Первую модель атома предложил – Кто предложил ядерную модель строения атома? Ядерная модель строения атома и его цепи

Содержание

3. Первые модели атома. Популярная философия. Учебное пособие

3. Первые модели атома

До конца 19 века в науке господствовало убеждение, что все физические тела состоят из очень маленьких частиц – молекул, невидимых глазу, но доступных наблюдению в мощный микроскоп. Однако сами молекулы состоят из еще более мелких частиц – атомов. Например, молекула воды состоит из одного атома кислорода и двух атомов водорода. Атомы, считалось в науке прошлых столетий, – это последний предел делимости вещества. Они представляют собой простейшие, мельчайшие и неделимые частицы, которые лежат в основе любого физического тела. Кроме того, если они неделимы, значит также постоянны и неизменны. Само вещество может меняться или превращаться как угодно благодаря всевозможным атомным взаимодействиям. Сами же атомы пребывают всегда в одном и том же состоянии. Будучи неделимой вечной мировой основой, они не могут распадаться на части, рождаться, исчезать, переходить в другие формы и т. д. Слово «атом», которое переводится с греческого как неделимый, было впервые употреблено древним философом Демокритом. Его идеи об атомах как последнем пределе вещества с небольшими изменениями существовали более двух тысяч лет. Они легли в основу механицизма классического естествознания, были в нем развиты и продолжены. В конце 19 века эти представления доживали свои последние дни. Открытия в физике, сделанные на рубеже 19 и 20 столетий разрушили многовековые представления об атомах, произвели настоящую революцию в науке.

В самом конце 19 века английский физик Джон Томсон открыл существование в атоме отрицательно заряженных частиц, которые получили название электронов. Поскольку атом в целом электрически нейтрален, то было сделано предположение, что помимо электронов в нем существуют также положительно заряженные частицы. Опыты английского физика Эрнеста Резерфорда привели его к выводу о том, что в любом атоме существует ядро – положительно заряженная частица, размер которой (10–12 см или одна стомиллиардная часть миллиметра) очень мал по сравнению с размерами всего атома (10-8 см или одна десятимиллионная часть миллиметра). Ядро меньше атома в 10 000 раз, но в нем почти полностью сосредоточена вся атомная масса. Кроме того, было обнаружено, что атомы одних элементов могут самопроизвольно превращаться в атомы других в результате ядерных излучений. Это явление, впервые открытое французским физиком Антуаном Анри Беккерелем, получило название

радиоактивности (лат. radiare – испускать лучи и activus – деятельный).

Эти открытия убедительно показали, что атомы – это не простейшие, неделимые и неизменные частицы вещества, а сложные, делимые и способные к превращению микрообъекты, имеющие определенное устройство. Одним из первых попытался выяснить строение атома Томсон. С его точки зрения атом представляет собой положительно заряженную массу, в которую вкраплены электроны, подобно тому, как изюм вкраплен в булку. Причем положительный заряд атома равен сумме отрицательных зарядов всех электронов, в силу чего атом электрически нейтрален. Здесь необходимо сказать, что поскольку атом вследствие своих малых размеров (приблизительно одна десятимиллионная часть миллиметра) недоступен никакому непосредственному наблюдению (даже с помощью сложнейших приборов), то о его устройстве можно говорить только умозрительно. Умозрительная картина или модель атома, описывающая его структуру (строение), предложенная Томсоном, стала условно называться «булка с изюмом».

Другую модель атома построил Резерфорд. Она получила название планетарной. Нам хорошо известно, что наша Солнечная система состоит из огромного центра – Солнца и вращающихся на разных расстояниях вокруг него девяти планет, одной из которых является наша Земля. Причем размеры и масса каждой планеты ничтожно малы по сравнению с размером и массой Солнца, то есть, почти все вещество Солнечной системы сосредоточено в нем. Между Солнцем и планетами действуют силы тяготения (взаимного притяжения), хорошо известные ньютоновской механике. Эти силы обеспечивают равномерное и стройное движение планет вокруг общего центра. Резерфорд предположил, что строение атома сходно с устройством Солнечной системы: в центре его находится положительно заряженное ядро, вокруг которого по разным круговым орбитам движутся отрицательно заряженные электроны. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы: положительный заряд атомного ядра уравновешивается суммой зарядов электронов, и поэтому атом электрически нейтрален. У Резерфорда получилось, что каждый атом – это целый сложно устроенный мир, только очень малых размеров. По этому поводу русский поэт Валерий Брюсов написал такие стихи:

Быть может эти электроны —

Миры, где пять материков,

Искусства, знанья, войны, троны

И память сорока веков!

Еще, быть может, каждый атом —

Вселенная, где сто планет;

Там все, что здесь, в объеме сжатом,

Но также то – чего здесь нет.

Их меры малы, но все та же

Их бесконечность, как и здесь;

Там скорбь и страсть, как здесь, и даже

Там та же мировая спесь.

Модель атома Резерфорда наглядно описывала его строение. Однако впоследствии она столкнулась со множеством противоречий, и стало понятно, что она не совсем подходит для объяснения атомного устройства. Согласно одному из законов диалектики – перехода количественных изменений в качественные – при значительном изменении масштабов (увеличении или уменьшении) изучаемых нами объектов, принципы и законы, действующие в одних условиях, могут совершенно не действовать в других; правила одних областей реальности могут не соответствовать правилам других. Если атом – это столь малая величина, то почему бы не предположить, что для него существуют совершенно иные правила и законы, чем для нашего видимого макромира, что микромир строится абсолютно на других принципах, и все наши макропредставления бессильны что-либо описать или объяснить в микрообластях действительности.

Резерфордовская модель атома, просто и наглядно говорившая о его устройстве, была родом из макромира, ведь она сравнивала его с Солнечной системой, использовала понятия ядра, центра, движущихся частиц-электронов, орбит движения (а это все макропонятия или макропредставления). Видимо, об атоме надо было говорить как-то иначе, неким другим, специфическим языком, потому что в его лице мы имеем дело с совершенно иной реальностью.

Новую модель атома построил известный датский физик Нильс Бор. По его представлениям электрон – это не столько точка или твердый шарик, движущийся вокруг атомного ядра, сколько некий сгусток энергии, как бы размазанный вокруг ядра, но не равномерно, а с большей или меньшей плотностью на различных участках. Кроме того, надо говорить не об орбите движения электрона, а его стационарном (неизменном) состоянии, в котором он может находиться, не излучая энергии. Если же это положение меняется, то есть электрон как бы переходит из одного стационарного состояния в другое, то он излучает или поглощает порцию энергии. Как видим, модель, предложенная Бором, была более сложной и менее понятной, чем резерфордовская, но и она не смогла с успехом объяснить атомное строение, потому что во многом использовала макроязык и макропонятия. Выяснилось, что процессы, происходящие в атоме, в принципе невозможно представить в виде какой-либо механической модели по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Отказавшись полностью от понятного естественного языка и наглядных моделей при изучении микромира, наука все более стала пользоваться абстрактным языком математики. Атом физиков-теоретиков постепенно превращался в ненаблюдаемый набор уравнений.

Мы уже говорили о том, что к концу 19 века наука установила два различных вида существования материи – вещество и поле, которые во всем друг от друга отличаются и представляют собой противоположности (вещество обладает корпускулярными свойствами, а поле – волновыми). На рубеже позапрошлого и прошлого столетий выяснилось, что два эти вида материи не исключают друг друга. Как то ни удивительно, но одни и те же объекты могут характеризоваться и свойствами вещества, и свойствами поля одновременно, то есть иметь как корпускулярные, так и волновые качества. Известный немецкий физик Макс Планк, исследуя процессы теплового излучения, пришел к ошеломляющему выводу о том, что при излучении энергия отдается или поглощается не непрерывно и не в любых количествах, но небольшими и неделимыми порциями, которые он назвал

квантами (лат. quantum – сколько). Квант – это порция энергии. Вдумаемся в это словосочетание. Его первая часть – слово «порция» – подразумевает нечто определенное, ограниченное, вещественное, имеющее некие размеры, то есть – частицу или корпускулу. Вторая часть – слово «энергия» – подразумевает нечто непрерывное, безразмерное, невещественное, то есть – поле. Стало быть, квант – это такой объект физической реальности, в котором совпадают или одновременно представлены и вещество, и поле, объект, отличающийся корпускулярно-волновым дуализмом.

Эйнштейн перенес идею о квантах на область света и создал новое учение о нем. Вспомним, что Ньютон считал свет потоком корпускул, Гюйгенс и Юнг рассматривали его как волны светоносного эфира, а Фарадей и Максвел – как колебания электромагнитного поля. Эйнштейн совместил все эти представления и создал теорию, по которой свет имеет корпускулярно-волновую природу. Он распространяется квантами, то есть – энергетическими порциями, которые были названы фотонами (греч. photos – свет). С одной стороны, фотон – это именно порция энергии и поэтому является своего рода частицей или корпускулой, а с другой стороны, фотон – это порция именно энергии и поэтому является своего рода волной. Свет по Эйнштейну – это поток энергетических зерен, световых квантов или своеобразный фотонный дождь. Эйнштейновское представление о световых квантах помогло понять и наглядно представить явление фотоэффекта, сущность которого заключается в выбивании электронов из вещества под действием световых волн (каждый электрон вырывается одним фотоном). Все это убедительно подтвердило идею Эйнштейна, что свет ведет себя не только как волна, но и как поток корпускул. В опытах по дифракции и интерференции проявляются его волновые свойства, а при фотоэффекте – корпускулярные. Фотонная теория Эйнштейна относится к наиболее экспериментально подтвержденным физическим теориям.

Идея о квантах была перенесена и на представления об атоме, в результате чего появилась специфическая дисциплина – квантовая механика – наука, описывающая процессы, происходящие в микромире. Одним из ее основных утверждений является мысль о том, что микрообъекты (электроны, например) обладают, подобно свету, и корпускулярными, и волновыми свойствами, и только при учете этой двойственности можно более или менее успешно получить общую картину микромира. Квантовая механика – сравнительно молодая научная дисциплина, ее «возраст» насчитывает приблизительно сотню лет. Появившись в прошлом столетии, она уже достигла значительных результатов, но дальнейшие ее успехи, по всей видимости, впереди. Современная наука ждет от нее ответов на многие сложные вопросы, связанные не только с микромиром, но также – касающиеся макро– и мегамиров, ведь три эти области существуют не изолированно друг от друга, а представляют собой единую физическую реальность.

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

описание и опровержение :: SYL.ru

Модель атома Томсона – одна из ранних моделей строения атома, впоследствии признанная несостоятельной. Впервые предложена Д.Д. Томсоном в 1904 году вскоре после открытия электронов, но до открытия атомного ядра.

Предыстория

В 1897 году в физике произошло знаменательное событие: Томпсон Джозеф Джон открыл электроны, тем самым экспериментально подтвердив предположение, что атом не является «монолитной» частицей. Однако точного представления, что же из себя представляют элементарные частицы, не было. Лишь в 1911 году будет представлена более точная модель атома Резерфорда, а до этого научный мир лихорадочно бился над «загадкой столетия».

модель атома Томсона

Поиск ответа

После серии экспериментов выяснилось, что электроны отрицательно заряжены, а между тем уже было известно, что атомы имеют нейтральный заряд. Томсон разумно предположил, что в атоме должен быть некий источник положительного заряда для компенсации отрицательного заряда электронов.

Английский физик представил три возможных механизма взаимодействия внутри частиц.

  1. В первой модели атома Томсона каждый отрицательно заряженный электрон прилипал к положительно заряженной частице, которая следовала за ним всюду внутри атома.
  2. Во второй модели электроны вращаются вокруг центральной области положительного заряда, имеющего такую ​​же величину, что и все электроны.
  3. В третьей модели электроны занимали область пространства, которая сама была однородным положительным зарядом (часто рассматриваемым как «суп» или «облако» положительного заряда).

Ученый выбрал третий вариант — наиболее вероятную структуру атомов.

первая модель атома Томсона

Внимание общественности

Модель атома Томсона в 1904 году была опубликована в мартовском выпуске Philosophical Magazine – авторитетном научном журнале Британии. По мнению автора, атомы элементов состоят из ряда отрицательно наэлектризованных корпускул (электронов), заключенных в сферу равномерной положительной электризации. Томсон отказался от более ранней своей гипотезы «туманного атома», в которой частицы состояли из нематериальных вихрей.

Публикация вызвала неподдельный интерес у научного сообщества. Однако прочных доказательств она не имела, а, следовательно, критиковалась многими авторитетными физиками. Впрочем, она соответствовала тем представлениям и экспериментальным данным, которые были известны на то время.

описание модели

Описание модели

Будучи проницательным и практичным ученым, Томсон основывал свою атомную модель на известных экспериментальных данных. Предложение о положительном объеме заряда отражает характер его научного подхода к открытию, которое стало руководством к действию для будущих экспериментов.

Согласно теории, орбиты электронов внутри атомной модели Томсона были стабилизированы тем, что, когда электрон удалялся от центра положительно заряженной сферы (облака), он подвергался воздействию увеличивающейся силы притяжения. Эта сила возвращает электрон обратно, поскольку по закону Гаусса, внутри сферы более высокая концентрация положительного заряда. Согласно модели, электроны могли свободно вращаться по кольцам, которые были дополнительно стабилизированы взаимодействием между электронами, а спектроскопические значения объясняли энергетические различия между отдельными кольцевыми орбитами.

Согласно представлению того времени, электроны располагались в положительно заряженной сфере словно изюминки в пироге, или кусочки фруктов в любимом англичанами десерте – сливовом пудинге. Поэтому концепцию еще называют «пудинговой» моделью атома.

модель атома Резерфорда

Дилемма несоответствия

По мере накопления экспериментальных данных все отчетливее наблюдалось несоответствие данной теории. Томсон безуспешно пытался переделать свою модель, чтобы объяснить некоторые из основных спектральных линий, экспериментально выявленных для нескольких элементов.

В 1909 году Ганс Гейгер и Эрнест Марсден под кураторством профессора Эрнеста Резерфорда провели эксперименты с тонким листом золота, рассеивая альфа-частицы на золотой фольге. Данные оказались отличными от ожидаемых. В 1911 году Резерфорд после долгих размышлений опубликовал собственную концепцию, названную впоследствии моделью атома Резерфорда. Он предположил наличие очень маленького ядра с сильнейшим положительным зарядом в центре атомов золота, достаточного для удержания порядка ста электронов.

Дальнейшее развитие

Сразу после того, как Резерфорд опубликовал свои результаты, Антониус Ван ден Брук интуитивно предположил, что атомный номер элемента представляет собой общее количество единиц заряда, присутствующих в его ядре. Генри Мозли в 1913 году предоставил необходимые данные для доказательства предложения Ван ден Брука. Было обнаружено, что эффективный ядерный заряд соответствует атомному номеру.

Данная работа послужила базисом для создания Нильсом Бором полуклассической модели атомов в 1913 году. Она напоминает взаимодействие светила и планет в Солнечной системе, но только с квантовыми ограничениями.

пудинговая модель атома

Значение для науки

Модель атома Томсона послужила толчком для стремительного развития ядерной физики. Концепция «сливового пудинга» с одним электроном использовалась физиком Артуром Эрихом Хаасом в 1910 году для оценки численного значения постоянной Планка и боровского радиуса атомов водорода. Работа Хааса была опубликована за три года до выводов Нильса Бора. Следует отметить, что боровская модель обеспечивает достаточно точные прогнозы для атомных и ионных систем, имеющих один эффективный электрон.

Кроме того, теория «пудинга» позволяет определить оптимальное распределение равных точечных зарядов на единичной сфере, называемой проблемой Томсона. Кстати, физическая система, воплощенная в проблеме Томсона, является частным случаем одной из восемнадцати нерешенных математических задач, предложенных математиком Стивом Смейлом – «Распределение точек на двумерной сфере».

Проблема Томсона является естественным следствием модели «пучкового пудинга» в отсутствие равномерного положительного фонового заряда. Электростатическое взаимодействие электронов, ограниченных сферическими квантовыми точками, также аналогично их обработке в атомной модели Томсона. В этой классической задаче квантовая точка моделируется как простая диэлектрическая сфера (вместо однородной, положительно заряженной сферы, как в модели «пучкового пудинга»), в которой находятся свободные или избыточные электроны.

Первые модели строения атома — Справочник химика 21

    Атом давно перестал быть неделимым. После открытия естественной радиоактивности, катодных лучей и электронов были предложены первые модели строения атомов. Согласно модели первооткрывателя электрона Томсона (1904) атом представляет собой сферу положительного электричества одинаковой плотности пО всему объему диаметром порядка 0,1 нм. Электроны как бы плавают в этой сфере, нейтрализуя положительный заряд. Колебательное движение электронов возбуждает в пространстве электромагнитные волны. Экспериментальную проверку этих наглядных представлений предпринял английский физик Эрнест Резерфорд в-своих знаменитых опытах по рассеянию а-частиц (ядра атома гелия). Схема установки Резерфорда (1907) приведена на рис. 8. Радиоактивный препарат Р излучает а-частицы ( снаряды ) в виде узкого пучка, на пути движения которого ставится тонкая золотая фольга Ф. Регистрация а-частиц, прошедших через фольгу, производится микроскопом М на люминесцирующем экране Э по вспышке световых точек сцинтилляция). Если модель атома Томсона верна, а-частицы не могут пройти даже через очень тонкую фоль- [c.31]
    В 1910 г. датский ученый Н.Бор, используя модель Резерфорда и теорию Планка, предложил модель строения атома водорода, согласно которой электроны двигаются вокруг ядра не по любым, а лишь по разрешенным орбитам, на которых электрон обладает определенными энергиями. При переходе электрона с одной орбиты на другую атом поглощает или испускает энергию в виде квантов. Каждая орбита имеет номер и (1, 2, 3, 4,. ..), который назвали главным квантовым числом. Бор вычислил радиусы орбит. Радиус первой орбиты был 5,29-10 м, радиус других орбит был равен  [c.19]

    Ядерная модель атома. Одна из первых моделей строения атома была предложена английским физиком Э. Резерфордом. В опытах по рассеянию а-частиц было показано, что почти вся масса атома сосредоточена в очень малом объеме — положительно заряженном ядре. Согласно модели Резерфорда, вокруг ядра на относительно большом расстоянии непрерывно движутся электроны, причем их количество таково, что в целом атом электрически нейтрален. Позднее наличие в атоме тяжелого ядра, окруженного электронами, было подтверждено другими учеными. [c.10]

    Магнитные свойства ферромагнитных материалов определяются магнитными свойствами многоэлектронного атома. Однако далеко не все материалы с многоэлектронными атомами обладают ферромагнитными свойствами. Строение атомов ферромагнитных материалов имеет ряд особенностей. Атом состоит из положительно заряженного ядра, вокруг которого вращаются электроны, образующие электронные слои и оболочки. Число электронных слоев определяют главным квантовым числом, которое принимает целые значения 1, 2, 3,. .., п. Число оболочек в слое выражают орбитальным квантовым числом I и обозначают их буквами 8, р, планетарная модель атома железа, из которого видно, что в атоме содержится четыре электронных слоя. В первом слое находится одна электронная оболочка 18 с двумя электронами во втором слое содержатся оболочки 28 с двумя электронами, 2р с шестью электронами в третьем слое — оболочка Зз с двумя электронами, оболочка Зр с шестью электронами и оболочка 3(1 с шестью [c.238]


    Одну из первых моделей строения атома предложил английский-физик Дж. Дж. Томсон (1904 г.). Он предположил, что атом представляет собой положительно заряженную сферическую частицу, внутри которой распределены электроны, компенсирующие положительный заряд этой частицы. Электроны распределены равномерно и колеблются относительно своих равновесных положений, при химических реакциях электроны могут переходить от одних атомов-к другим с образованием заряженных частиц — ионов. Эта первая модель строения атома получила впоследствии название пудинга Томсона (электроны, вставленные в положительно заряженную сферу, выглядели наподобие изюминок в пудинге ). [c.32]

    Н. Бор в 1913 г. впервые четко сформулировал вывод, что классическая электродинамика недостаточна для описания систем атомного размера [42]. Этот вывод привел его к разработке квантовой теории строения атома водорода в качестве первого шага и далее — к построению формальных моделей атомов всех элементов периодической системы. Применив к атомной теории постоянную Планка, Бор сформулировал два основных постулата 1) атом может существовать, не излучая, в определенных стационарных состояниях, характеризующихся определенными [c.247]

    Первым основополагающим достижением в области изучения внутреннего строения вещества было создание модели атома английским физиком Резерфордом (1911 г.). По Резерфорду атом состоит из ядра, окруженного электронной оболочкой. Выдающийся датский физик теоретик Вор использовал представления Резерфорда и созданную немецким физиком Плаиком (1900 г.) квантовую теорию для разработки в 1913 г. теории водородоподобного атома и первой квантовой модели атома модель атома Бора, см. 4.5). Приняв, что электроны — это частицы, он описал атом как ядро, вокруг которого на разных расстояниях движутся по круговым орбитам электроны. Б 1916 г. модель атома Бора была усовершёиствована немецким физиком Зоммерфель-дом, который объединил квантовую теорию Планка и теорию относительности Эйнштейна (1905 г.), создав квантовую теорию атомных орбит, которые по Зоммерфельду, могут быть не только круговыми, но и эллиптическими. [c.77]

    Атом элемента представляет собой одну из важнейших микрочастиц. Первые исследователи ее строения (Н.Бор, А. Зоммерфельд, 1912, 1913) положили в основу внутриатомной энергетики представления теории квант. Электромагнитное поле атомного ядра квантовано, т. е. имеет дискретное строение в самой природе структуры атома заложены определенные энергетические уровни. В соответствии с ними электрон, рассматриваемый как частица, согласно теории Бора, движется вокруг ядра по круговым или эллиптическим орбитам, напоминая движение планет вокруг Солнца. Так возникла планетарная модель атома. Форма траекторий-орбит и их расстояние от ядра рассматривались как фактор, определяющий энергетическое состояние электрона. Энергетические уровни обозначались как главные кванто- [c.31]

    Преимущество метода МО над методом валентных связей состоит очевидно в том, что в основе первого лежит модель, которая в известной степени правильно передает внутреннее строение химических соединений. Клементи следующим образом характеризует преимущества метода МО он использует расчетную методику, которая может быть апробирована на примерах атомов. Электронная теория молекул принципиально и практически должна быть применима к предельному случаю — атому. Электроны не меняют своей природы при переходе от атомов к молекулам И для описания различных [c.90]

    Открытие субатомных частиц и первые модели атома. В 1897 г. Дж. Томсон (Англия) открыл электрон, а в 1909 г. Р. Малликен определил его заряд, который равен 1,6-10 Кл. Масса электрона составляет 9,1 М0 г. В 1904 г. Дж. Томсон предложил модель строения атома, согласно которой атом можно представить в виде положительно заряженной сферы с вкрапленными электронами. 

Филипп Ленард и динамидная модель атома (фрагменты из книг)

Филипп Ленард и динамидная модель атома (фрагменты из книг)

[вернуться к содержанию сайта]

Филипп Ленард и динамидная модель атома
(фрагменты из разных источников)

Модели строения атома
(по С.И. Левченков. Краткий очерк истории химии)

    Первые модели строения атома появляются в самом начале XX века. Жан Перрен в 1901 г. высказал предположение о ядерно-планетарном устройстве атома. Подобную же модель предложил в 1904 г. японский физик Хантаро Нагаока. В модели Нагаоки атом уподоблялся планете Сатурн; роль планеты выполнял положительно заряженный шар, представляющий собой основную часть объёма атома, а электроны располагались подобно спутникам Сатурна, образующим его кольца. Однако наиболее широкое распространение получила т.н. кексовая модель атома: в 1902 г. Уильям Томсон (лорд Кельвин) высказал предположение о том, что атом представляет собой сгусток положительно заряженной материи, внутри которого равномерно распределены электроны. Простейший атом – атом водорода – представлял собой, по мнению У. Томсона, положительно заряженный шар, в центре которого находится электрон. Детально данную модель разработал Дж. Дж. Томсон, считавший, что электроны внутри положительно заряженного шара расположены в одной плоскости и образуют концентрические кольца. Дж. Дж. Томсон предложил способ определения числа электронов в атоме, основанный на рассеивании рентгеновских лучей, основанный на предположении, что именно электроны должны являться центрами рассеивания. Проведённые эксперименты показали, что количество электронов в атомах элементов равно приблизительно половине величины атомной массы. Дж. Дж. Томсон, предположив, что число электронов в атоме непрерывно возрастает при переходе от элемента к элементу, впервые попытался связать строение атомов с периодичностью свойств элементов.

    Немецкий физик Филипп фон Ленард попытался создать модель, не предполагающую раздельного существования в атоме противоположных зарядов. Атом, согласно модели Ленарда, состоит из нейтральных частиц (т.н. динамид), каждая из которых является электрическим дуплетом. Выполненные Ленардом расчёты показали, что эти частицы должны иметь крайне малые размеры, и, следовательно, большая часть объёма атома представляет собой пустоту. Сосредоточение массы атома в небольшой части его объёма отчасти подтверждалось и проведёнными Ленардом в 1903 г. опытами, в которых пучок быстрых электронов легко проходил через тонкую металлическую фольгу.

    Все упомянутые модели – Томсона-Томсона, Перрена-Нагаоки и Ленарда являлись сугубо гипотетическими и исключительно качественными.

Первые модели строения атома:

У. Томсон, 1902 г.

Дж. Дж. Томсон, 1904 г.

Ф. Ленард, 1904 г.

Х. Нагаока, 1904 г.

Густав Герц
Из первых лет квантовой физики
(фрагмент статьи из УФН, т. 122, вып. 3, стр. 497, 1977 г.)

    К совсем другим представлениям о строении атома пришёл примерно в то же время Ф. Ленард, исходя из результатов опытов по рассеянию и поглощению катодных лучей. Уже Генрих Герц обнаружил, что быстрые катодные лучи проходят насквозь через тонкие металлические фольги. Это явление было использовано Ленардом, чтобы выпускать в воздух через тонкое окошко, названное его именем, катодные лучи из разрядной трубки. Это дало ему возможность изучать распространение катодных лучей в газах. Совершенно неожиданно оказалось, что быстрые катодные лучи при их прохождении через молекулы газа встречают значительно меньшее препятствие, чем можно было ожидать, исходя из размеров молекул, известных из кинетической теории газов. Для того чтобы объяснить свои результаты, Ленард должен был принять, что почти весь объём атома не заполнен и быстрые электроны проходят его беспрепятственно, масса же атома сосредоточена в очень небольшой части его объёма. На основе этих представлений Ленард создал так называемую динамидную модель атома. В этой модели атом состоит из некоторого числа силовых центров, названных “динамидами”, которые занимают крайне небольшое пространство, однако являются носителями всей массы атома и ответственны за его взаимодействие с другими частицами и излучением. Чтобы согласовать свои наблюдения для различных газов, Ленард принял число динамид в атоме примерно пропорциональным атомному весу. Хотя представления Ленарда не оправдались, экспериментальное доказательство крайне малой заполненности объёма атома представляло значительный шаг вперёд.

Г.С. Ландсберг
Оптика
(М.: Наука, 1976, стр. 719)

    Однако для объяснения спектральных закономерностей модель Томсона оказалась совершенно непригодной. Более того, исходные соображения Томсона относительно характера распределения положительных и отрицательных зарядов в атоме не покоятся на базе какого-либо прямого опыта. Поэтому следует признать важнейшим шагом вперёд попытку непосредственного опытного зондирования внутренних областей атома с целью установления пространственного распределения зарядов в атоме.

    Попытка подобного рода была предпринята ещё Ленардом (1903 г.), который изучал прохождение быстрых электронов через материальные тела и пришёл к выводу, что атом нельзя представлять себе состоящим из заряженного вещества, равномерно распределённого по всему его объёму, а скорее следует приписать ему ажурное строение. К тем же заключениям, но гораздо более обоснованным и количественно уточнённым, пришёл позже (1913 г.) и Резерфорд, предпринявший исследование «внутренности» атома более мощными средствами.

ЛЕНАРД (von Lenard), Филипп фон
7 июня 1862 г. – 20 мая 1947 г.
Нобелевская премия по физике, 1905 г.
(Лауреаты Нобелевской премии: Энциклопедия. – М.: Прогресс, 1992.)

    Немецкий физик Филипп Эдуард Антон фон Ленард родился в Прессбурге в Австро-Венгрии (ныне Братислава, Словакия) и был единственным ребенком состоятельного виноторговца Филиппа фон Ленарда и урождённой Антонии Бауман. Когда Ленард был ещё совсем маленьким, его мать умерла, и воспитывала его тётка. Впоследствии она вышла замуж за отца Ленарда. До девяти лет Ленард учился дома, а затем в школе при городском соборе и прессбургской средней школе. Любимыми его предметами были математика и физика. Школьный курс он дополнял: читал университетские учебники, проводил физические и химические опыты.

    Несмотря на интерес Ленарда к естественным наукам, отец настаивал на том, чтобы тот унаследовал виноторговое дело. Он хотел, чтобы сын поступил в технические университеты Вены и Будапешта, где мог бы изучать химию – предмет, имеющий особое значение для виноделия. В 1882 г. Ленард с большой неохотой стал работать в фирме своего отца. Через год он на собственные сбережения отправился в Германию, где посещал лекции знаменитого химика Роберта Вильгельма Бунзена (изобретателя бунзеновской горелки). Эта поездка ещё более укрепила его в намерении стать учёным. Зимой 1883 г. Ленард поступил в Гейдельбергский университет, где изучал физику. Ленард провёл четыре семестра в Гейдельбергском и два в Берлинском университетах, где он занимался под руководством таких известных учёных, как химик Бунзен и физик и физиолог Герман Гельмгольц. В 1886 г. в Гейдельберге он защитил диссертацию, за которую ему была присуждена докторская степень с высшим отличием. Работа была посвящена колебаниям капель воды. В течение трёх лет после защиты Ленард работал в Гейдельберге ассистентом у немецкого физика Георга Квинке.

    Ещё учась в университете, во время каникул Ленард вместе со своим школьным учителем физики Виргилом Клаттом проводили исследования фосфоресценции. Они обнаружили, что некоторые материалы фосфоресцируют только в том случае, если содержат следы определённых металлов. Занимаясь другими исследованиями, Ленард продолжал изучать фосфоресценцию на протяжении более чем сорока лет.

    Покинув Гейдельберг, Ленард в течение непродолжительного времени работал в Лондоне и Бреслау (ныне Вроцлав, Польша), а в апреле 1891 г. стал ассистентом Генриха Герца в Боннском университете. Герц, снискавший известность экспериментальным открытием электромагнитного излучения, существование которого было предсказано Джеймсом Клерком Максвеллом, случайно обнаружил фотоэлектрический эффект (испускание электрически заряженных частиц поверхностью, на которую падает излучение, в данном случае ультрафиолетовое). Одним из явлений, которыми особенно интересовался Герц, были катодные лучи, доходившие в хорошо откачанной газоразрядной стеклянной трубке от отрицательного электрода (катода) до противоположного конца трубки. Их исследованием занимались многие учёные, среди которых особенно следует отметить английского физика Уильяма Крукса. Загадка катодных лучей привлекла внимание Ленарда в 1880 г., когда он прочитал статью Крукса “Лучистая материя, или четвёртое физическое состояние”.

    Герц и Ленард решили исследовать катодные лучи в более удобной обстановке – вне газоразрядной трубки. Так как Герц обнаружил, что катодные лучи проникают сквозь тонкую алюминиевую фольгу, Ленард изготовил стеклянную газоразрядную трубку с небольшим отверстием у анода (положительного электрода), закрытым такой фольгой (впоследствии такие отверстия стали называть окошками Ленарда). Поместив на пути катодных лучей вместо обычного воздуха вторую газоразрядную трубку, Ленард сумел получить более длинный пучок лучей, часть которого была изолирована от источника и более удобна для экспериментирования. Отклоняя пучок электрическим и магнитным полями, Ленард показал, что катодные лучи состоят из отрицательно заряженных частиц. Он сумел измерить отношение заряда этих частиц к их массе. Первоначально же Ленард считал катодные лучи нематериальным излучением. Он также обнаружил, что эти частицы проникают в воздух и другие вещества на различную глубину, а поглощение приблизительно пропорционально толщине и плотности поглощающего вещества и что лучи, испускаемые газоразрядными трубками, при большем напряжении, соответствующем большей скорости и энергии частиц, обладают более высокой проникающей способностью. Исследованием катодных лучей Ленард занимался на протяжении двенадцати лет. После кончины Герца в 1894 г. Ленард на короткий срок стал исполняющим обязанности директора Физического института Боннского университета. Год или два он преподавал в университетах Бреслау, Аахена и Гейдельберга. Затем он получил звание профессора и стал директором физической лаборатории при Кильском университете (1898). Несмотря на признание, которое получили его работы, Ленард порой с пренебрежением и завистью относился к успехам других учёных. Он с величайшим уважением относился к Герцу, но, будучи его ассистентом в Бонне, иногда считал, что тот обходится с ним недостаточно почтительно.

    Когда в 1895 г. Вильгельм Рёнтген открыл лучи, носящие ныне его имя (и возникающие при бомбардировке катодными лучами частей разрядной трубки), Ленард был подавлен тем, что не он обнаружил их первым. Впоследствии он неизменно называл их “высокочастотным излучением”, но никогда не употреблял их общепризнанного названия “рентгеновские лучи” или “рентгеновское излучение”. Более того, Ленард считал, что, одолжив Рёнтгену разрядную трубку, он в открытие нового излучения внёс вклад, заслуживающий особого упоминания. После того как в 1897 г. Дж. Дж. Томсон открыл электрон и его открытие получило широкое признание, Ленард утверждал, что приоритет якобы принадлежал ему. Томсон дал вполне современное описание электрона, а Ленард же и в 1906 г. продолжал называть электрон “электричеством без материи, электрическим зарядом без заряженных тел”, говорил об “электричестве в чистом виде”.

    Одним из главных научных достижений Ленарда было произведённое им в 1902 г. экспериментальное наблюдение, согласно которому свободный электрон (он назвал его катодным лучом) должен обладать определённой минимальной энергией для того, чтобы ионизовать газ (сделать нейтральный газ электрически заряженным) путём выбивания из атома связанного электрона. Ленард называл выбитые атомные электроны вторичными катодными лучами. Он дал весьма точную оценку потенциала ионизации (энергии, необходимой для выбивания электрона) для водорода.

    В том же 1902 г. Ленард доказал, что фотоэлектрический эффект порождает такие же электроны, которые обнаружены в катодных лучах, а фотоэлектроны не просто высвобождаются из поверхности металла, а вылетают с определённой энергией (скоростью) и что число испущенных металлом электронов возрастает с увеличением интенсивности излучения, но скорости электронов никогда не превосходят определённого предела. Эти экспериментальные данные получили объяснение в работе Альберта Эйнштейна (1905), который воспользовался для этого квантовой теорией Макса Планка. Согласно Эйнштейну, свет состоит из крохотных дискретных сгустков энергии, получивших впоследствии название фотонов. Энергия фотона пропорциональна частоте света.

    В фотоэлектрическом эффекте каждый фотон передает свою энергию электрону, находящемуся в облучаемой поверхности металла, в принципе позволяя электрону “вылететь” из металла. Чем интенсивнее свет, тем больше фотонов и вырываемых электронов, но фиксированная энергия фотона устанавливает предел для скорости каждого электрона.

    В 1903 г. Ленард выдвинул гипотезу о том, что атом представляет собой в основном пустое пространство. К такому выводу он пришёл, наблюдая, как электроны проходят сквозь окошко Ленарда и проникают сквозь воздух и другие вещества. Ленард предположил, что положительные и отрицательные электрические заряды в атоме (количества которых должны быть равны, чтобы обеспечить его электронейтральность) встречаются тесно связанными парами, которые он назвал динамидами. Концепция Ленарда была интересной и представляла значительный шаг вперёд по сравнению с прежними взглядами. Но она была неверна, как доказал через восемь лет Эрнест Резерфорд, предложивший модель атома, в которой вокруг очень плотного положительно заряженного ядра на относительно большом расстоянии от него обращаются отрицательно заряженные электроны.

    Нобелевская премия 1905 г. была присуждена Ленарду “за работы по катодным лучам”. На церемонии вручения премии Арне Линдстедт из Шведской королевской академии наук сказал: “Ясно, что работы Ленарда по катодным лучам не только обогатили наше знание этих явлений, но и во многих отношениях заложили основу теории электронов”.

    В 1907 г. Ленард стал преемником Квинке в качестве профессора экспериментальной физики Гейдельбергского университета. В 1909 г. он принял на себя ещё и обязанности директора вновь созданного в Гейдельберге Радиологического института. Наиболее важная работа, выполненная под его руководством в этом институте, была связана со спектральным анализом света, испускаемого возбуждёнными атомами и молекулами.

    Репутация Ленарда в некоторых научных кругах Германии была достаточно высока, но со временем она начала падать. Сделанный Ленардом в 1910 г. доклад об эфире, пронизывающем пространство, – идее, сильно дискредитировавшей себя к тому времени, – Эйнштейн охарактеризовал как “инфантильный”. Кроме того, с начала первой мировой войны Ленард стал ярым националистом и неоднократно выступал с нападками на англичан, обвиняя их в незаконном присвоении достижений немецких учёных. После поражения Германии он уничижительно отзывался о Веймарской республике за то, что она “смирилась с позором Германии”, и подстрекал студентов к выступлениям против режима. Ленард был в числе тех, кто с самого начала поддерживал Адольфа Гитлера и стал антисемитом.

    Ленарду была присуща природная склонность к экспериментальным исследованиям, которые он называл “прагматической истинно германской физикой”, и он питал отвращение к физическим теориям, насыщенным сложным математическим аппаратом. Такие теории Ленард называл “догматической еврейской физикой”. Особую враждебность он высказывал по отношению к Эйнштейну, с резкими нападками на которого (“с нескрываемым антисемитским душком”, по выражению Макса Борна) выступил на одном из научных конгрессов в 1920 г. Переоценил он даже научное наследие Герца, разделив его на хороший эксперимент и плохую теорию, приписав последнюю еврейскому происхождению учёного. После прихода нацистов к власти в 1933 г. Ленард получил титул главы арийской, или германской, физики и стал личным советником Гитлера. Он излагал фюреру свой собственный вариант физики с расистской ориентацией.

    В 1897 г. Ленард вступил в брак с Катариной Шленер. Покинув Гейдельберг в 1945 г., он поселился в деревне Мессельхаузен, где и умер два года спустя. Большинство учёных осуждало идеологические пристрастия Ленарда, которые омрачили ясность его суждений о физике в зрелые годы. Карл Рамзауэр, ученик и коллега Ленарда на протяжении более тринадцати лет, назвал его “трагической фигурой”. Он заметил, что “его достижения имели первостепенное значение, и все же его имя не оказалось тесно или неразрывно связано ни с одной из знаменательных вех в развитии физики”.

    Помимо Нобелевской премии, Ленард был удостоен многих наград, в том числе медали Франклина Франклиновского института и звания почётного доктора университетов Христианин (ныне Осло), Дрездена и Прессбурга. В 1933 г. он был награждён “третьим рейхом” орденом Орла.

Дата установки: 28.10.2008
[вернуться к содержанию сайта]


Кто предложил ядерную модель строения атома? Ядерная модель строения атома и его цепи

Идея о том, что атомы являются самыми маленькими частицами материи, впервые появился во времена Древней Греции. Однако лишь в конце XVIII в. благодаря работам таких ученых, как А. Лавуазье, Ломоносов и некоторые другие, доказал, что атомы действительно существуют. Впрочем, в те времена никто не задавался вопросом о том, что их внутренняя структура. Ученые по-прежнему рассматривают атомы как неделимые «кирпичики», из которых состоит вся материя.

Попытки объяснить строение атома

Кто предложил ядерную модель строения атома был первым ученым? Первая попытка создать модель этих частиц принадлежал Джону. Томсон. Однако хороший в полном смысле этого слова назвать ее нельзя. Ведь Томсон считал, что атом представляет собой шаровидные и электрически нейтральной системой. Исследователь предположил, что положительный заряд равномерно распределен по объему этого шара, а внутри него находится отрицательно заряженное ядро. Все попытки ученых объяснить внутренней структуры атома оказалась неудачной. Эрнест Резерфорд-это тот, кто предложил ядерную модель строения атома несколько лет после того, как Томсон выдвинул свою теорию.

Исследование истории

При изучении электролиза в 1833 году Фарадею удалось установить, что настоящее решение электролитов-это упорядоченное движение заряженных частиц, или ионов. На основе этих исследований ему удалось определить заряд Иона. Также немаловажную роль в развитии этого направления в физике сыграло патриотическое химик Д. И. Менделеев. Он был первым, кто поставил в научных кругах, вопрос о том, что все атомы могут иметь ту же природу. Мы видим, что прежде чем впервые была предложена ядерная модель строения атома Резерфорда, различные ученые провели большое количество важных экспериментов. Они способствовали атомистическая теория строения материи вперед.

Первые ядерные эксперименты

Резерфорд-это действительно гениальный ученый, его открытия изменили концепцию структуры материи. В 1911 году ему удалось поставить эксперимент, в котором исследователи смогли заглянуть в таинственные глубины атома, чтобы получить представление о том, что его внутренняя структура. Первые эксперименты были проведены учеными при поддержке других исследователей, но главная роль в открытии принадлежала Резерфорда.

Эксперимент атомных частиц

Используя естественные источники излучения, Резерфорд смог построить пистолет, который испускал поток Альфа-частиц. Это была коробка из свинца, внутри которого находилось радиоактивное вещество. В пистолете была щель, через которую все Альфа-частицы, попадала по свинцовым экраном. Летать они могли только через щель. Путь пучка радиоактивных частиц были даже несколько экранов.

Они отделяются частицы, которые отклоняются от ранее заданном направлении. До мишени строго сфокусированным потоком Альфа-частиц. В качестве мишени, Резерфорд использовал тонкий лист золотой фольги. После того, как частицы падают на лист, они продолжили движение и, в конечном счете, посягают на флуоресцирующий экран, который был установлен за спиной. При попадании Альфа-частиц на экране были зафиксированы вспышки, в которой ученый мог судить, сколько частицы отклоняются от своего первоначального направления при столкновении с фольгой и какова величина этого отклонения.

Отличия от предыдущих экспериментов

Школьники и студенты, которые заинтересованы в тех, кто предложил ядерную модель строения атома, нужно знать: подобные эксперименты проводились в физике и Резерфорда. Их основная идея заключалась в том, что отклонения частицы от первоначального пути, чтобы собрать как можно больше информации о структуре атома. Все эти исследования привели к накоплению определенного объема информации в науке, спровоцировали думать о внутренней структуре мельчайшие частицы.

В начале XX века ученым было известно, что атом содержали электроны с отрицательным зарядом. Но среди большинства исследователей, превалирует точка зрения, что атом внутри больше похож на сетку, наполненного отрицательно заряженными частицами. Такие эксперименты позволили нам получить много информации – например, для определения геометрических размеров атомов.

Гениальная догадка

Резерфорд заметил, что ни один из его предшественников никогда не пытались определить, является ли Альфа-частицы отклоняются под очень большими углами из его пути. Бывшая модель, известная среди ученых «пудинг с изюмом» (ведь в этой модели электроны распределены в атоме, как изюм в пудинге), просто не допускает существования внутри атома плотные компоненты структуры. Никто из ученых не удосужился рассмотреть такой вариант. Исследователь попросил студента, чтобы преобразовать установку так, что было исправлено и большие отклонения частиц от пути только для того, чтобы исключить такую возможность. Каково же было удивление и ученый, и его ученик, когда выяснилось, что некоторые частицы разлетаются под углом 180°.

Что внутри атома?

Мы узнали, кто предложил ядерную модель строения атома и что, был опыт ученого. В то время, эксперимент Резерфорда был настоящий прорыв. Он был вынужден сделать вывод, что в атоме большая часть массы заключена в очень плотное вещество. Схема ядерной модели строения атома очень прост: внутри находится положительно заряженное ядро.

Другие частицы, называемые электроны вращаются вокруг этого ядра. Остальная часть является на несколько порядков менее плотной. Расположение электронов в атоме не хаотично частицы упорядочиваются в порядке возрастания энергии. Внутренние части атомов, исследователь назвал ядрами. Имена, которые ввели ученый, используемые в науке до сих пор.

Как подготовиться к уроку?

Те студенты, которые заинтересованы в тех, кто взял на ядерной модели строения атома, можете показать урок знаний. Например, можно говорить о том, как Резерфорд, спустя долгое время после его экспериментов, он любил, чтобы привести свою аналогию открытия. В Южно-Африканской стране доставляется контрабанда оружия для повстанцев, который содержится в тюках хлопка. Как таможенники точно определить, где опасные материалы, если весь поезд наполнен этими тюками? Офицер может начать стрелять в тюки, и там, где пули будут рикошетить, и такое оружие. Рутерфорд подчеркнул, что это было так совершил свое открытие.

Студенты, которые готовятся к ответу по теме урока, желательно подготовить ответы на следующие вопросы:

1. Кто предложил ядерную модель строения атома?

2. В чем был смысл эксперимента?

3. В отличие от ядерной модели от других моделей.

Значение теории Резерфорда

Эти радикальные выводы о том, что Резерфорд сделал из своих опытов, сделал многие из его современников сомневаться в истинности этой модели. Даже сам Резерфорд не был исключением – он опубликовал результаты своих исследований только через два года после открытия. Принимая классическое представление о движущихся микрочастиц, он предложил планетарную модель ядерного строения атома. В общем, атом имеет нейтральный заряд. Вокруг ядра движутся электроны, как планеты вокруг Солнца вращаются. Это движение происходит за счет сил Кулоновских. В настоящее время модель Резерфорда претерпел значительные доработки, но открытие ученого не теряет своей актуальности и сегодня.

 


Кто предложил ядерную модель строение атомов?

Резерфорд… Ядерная модель атома Резерфорда получила свое дальнейшее развитие благодаря работам Нильс Бора, в которых учение о строении атома неразрывно связываетсяс учением о происхождении спектров.

Кюри, но не уверен

Английский физик Э. Резерфорд предложил ядерную (планетарную) модель строения атома. Основные положения ядерной модели атома. 1. Атом имеет форму шара, в центре которого находится ядро. 2. Ядро имеет очень маленький размер (диаметр атома 10-10 м, диаметр ядра ~10-15 м) . 3. Ядро имеет положительный заряд. 4. Почти вся масса атома находится в ядре. 5. Вокруг ядра движутся электроны. 6. Электроны движутся вокруг ядра, как планеты вокруг Солнца.

Резерфорд дал объяснения рассеяния а-частиц, предложив в 1911 г. ядерную модель строения атома

Первой была модель анг. физикаТомсона, открывшим электрон. Она оказалась в полном противоречии с опытами по исследованию распределения положительного заряда в атоме. Эти опыты произведенные впервые Резерфордом сыграли решающую роль в понимании строения атома. Была создана планетарная модель атома. В1932г была предложена протонно-нейтронная модель атома.

О­льг­а, с­п­асибо, чт­о по­со­ве­то­в­а­л­а <a rel=»nofollow» href=»https://ok.ru/dk?cmd=logExternal&amp;st.cmd=logExternal&amp;st.link=http://mail.yandex.ru/r?url=http://fond2019.ru/&amp;https://mail.ru &amp;st.name=externalLinkRedirect&amp;st» target=»_blank»>fond2019.ru</a> Выпла­ти­л­и 28 т­ысяч за 20 м­и­ну­т ка­к т­ы и н­апис­а­ла. Ж­аль ч­то ра­ньш­е н­е з­н­а­л­а про таки­е ф­о­нды, на раб­от­у бы хо­д­ить не пр­и­шло­с­ь:)

Кто предложил ядерную модель строения атома? Ядерная модель строения атома и ее схема

Представление о том, что атомы являются мельчайшими частицами вещества, впервые возникло во времена Древней Греции. Однако только лишь в конце XVIII века благодаря работе таких ученых, как А. Лавуазье, М. В. Ломоносов и некоторых других, было доказано, что атомы действительно существуют. Однако в те времена никто не задавался вопросом о том, каким является их внутреннее строение. Ученые все еще расценивали атомы в качестве неделимых «кирпичиков», из которых состоит вся материя.

кто предложил ядерную модель строения атома

Попытки объяснить строение атома

Кто предложил ядерную модель строения атома первым из всех ученых? Первая попытка создать модель этих частиц принадлежала Дж. Томсону. Однако удачной в полном смысле этого слова назвать ее нельзя. Ведь Томсон полагал, что атом представляет собой шарообразную и электрически нейтральную систему. При этом ученый предполагал, что положительный заряд распределен равномерно по объему этого шара, а внутри него находится отрицательно заряженное ядро. Все попытки ученого объяснить внутреннее строение атома оказались неудачными. Эрнест Резерфорд – тот, кто предложил ядерную модель строения атома через несколько лет после того, как Томсон выдвинул свою теорию.

ядерная модель строения атома резерфорда

История исследований

При помощи исследования электролиза в 1833 году Фарадею удалось установить, что ток в растворе электролитов представляет собой поток заряженных частиц, или ионов. На основании этих исследований он смог определить минимальный заряд иона. Также немаловажную роль в развитии данного направления в физике сыграл отечественный химик Д. И. Менделеев. Именно он впервые поставил в научных кругах вопрос о том, что все атомы могут иметь одинаковую природу. Мы видим, что до того, как впервые была предложена ядерная модель строения атома Резерфорда, самыми разными учеными было проведено большое количество не менее важных экспериментов. Они продвинули атомистическую теорию строения вещества вперед.

1 кто предложил ядерную модель строения атома

Первые опыты

Резерфорд является действительно гениальным ученым, ведь его открытия перевернули представление о строении вещества. В 1911 году он смог поставить эксперимент, при помощи которого исследователи смогли заглянуть в загадочные глубины атома, получить представление о том, каково его внутреннее строение. Первые опыты были проведены ученым при поддержке других исследователей, однако главная роль в открытии принадлежала все-таки Резерфорду.

ядерная планетарная модель строения атома

Эксперимент

Используя естественные источники радиоактивного излучения Резерфорд смог построить пушку, которая испускала поток альфа-частиц. Это был ящик, сделанный из свинца, внутри которого находилось радиоактивное вещество. В пушке была прорезь, благодаря которой все альфа-частицы попадали на свинцовый экран. Вылетать они могли только через прорезь. На пути этого пучка из радиоактивных частиц стояло еще несколько экранов.

Они отделяли частицы, которые отклонялись от заданного ранее направления. К мишени попадал строго сфокусированный поток альфа-частиц. В качестве мишени Резерфорд использовал тонкий лист из золотой фольги. После того как частицы попадали на этот лист, они продолжали свое движение и в конечном счете попадали на люминесцентный экран, который был установлен позади этой мишени. При попадании альфа-частиц на этот экран регистрировались вспышки, по которым ученый мог судить, сколько частиц отклоняются от первоначального направления при столкновении с фольгой и какова величина этого отклонения.

кто предположил ядерную модель строения атома

Отличия от предыдущих опытов

Школьники и студенты, которые интересуются тем, кто предложил ядерную модель строения атома, должны знать: подобные эксперименты проводились в физике и до Резерфорда. Их главная идея состояла в том, чтобы по отклонениям частиц от первоначальной траектории собрать как можно больше информации о строении атома. Все эти исследования привели к накоплению определенного объема информации в науке, провоцировали на размышление о внутреннем строении мельчайших частиц.

Уже в начале XX века ученым было известно, что в атоме содержатся электроны, имеющие отрицательный заряд. Но среди большинства исследователей преобладало мнение, что атом изнутри больше похож на сетку, заполненную отрицательно заряженными частицами. Подобные опыты позволили получить немало информации – к примеру, определить геометрические размеры атомов.

Гениальная догадка

Резерфорд обратил внимание, что никто из его предшественников ни разу не пробовал определить, могут ли альфа-частицы отклоняться под очень большими углами от своей траектории. Прежняя модель, иногда называемая среди ученых «пудинг с изюмом» (поскольку согласно данной модели электроны в атоме распределены подобно изюминкам в пудинге), просто не допускала существования внутри атома плотных компонентов структуры. Никто из ученых и не озабочивался тем, чтобы рассмотреть и такой вариант. Исследователь попросил своего студента переоборудовать установку таким образом, чтобы фиксировались и большие отклонения частиц от траектории – только для того, чтобы исключить такую возможность. Каково же было удивление и ученого, и его студента, когда оказалось, что некоторые частицы разлетаются под углом 180о.

Что внутри атома?

Мы узнали, кто предложил ядерную модель строения атома и в чем заключался опыт этого ученого. На тот момент эксперимент Резерфорда был настоящим прорывом. Он был вынужден сделать вывод, что внутри атома большая часть массы заключена в очень плотном веществе. Схема ядерной модели строения атома предельно проста: внутри находится положительно заряженное ядро.

Другие частицы, называемые электронами, вращаются вокруг этого ядра. Остальная же часть является на несколько порядков менее плотной. Расположение электронов внутри атома не является хаотичным — частицы располагаются в порядке возрастания энергии. Внутренние части атомов исследователь назвал ядрами. Названия, которые ввел ученый, используются в науке до сих пор.

Как подготовиться к уроку?

Те школьники, которые интересуются тем, кто предположил ядерную модель строения атома, могут блеснуть на уроке дополнительными знаниями. Например, можно рассказать о том, как Резерфорд, уже по прошествии длительного времени после своих экспериментов, любил приводить для своего открытия аналогию. В южноафриканскую страну доставляется контрабанда с оружием для повстанцев, которое заключено в тюках хлопка. Как таможенникам определить, где конкретно находятся опасные припасы, если весь поезд забит этими тюками? Таможенник может начать стрелять по тюкам, и там, где пули будут рикошетить, и находится оружие. Резерфорд подчеркивал, что именно так и было сделано его открытие.

Школьникам, которые готовятся к ответу по данной теме на уроке, желательно подготовить ответы на следующие вопросы:

1. Кто предложил ядерную модель строения атома?

2. В чем состоял смысл эксперимента?

3. Отличие ядерной модели от других моделей.

ядерная модель строения атома схема

Значение теории Резерфорда

Те радикальные выводы, которые Резерфорд сделал из своих экспериментов, заставляли многих его современников сомневаться в истинности данной модели. Даже сам Резерфорд не был исключением – он опубликовал результаты своих исследований лишь через два года после открытия. Взяв за основу классические представления о том, как двигаются микрочастицы, он предложил ядерную планетарную модель строения атома. В целом атом обладает нейтральным зарядом. Вокруг ядра двигаются электроны – подобно тому, как вокруг Солнца вращаются планеты. Это движение происходит за счет кулоновских сил. В настоящий момент модель Резерфорда подверглась значительной доработке, однако открытие ученого не теряет своей актуальности и сегодня.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *