисления этого магнитного момента восполь­зоваться классическими представлениями, то получим, что пара­магнитная восприимчивость зависит от температуры по закону Кюри. Правильный результат дает теория, разработанная Паули, учитывающая, что электроны в металле подчиняются статистике Ферми — Дирака.

В отсутствие внешнего магнитного поля (=0) результирующий магнитный момент электронного газа приТ=0К равен нулю. Электроны занимают в зоне проводимости все уровни до уровня Ферми так, что на каждом уровне находится по два электрона с противоположно направленными спинами. Это иллюстрирует рис. 9.5,а, где зона проводимости разделена на две полузоны, различающиеся направлением спинов.

До включения магнитного поля функция плотности состояний (E)электронов со спинами вверх и функции (E) для электронов со спинами вниз имеют вид одинаковых парабол. При этом.

В магнитном поле 0 полузона, в которой спиновые магнитные моменты направлены по полю, сместится вдоль осивниз на, а полузона с противоположным направлением спиновых магнитных моментов — вверх на. Таким образом, обе полузоны сместятся друг относительно друга на 2 (рис. 9.5,6). Так как система стремится к минимуму энергии, то часть электронов из правой полузоны перетечет в левую, изменив при этом направление спина изме(рис.9.5,в). В результате появится магнитный момент, направленный по полю где (NN) — число мигрировавших электронов; .

Зная выражение для плотности состояний, легко получить парамагнитную восприимчивость электронного газа:

Здесь N — число электронов проводимости в единичном объеме металла; — температура вырождения электронного газа. По определению, температура Ферми

Так как (гдеТ— температура плавления металла), не зависит от температуры, поскольку .

Одной из причин результирующего диамагнетизма некоторых металлов является то, что в них из-за малой плотности состояний невелик парамагнетизм электронного газа. Такая ситуация имеет место, например, в бериллии. Атомы бериллия

имеют по два валентных электрона. Таким образом, валентная зона в бериллии заполнена полностью. Если бы она не перекрыва­лась со следующей разрешенной зоной, то бериллий был бы ди­электриком. Металлические свойства бериллия связаны с пере­крытием зон. Такое перекрытие есть, но оно невелико и плотность состояний на уровне Ферми также невелика. Поэтому парамаг­нитная восприимчивость электронного газа мала и бериллий обнаруживает диамагнетизм.

Другой причиной результирующего диамагнетизма металлов является большое число электронных орбит в атомах и большие радиусы этих орбит (Си, Ag, Аи, Zn, Ga и т. д.).

Учет квантовых свойств электрона позволил Л. Д. Ландау от­крыть диамагнетизм электронного газа. Он показал, что диамаг­нитная восприимчивость электронного газа

,

т. е. составляет одну треть от его парамагнитной восприимчивости. Следовательно, полная магнитная восприимчивость электронного газа

.

У многих твердых парамагнетиков температурная зависимость магнитной восприимчивости описыва­ется не законом Кюри, а законом Кюри — Вейсса:

Здесь — некоторая температура, положительная или отрицатель­ная.

17.2. Элементарная теория диамагнетизма и парамагнетизма.

Будем считать, что электрон в атоме движется по круговой орбите и его орбитальный магнитный момент p me составляет угол α с вектором индукции магнитного поля B . Можно показать, что под влиянием внешнего магнитного поля вектор p me будет вращаться вокруг направления B , сохраняя постоянным угол α. Такое движение называется прецессией. Наличие прецессии орбиты эквивалентно появлению дополнительного орбитального тока, направление которого таково, что его магнитный момент направлен противоположно внешнему магнитному полю. Наведенные составляющие магнитных моментов электронов атомов (молекул) складываются и образуют собственное магнитное поле вещества, ослабляющее внешнее магнитное поле.

Этот эффект носит название диамагнитного эффекта, а вещества, намагничивающиеся во внешнем магнитном поле против направления поля, называются диамагнетиками. В отсутствии внешнего магнитного поля диамагнетики немагнитны, т.к. У них суммарный магнитный момент атома (молекулы) равен нулю. Диамагнетизм свойственен всем веществам. Диамагнетиками являются висмут, Zn, Au, Ag, h3O, инертные газы, h3, N2 и многие другие элементы и соединения.

Наряду с диамагнитными веществами существуют и парамагнитные − вещества, намагничивающиеся во внешнем магнитном поле по направлению поля.

У парамагнитных веществ магнитные моменты электронов, входящих в состав атомов (молекул), даже в отсутствии внешнего магнитного полы нескомпенсированы. Вследствие этого атомы (молекулы) парамагнетика обладают собственным магнитным моментом. Однако, из-за теплового движения эти магнитные моменты ориентированы беспорядочно, поэтому в отсутствии внешнего магнитного поля парамагнетики, так же как и диамагнетики, немагнитны.

При внесении парамагнитного вещества во внешнее магнитное поле магнитные моменты электронов прецессируют относительно направления вектора B (диамагнитное явление), и, в то же время, устанавливается преимущественная ориентация магнитных моментов атомов вдоль поля. Эффект от этого значительно больше, чем от проявления диамагнитных свойств. В итоге индукция магнитного поля в парамагнетике увеличивается. К

парамагнетикам относятся щелочные металлы, редкоземельные элементы, некоторые газы (Na, K, Al, Pt, O2, NO и др.).

18.1. Ферромагнетизм.

Наряду с рассмотренными выше слабомагнитными веществами, существуют еще сильномагнитные вещества − ферромагнетики − вещества, обладающие самопроизвольной (спонтанной) намагниченностью, которая сильно зависит от внешних воздействий − магнитного поля, температуры, деформаций. К ферромагнетикам относятся железо, никель, кобальт, гадолиний, их сплавы и некоторые соединения.

18.2. Опыты Столетова. Кривая намагничивания. Магнитный гистерезис.

Тороид, первичная обмотка которого состояла из N1 витков, имел сердечник из исследуемого материала (например, железа). Вторичная обмотка из N2 витков была замкнута на баллистический гальванометр G, измеряющих заряд, в прошедшем через него импульсе тока. Первичная обмотка включалась в цепь источника э.д.с., силу тока I в ней I можно было изменять с помощью потенциометра. Направление тока можно изменять

коммутатором К.

При изменении направления тока в первичной обмотке с помощью коммутатора на противоположное, в цепи вторичной обмотки возникал импульс индукционного тока, и через баллистический гальванометр проходил электрический заряд q. Как будет показано далее, этот заряд равен отношению взятого с обратным знаком изменения полного магнитного потока сквозь вторичную обмотку к электрическому сопротивлению R цепи гальванометра

где Ф0m − магнитный поток сквозь один виток. Если сердечник тонкий, а площадь его поперечного сечения S, то индукция магнитного поля в сердечнике

Напряженность магнитного поля в сердечнике можно вычислить, используя закон полного тока

где lср − длина средней линии сердечника. Зная В и Н , можно найти намагниченность ферромагнетика

Опыты показали, что для ферромагнетиков наблюдается явление гистерезиса (запаздывание). Суть явления состоит в том, что намагниченность вещества неоднозначно зависит от напряженности магнитного поля. При Н=0 намагниченность J>0, т.е. в ферромагнетике наблюдается остаточная намагниченность Jос, что объясняет существование

постоянных магнитов.

§ 132. Диа- и парамагнетизм

Всякое вещество являетсямагнетиком, т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необходимо рассмот­реть действие магнитного поля на движу­щиеся в атоме электроны.

Ради простоты предположим, что элек­трон в атоме движется по круговой орби­те. Если орбита электрона ориентирована относительно вектора В произвольным об­разом, составляя с ним угол а (рис. 188), то можно доказать, что она приходит в та­кое движение вокруг В, при котором век­тор магнитного момента рm, сохраняя по­стоянным угол а, вращается вокруг направления В с некоторой угловой скоро­стью. Такое движение в механике на­зывается прецессией. Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например, диск волчка при замедлении движения.

Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движе­ние, которое эквивалентно круговому то­ку. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется со­ставляющая магнитного поля, направлен­ная противоположно внешнему полю. На­веденные составляющие магнитных полей атомов (молекул) складываются и обра­зуют собственное магнитное поле вещест­ва, ослабляющее внешнее магнитное по­ле. Этот эффект получил название диа­магнитного эффекта, а вещества, на­магничивающиеся во внешнем магнитном поле против направления поля, называют­ся диамагнетиками.В отсутствие внешнего магнитного по­ля диамагнетик немагнитен, поскольку в данном случае магнитные моменты элек­тронов взаимно компенсируются, и сум­марный магнитный момент атома (он ра­вен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (на­пример, Bi, Ag, Au, Cu), большинство органических соединений, смолы, углерод и т. д.Так как диамагнитный эффект обус­ловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными ве­ществами существуют и парамагнитные — вещества, намагничивающиеся во внеш­нем магнитном поле по направлению поля.У парамагнитных веществ при отсутст­вии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнети­ков всегда обладают магнитным момен­том. Однако вследствие теплового движе­ния молекул их магнитные моменты ори­ентированы беспорядочно, поэтому парамагнитные вещества магнитными свой­ствами не обладают. При внесении пара­магнетика во внешнее магнитное поле устанавливается преимущественная ори­ентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким обра­зом, парамагнетик намагничивается, со­здавая собственное магнитное поле, со­впадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослабле­нии внешнего магнитного поля до нуля ориентация магнитных моментов вследст­вие теплового движения нарушается и па­рамагнетик размагничивается. К парамаг­нетикам относятся редкоземельные эле­менты, Pt, Al и т. д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и по­этому остается незаметным.Из рассмотрения явления парамагне­тизма следует, что его объяснение совпа­дает с объяснением ориентационной (дипольной) поляризации диэлектриков с по­лярными молекулами (см. §87), только электрический момент атомов в случае поляризации надо заменить магнитным моментом атомов в случае намагничения.Подводя итог качественному рассмот­рению диа- и парамагнетизма, еще раз отметим, что атомы всех веществ являют­ся носителями диамагнитных свойств. Ес­ли магнитный момент атомов велик, то парамагнитные свойства преобладают над диамагнитными и вещество является па­рамагнетиком; если магнитный момент атомов мал, то преобладают диамагнит­ные свойства и вещество является диамагнетиком.

§ 133. Намагниченность. Магнитное поле в веществеПодобно тому, как для количественного описания поляризации диэлектриков вво­дилась поляризованность (см. §88), для количественного описания намагничения магнетиков вводят векторную величину — намагниченность, определяемую магнит­ным моментом единицы объема магнетика:J=pm/V=pa/V,где pm=ра— магнитный момент маг-нетика, представляющий собой векторную сумму магнитных моментов отдельных мо­лекул (см. (131.6)).Рассматривая характеристики магнит­ного поля (см. §109), мы вводили вектор магнитной индукции В, характеризующий результирующее магнитное поле, создава­емое всеми макро- и микротоками, и век­тор напряженности Н, характеризующий магнитное поле макротоков. Следователь­но, магнитное поле в веществе складыва­ется их двух полей: внешнего поля, со­здаваемого током, и поля, создаваемого намагниченным веществом. Тогда вектор магнитной индукции результирующего магнитного поля в магнетике равен век­торной сумме магнитных индукций внеш­него поля В0 (поля, создаваемого намаг­ничивающим током в вакууме) и поля микротоков В’ (поля, создаваемого моле­кулярными токами):В = В0+В’, (133.1)

где В0=0Н (см. (109.3)).

Для описания поля, создаваемого мо­лекулярными токами, рассмотрим магнетик в виде кругового цилиндра сечения S и длины l, внесенного в однородное внешнее магнитное поле с индукцией Во. Возникающее в магнетике магнитное поле молекулярных токов будет направлено противоположно внешнему полю для диамагнетиков и совпадать с ним по направ­лению для парамагнетиков. Плоскости всех молекулярных токов расположатся перпендикулярно вектору Во, так как век­торы их магнитных моментов рm антипараллельны вектору В0 (для диамагнетиков) и параллельны Во (для парамагнети­ков). Если рассмотреть любое сечение цилиндра, перпендикулярное его оси, то во внутренних участках сечения магнетика молекулярные токи соседних атомов на­правлены навстречу друг другу и взаимно компенсируются (рис. 189). Нескомпенси­рованными будут лишь молекулярные то­ки, выходящие на боковую поверхность цилиндра.Ток, текущий по боковой поверхности цилиндра, подобен току в соленоиде и со­здает внутри него поле, магнитную индукцию В’ которого можно вычислить, учиты­вая формулу (119.2) для N=1 (соленоид из одного витка):В‘ =0I‘/l (133.2)где I — сила молекулярного тока, l — длина рассматриваемого цилиндра, а маг­нитная проницаемость  принята равной единице.С другой стороны, I‘/l — ток, приходя­щийся на единицу длины цилиндра, или его линейная плотность, поэтому магнит­ный момент этого тока p=IlS/l=IV/l, где Vобъем магнетика. Если Р — маг­нитный момент магнетика объемом V, то P/Vнамагниченность магнетика J. Та­ким образом,J= I‘/l. (133.3)Сопоставляя (133.2) и (133.3), полу­чим, что B‘=0J, или в векторной форме B=0J. Подставив выражения для В0 и В’ в (133.1), получим В =0Н+0J, (133.4) или B/0=H+J. (133.5) Как показывает опыт, в несильных по­лях намагниченность прямо пропорцио­нальна напряженности поля, вызывающе­го намагничение, т. е. J=H, (133.6)где  — безразмерная величина, называе­мая магнитной восприимчивостью вещества. Для диамагнетиков  отрицательна (поле молекулярных токов противополож­но внешнему), для парамагнетиков — по­ложительна (поле молекулярных токов со­впадает с внешним). Используя формулу (133.6), выраже­ние (133.4) можно записать в виде В = 0(1+)Н, (133.7) откуда Н=B/0(1+).Безразмерная величина =1+ (133.8) представляет собой магнитную проницае­мость вещества. Подставив (133.8) в (133.7), придем к соотношению (109.3) В=0Н, которое ранее постулировалось.Так как абсолютное значение магнит­ной восприимчивости для диа- и парамаг­нетиков очень мало (порядка 10-4— 10-6), то для них  незначительно отлича­ется от единицы. Это просто понять, так как магнитное поле молекулярных токов значительно слабее намагничивающего поля. Таким образом, для диамагнетиков<0 и <1, для парамагнетиков >0 и >1.

Закон полного тока для магнитного поля в веществе (теорема о циркуляции вектора В) является обобщением закона (118.1): где I и I‘ — соответственно алгебраиче­ские суммы макротоков (токов прово­димости) и микротоков (молекулярных токов), охватываемых произвольным за­мкнутым контуром L. Таким образом, цир­куляция вектора магнитной индукции В по произвольному замкнутому контуру равна алгебраической сумме токов проводимости и молекулярных токов, охватываемых этим контуром, умноженной на магнитную постоянную. Вектор В, таким образом, характеризует результирующее поле, созданное как макроскопическими токами в проводниках (токами проводимости), так и микроскопическими токами в магнетиках, поэтому линии вектора магнитной индукции В не имеют источников и явля­ются замкнутыми.Можно доказать, что циркуляция на­магниченности J по произвольному зам­кнутому контуру L равна алгебраической сумме молекулярных токов,охватываемых этим контуром: Тогда закон полного тка для магнитного поля в веществе можно записать также в вид где I, подчеркнем это еще раз, есть алгеб­раическая сумма токов проводимости. Выражение, стоящее в скобках в (133.9), согласно (133.5), есть не что иное, как введенный ранее вектор Н на­пряженности магнитного ноля. Итак, цир­куляция вектора Н по произвольному за­мкнутому контуру L равна алгебраической сумме токов проводимости, охватывае­мых этим контуром:

Выражение (133.10) представляет собой теорему о циркуляции вектора Н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *