Полупроводники примеры – Полупроводники. Структура полупроводников. Типы проводимости и возникновение тока в полупроводниках.

Содержание

Примеры полупроводников, типы, свойства 🚩 Естественные науки

Самым известным полупроводником является кремний (Si). Но, помимо него, сегодня известно много природных полупроводниковых материалов: куприт (Cu2O), цинковая обманка (ZnS), галенит (PbS) и др.

В таблице Менделеева 25 химических элементов являются неметаллами, из которых 13 элементов обладают полупроводниковыми свойствами. Основное отличие полупроводников от других элементов заключается в том, что их электропроводность существенно возрастает при повышении температуры.

Другой особенностью полупроводника является то, что его сопротивление падает под воздействием света. Причем электропроводимость полупроводников меняется при добавлении в состав незначительного количества примеси.

Полупроводники можно встретить среди химических соединений с разнообразными кристаллическими структурами. Например, такие элементы, как кремний и селен, или двойные соединения наподобие арсенид галлия.

К полупроводниковым материалам могут относиться и многие органические соединения, например полиацетилен (СН)n. Полупроводники могут проявлять магнитные (Cd1-xMnxTe) или сегнетоэлектрические свойства (SbSI). При достаточном легировании некоторые становятся сверхпроводниками (SrTiO3 и GeTe).

Полупроводник можно определить как материал с электрическим сопротивлением от 10-4 до 107 Ом·м. Возможно и такое определение: ширина запрещенной зоны полупроводника должна составлять от 0 до 3 эВ.

Чистые полупроводниковые материалы обладают собственной проводимостью. Такие полупроводники и называются собственными, они содержат равное число дырок и свободных электронов. Собственная проводимость полупроводников возрастает при нагреве. При постоянной температуре количество рекомбинирующих электронов и дырок остается неизменным.

Наличие примесей в полупроводниках оказывает существенное влияние на их электропроводность. Это позволяет увеличить количество свободных электронов при небольшом числе дырок и наоборот. Примесные полупроводники обладают примесной проводимостью.

Примеси, которые с легкостью отдают полупроводнику электроны, называются донорными. Донорными примесями могут быть, например, фосфор и висмут.

Примеси, которые связывают электроны полупроводника и увеличивают тем самым в нем количество дырок, называют акцепторными. Акцепторные примеси: бор, галлий, индий.

Характеристики полупроводника зависят от дефектов его кристаллической структуры. Это является основной причиной необходимости выращивания в искусственных условиях предельно чистых кристаллов.

Параметрами проводимости полупроводника при этом можно управлять путем добавления легирующих присадок. Кристаллы кремния легируются фосфором, который в данном случае является донором для создания кристалла кремния n-типа. Для получения кристалла с дырочной проводимостью в полупроводник кремний добавляют акцептор бор.

Самым распространенным одноэлементным полупроводником является кремний. Вместе с германием (Ge) кремний считается прототипом широкого класса полупроводников, обладающих аналогичными структурами кристалла.

Структура кристаллов Si и Ge такая же, что у алмаза и α-олова с четырехкратной координация, где каждый атом окружают 4 ближайших атома. Кристаллы с тетрадрической связью считаются базовыми для промышленности и играют ключевую роль в современной технологии.

Свойства и применение одноэлементных полупроводников:

  1. Кремний – полупроводник, активно применяемый в солнечных батареях, а в аморфной форме его можно использовать в тонкопленочных солнечных батареях. Также он является наиболее часто используемым полупроводником в фотоэлементах. Он прост в производстве и обладает хорошими механическими и электрическими и качествами.
  2. Алмаз – полупроводник, обладающий отличной термической проводимостью, превосходными оптическими и механическими характеристиками, высокой прочностью.
  3. Германий используется в гамма-спектроскопии, высокоэффективных фотоэлементах. Элемент применялся при создании первых диодов и транзисторов. Ему требуется меньше очистки, чем кремнию.
  4. Селен – полупроводник, применяемый в селеновых выпрямителях, он обладает высокой радиационной устойчивостью и способностью к самовосстановлению.

Рост ионности элементов меняет свойства полупроводников и позволяет образовывать двухэлементные соединения:

  1. Арсенид галлия (GaAs) – второй по частоте применения после кремния полупроводник, обычно он используется в качестве подложки для других проводников, например, в ИК-сетодиодах, высокочастотных микросхемах и транзисторах, фотоэлементах, лазерных диодах, детекторах ядерного излечения. Однако он хрупок, содержит больше примесей и сложен в изготовлении.
  2. Сульфид цинка (ZnS) – цинковая соль сероводородной кислоты используется в лазерах и в качестве люминофора.
  3. Сульфид олова (SnS) – полупроводник, используемый в фотодиодах и фоторезисторах.

Оксиды являются прекрасными изоляторами. Примеры полупроводников этого типа – оксид меди, оксид никеля, двуокись меди, оксид кобальта, оксид европия, оксид железа, оксид цинка.

Процедура выращивания полупроводников данного типа не совсем изучена, поэтому их применение пока ограничено за исключением оксида цинка (ZnO), используемого в качестве преобразователя и в производстве клеящих лент и пластырей.

Помимо этого оксид цинка применяется в варисторах, датчиках газа, голубых светодиодах, биологических сенсорах. Используется полупроводник и для покрытия оконных стекол с целью отражения инфракрасного света, его можно встретить в ЖК-дисплеях и солнечных батареях.

Слоистые кристаллы представляют собой двойные соединения, подобные дииодиду свинца, дисульфиду молибдена и селениду галлия. Они отличаются слоистым строением кристалла, где действуют ковалентные связи значительной силы. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоев изменяется введением в состав сторонних атомов. Дисульфид молибдена (MoS2) применяется в высокочастотных выпрямителях, детекторах, транзисторах, мемристорах.

Органические полупроводники представляют собой широкий класс веществ: нафталин, антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. У них есть преимущество перед неорганическими: им легко придать нужные качества. Они обладают значительной оптической нелинейностью и поэтому широко используются оптоэлектронике.

Кристаллические аллотропы углерода тоже относятся к полупроводникам:

  • Фуллерен со структурой в виде выпуклого замкнутого многогранника.
  • Графен с одноатомным слоем углерода обладает рекордной теплопроводностью и подвижностью электронов, повышенной жесткостью.
  • Нанотрубки – свернутые в трубку пластины графита в нанометров в диаметре. В зависимости от сцепления могут проявлять металлические или полупроводниковые качества.

Примеры магнитных полупроводников: сульфид европия, селенид европия и твердые растворы. Содержание магнитных ионов влияет на магнитные свойства, антиферромагнетизм и ферромагнетизм. Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Применяются они в радиотехнических, оптических приборах, в волноводах СВЧ-устройств.

Полупроводниковые сегнетоэлектрики отличаются наличием в них электрических моментов и возникновением спонтанной поляризации. Пример полупроводников: титанат свинца (PbTiO3), теллурид германия (GeTe), титанат бария BaTiO3, теллурид олова SnTe. При низких температурах имеют свойства сегнетоэлектрика. Эти материалы применяются в запоминающих, нелинейно-оптических устройствах и пьезодатчиках.

Полупроводниковые материалы: примеры полупроводников :: SYL.ru

В нашей статье будут рассмотрены примеры полупроводников, их свойства и сферы применения. Эти материалы имеют свое место в радиотехнике и электронике. Они являются чем-то средним между диэлектриком и проводником. Кстати, простое стекло тоже можно считать полупроводником – в обычном состоянии оно ток не проводит. Зато при сильном нагреве (практически до жидкого состояния) происходит изменение свойств и стекло становится проводником. Но это исключительный пример, у других материалов все обстоит немного иначе.

Основные особенности полупроводников

Показатель проводимости составляет около 1000 Ом*м (при температуре 180 градусов). Если сравнивать с металлами, то у полупроводников происходит уменьшение удельной проводимости при возрастании температуры. Такое же свойство имеется у диэлектриков. У полупроводниковых материалов имеется достаточно сильная зависимость показателя удельной проводимости от количества и типа примесей.

Полевой транзистор

Допустим, если ввести в чистый германий всего тысячную долю мышьяка, произойдет увеличение проводимости примерно в 10 раз. Все без исключения полупроводники чувствительны к воздействиям извне – ядерному облучению, свету, электромагнитным полям, давлению и т. д. Можно привести примеры полупроводниковых материалов – это сурьма, кремний, германий, теллур, фосфор, углерод, мышьяк, йод, бор, а также различные соединения этих веществ.

Особенности применения полупроводников

Благодаря тому, что у полупроводниковых материалов такие специфические свойства, они получили довольно широкое распространение. На их основе изготавливают диоды, транзисторы, симисторы, лазеры, тиристоры, датчики давления, магнитного поля, температуры, и т. д. После освоения полупроводников произошло коренное преобразование в автоматике, радиотехнике, кибернетике и электротехнике. Именно при помощи использования полупроводников удалось достичь таких маленьких габаритов техники – нет нужды использовать массивные блоки питания и радиолампы размером с полуторалитровую банку.

Ток в полупроводниках

В проводниках ток определяется тем, куда двигаются свободные электроны. В полупроводниковых материалах свободных электронов очень много, на это есть причины. Все валентные электроны, которые имеются в полупроводнике, не свободны, так как они связываются со своими атомами.

Расположение дырок и электронов в атомах

В полупроводниках ток может появляться и меняться в достаточно широких пределах, но только при наличии воздействия извне. Ток меняется при нагреве, облучении, введении примесей. Все воздействия способны значительно увеличить у валентных электронов энергию, что способствует их отрыву от атомов. А приложенное напряжение заставляет эти электроны перемещаться в определенном направлении. Другими словами, эти электроны становятся носителями тока.

Дырки в полупроводниках

При повышении температуры или интенсивности внешнего облучения происходит увеличение количества свободных электронов. Следовательно, увеличивается ток. Те атомы в веществе, которые потеряли электроны, становятся положительными ионами, они не перемещаются. С внешней стороны атома, с которого ушел электрон, остается дырка. В нее может встать другой электрон, который покинул свое место в атоме поблизости. В результате этого на внешней части у соседнего атома образуется дырка – он превращается в ион (положительный).

Если к полупроводнику приложить напряжение, то электроны начнут двигаться от одних атомов к соседним в определенном направлении. Дырки же начнут перемещаться во встречном направлении. Дырка – это положительно заряженная частица. Причем заряд у нее по модулю такой же, как у электрона. С помощью такого определения можно существенно упростить анализ всех процессов, которые протекают в полупроводниковом кристалле. Ток дырок (обозначается I Д) – это перемещение частиц в направлении, обратном движению электронов.

Электронно-дырочный переход

У полупроводника имеется два типа электропроводимости – электронная и дырочная. В чистых полупроводниках (без примесей) у дырок и электронов концентрация (N Д и N Э соответственно) одинаковая. По этой причине такая электропроводность называется собственной. Суммарное значение тока будет равно:

I = I Э+I Д.

Но если учесть тот факт, что у электронов значение подвижности больше, чем у дырок, можно прийти к такому неравенству:

I Э > I Д.

Подвижность заряда обозначается буквой М, это одно из главных свойств полупроводников. Подвижность – это отношение двух параметров. Первый – скорость перемещения носителя заряда (обозначается буквой V с индексом «Э» или «Д», в зависимости от типа носителя), второй – это напряженность электрического поля (обозначается буквой Е). Можно выразить в виде формул:

М Э = (V Э / Е).

М Д = (V Д / Е).

Подвижность позволяет определить путь, который проходит дырка или электрон за одну секунду при значении напряженность 1 В/см. можно теперь вычислить собственный ток полупроводникового материала:

I = N * e * (М Э + М Д) * E.

Но нужно отметить, что у нас есть равенства:

V Э Э.

N = N Э = N Д.

Буквой е в формуле обозначается заряд электрона (это постоянная величина).

Полупроводниковые приборы

Сразу можно привести примеры полупроводниковых приборов – это транзисторы, тиристоры, диоды, и даже микросхемы. Конечно, это далеко не полный список. Чтобы изготовить полупроводниковый прибор, нужно использовать материалы, у которых проводимость дырочная или электронная. Чтобы получить такой материал, необходимо в идеально чистый полупроводник с концентрацией примесей менее 10-11% ввести добавку (ее называют легирующей примесью).

Переход в различных транзисторах

Те примеси, у которых валентность оказывается больше, чем у полупроводника, отдают свободные электроны. Эти примеси называются донорами. А вот те, у которых валентность меньше, чем у полупроводника, имеют свойство хватать и удерживать электроны. Их называют акцепторами. Для того чтобы получился полупроводник, который будет обладать лишь проводимостью электронного типа, в исходный материал достаточно ввести вещество, у которого валентность будет всего на единицу больше. Для примера полупроводников в физике школьного курса рассматривается германий – его валентность равна 4. В него добавляется донор – фосфор или сурьма, у них валентность равна пяти. Металлов-полупроводников немного, они практически не используются в технике.

При этом 4 электрона в каждом атоме осуществляют установку четырех парных (ковалентных) связей с германием. Пятый электрон не имеет такой связи, а значит, он в свободном состоянии. И если приложить к нему напряжение, он будет образовывать электронный ток.

Токи в полупроводниках

Когда ток электронов больше, чем дырок, полупроводник называют n-типа (отрицательного). Рассмотрим пример – в идеально чистый германий вводят немного примеси акцептора (допустим, бор). При этом каждый атом акцептора начнет устанавливать ковалентные связи с германием. Но вот четвертый атом германия не имеет связи с бором. Следовательно, у определенного количества атомов германия будет иметься только один электрон без связи ковалентного типа.

Но достаточно незначительного воздействия извне, чтобы электроны начали покидать свои места. При этом у германия образовываются дырки.

Электроны и дырки в атомах

По рисунку видно, что на 2, 4 и 6 атомах свободные электроны начинают присоединяться к бору. По этой причине не создается ток в полупроводнике. На поверхности атомов германия образуются дырки с номерами 1, 3 и 5 – с их помощью происходит переход на них электронов от расположенных рядом атомов. На последних же начинают появляться дырки, так как электроны с них улетают.

Каждая дырка, которая возникает, начнет переходить между атомами германия. При воздействии напряжения дырки начинают двигаться упорядоченно. Другими словами, в веществе появляется ток дырок. Такой тип полупроводников называется дырочным или p-типа. При воздействии напряжения двигаются не только электроны, но и дырки – они встречают на своем пути разнообразные препятствия. При этом происходит потеря энергии, отклонение от изначальной траектории. Иными словами, заряд носителей рассеивается. Все это происходит из-за того, что в полупроводнике содержатся загрязняющие примеси.

Вольт-амперная характеристика

Чуть выше были рассмотрены примеры веществ-полупроводников, которые используются в современной технике. У всех материалов имеются свои особенности. В частности, одно из ключевых свойств – это нелинейность вольт-амперной характеристики.

Зависимость напряжения от сопротивления

Иными словами, когда происходит увеличение напряжения, которое прикладывается к полупроводнику, происходит быстрое возрастание тока. Сопротивление при этом резко уменьшается. Такое свойство нашло применение в разнообразных вентильных разрядниках. Примеры неупорядоченных полупроводников можно более детально рассмотреть в специализированной литературе, их применение строго ограничено.

Хороший пример: при рабочем значении напряжения у разрядника сопротивление высокое, поэтому от ЛЭП ток не уходит в землю. Но как только в провод или опору ударяет молния, сопротивление очень быстро уменьшается практически до нуля, весь ток уходит в землю. И напряжение снижается до нормального значения.

Симметричная ВАХ

Вольт-амперная характеристика полупроводникового материала

Когда происходит смена полярности напряжения, в полупроводнике ток начинает протекать в обратном направлении. И меняется он по тому же закону. Это говорит о том, что полупроводниковый элемент обладает симметричной вольт-амперной характеристикой. В том случае, если одна часть элемента имеет дырочный тип, а вторая – электронный, то на границе их соприкосновения появляется p-n-переход (электронно-дырочный). Именно такие переходы имеются во всех элементах – транзисторах, диодах, микросхемах. Но только в микросхемах на одном кристалле собирается сразу несколько транзисторов – иногда их количество более десятка.

Как происходит образование перехода

А теперь давайте рассмотрим, как происходит образование p-n-перехода. Если контакт дырочного и электронного полупроводников не очень качественный, то происходит образование системы, состоящей из двух областей. Одна будет иметь дырочную проводимость, а вторая – электронную.

Полупроводники на плате

И электроны, которые находятся в n-области, начнут диффундировать туда, где их концентрация меньше – то есть, в р-область. Одновременно с электронами дырки двигаются, но направление у них обратное. При взаимной диффузии происходит уменьшение концентрации в n-области электронов и в р-области дырок.

Основное свойство p-n-перехода

Вольт-амперная характеристика

Рассмотрев примеры проводников, полупроводников и диэлектриков, можно понять, что свойства у них различные. Например, основное качество полупроводников – это возможность пропускания тока только лишь в одном направлении. По этой причине приборы, изготовленные с использованием полупроводников, получили широкое распространение в выпрямителях. На практике, используя несколько измерительных приборов, можно увидеть работу полупроводников и оценить массу параметров – как в режиме покоя, так и при воздействии внешних «раздражителей».

Примеры полупроводников. Типы, свойства, практическое применение

Самым известным полупроводником является кремний (Si). Но, кроме него, есть много других. Примером могут служить такие природные полупроводниковые материалы, как цинковая обманка (ZnS), куприт (Cu2O), галенит (PbS) и многие другие. Семейство полупроводников, включая полупроводники, синтезированные в лабораториях, представляет собой один из наиболее разносторонних классов материалов, известных человеку.

Характеристика полупроводников

Из 104 элементов таблицы Менделеева 79 являются металлами, 25 – неметаллами, из которых 13 химических элементов обладают полупроводниковыми свойствами и 12 – диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.

Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.

Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие органические соединения, например полиацетилен (СН)n, – полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd1-xMnxTe) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La2CuO4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La1-xSrx)2CuO4.

Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10-4 до 107 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника — от 0 до 3 эВ. Металлы и полуметаллы – это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs – 1,5 эВ. GaN, материал для оптоэлектронных приборов в синей области, имеет запрещённую зону шириной 3,5 эВ.

примеры полупроводников

Энергетический зазор

Валентные орбитали атомов в кристаллической решётке разделены на две группы энергетических уровней – свободную зону, расположенную на высшем уровне и определяющую электропроводность полупроводников, и валентную зону, расположенную ниже. Эти уровни, в зависимости от симметрии решётки кристалла и состава атомов, могут пересекаться или располагаться на расстоянии друг от друга. В последнем случае между зонами возникает энергетический разрыв или, другими словами, запрещённая зона.

Расположение и заполнение уровней определяет электропроводные свойства вещества. По этому признаку вещества делят на проводники, изоляторы и полупроводники. Ширина запрещённой зоны полупроводника варьируется в пределах 0,01–3 эВ, энергетический зазор диэлектрика превышает 3 эВ. Металлы из-за перекрытия уровней энергетических разрывов не имеют.

Полупроводники и диэлектрики, в противовес металлам, имеют заполненную электронами валентную зону, а ближайшая свободная зона, или зона проводимости, отгорожена от валентной энергетическим разрывом – участком запрещённых энергий электронов.

В диэлектриках тепловой энергии либо незначительного электрического поля недостаточно для совершения скачка через этот промежуток, электроны в зону проводимости не попадают. Они не способны передвигаться по кристаллической решётке и становиться переносчиками электрического тока.

Чтобы возбудить электропроводимость, электрону на валентном уровне нужно придать энергию, которой бы хватило для преодоления энергетического разрыва. Лишь при поглощении количества энергии, не меньшего, чем величина энергетического зазора, электрон перейдёт из валентного уровня на уровень проводимости.

В том случае, если ширина энергетического разрыва превышает 4 эВ, возбуждение проводимости полупроводника облучением либо нагреванием практически невозможно – энергия возбуждения электронов при температуре плавления оказывается недостаточной для прыжка через зону энергетического разрыва. При нагреве кристалл расплавится до возникновения электронной проводимости. К таким веществам относится кварц (dE = 5,2 эВ), алмаз (dE = 5,1 эВ), многие соли.

ширина запрещенной зоны полупроводника

Примесная и собственная проводимость полупроводников

Чистые полупроводниковые кристаллы имеют собственную проводимость. Такие полупроводники именуются собственными. Собственный полупроводник содержит равное число дырок и свободных электронов. При нагреве собственная проводимость полупроводников возрастает. При постоянной температуре возникает состояние динамического равновесия количества образующихся электронно-дырочных пар и количества рекомбинирующих электронов и дырок, которые остаются постоянными при данных условиях.

Наличие примесей оказывает значительное влияние на электропроводность полупроводников. Добавление их позволяет намного увеличить количество свободных электронов при небольшом числе дырок и увеличить количество дырок при небольшом числе электронов на уровне проводимости. Примесные полупроводники – это проводники, обладающие примесной проводимостью.

Примеси, которые с лёгкостью отдают электроны, называются донорными. Донорными примесями могут быть химические элементы с атомами, валентные уровни которых содержат большее количество электронов, чем атомы базового вещества. Например, фосфор и висмут – это донорные примеси кремния.

Энергия, необходимая для прыжка электрона в область проводимости, носит название энергии активизации. Примесным полупроводникам необходимо намного меньше ее, чем основному веществу. При небольшом нагреве либо освещении освобождаются преимущественно электроны атомов примесных полупроводников. Место покинувшего атом электрона занимает дырка. Но рекомбинации электронов в дырки практически не происходит. Дырочная проводимость донора незначительна. Это происходит потому, что малое количество атомов примеси не позволяет свободным электронам часто приближаться к дырке и занимать её. Электроны находятся около дырок, но не способны их заполнить по причине недостаточного энергетического уровня.

Незначительная добавка донорной примеси на несколько порядков увеличивает число электронов проводимости по сравнению с количеством свободных электронов в собственном полупроводнике. Электроны здесь – основные переносчики зарядов атомов примесных полупроводников. Эти вещества относят к полупроводникам n-типа.

Примеси, которые связывают электроны полупроводника, увеличивая в нём количество дырок, называют акцепторными. Акцепторными примесями служат химические элементы с меньшим числом электронов на валентном уровне, чем у базового полупроводника. Бор, галлий, индий – акцепторные примеси для кремния.

Характеристики полупроводника находятся в зависимости от дефектов его кристаллической структуры. Это является причиной необходимости выращивания предельно чистых кристаллов. Параметрами проводимости полупроводника управляют путем добавления легирующих присадок. Кристаллы кремния легируют фосфором (элемент V подгруппы), который является донором, чтобы создать кристалл кремния n-типа. Для получения кристалла с дырочной проводимостью в кремний вводят акцептор бор. Полупроводники с компенсированным уровнем Ферми для перемещения его в середину запрещённой зоны создают подобным образом.

собственная проводимость полупроводников

Одноэлементные полупроводники

Самым распространённым полупроводником является, конечно, кремний. Вместе с германием он стал прототипом широкого класса полупроводников, обладающих подобными структурами кристалла.

Структура кристаллов Si и Ge та же, что у алмаза и α-олова. В ней каждый атом окружают 4 ближайших атома, которые образуют тетраэдр. Такая координация называется четырехкратной. Кристаллы с тетрадрической связью стали базовыми для электронной промышленности и играют ключевую роль в современной технологии. Некоторые элементы V и VI группы таблицы Менделеева также являются полупроводниками. Примеры полупроводников этого типа – фосфор (Р), сера (S), селен (Se) и теллур (Те). В этих полупроводниках атомы могут иметь трехкратную (Р), двухкратную (S, Se, Те) или четырехкратную координацию. В результате подобные элементы могут существовать в нескольких различных кристаллических структурах, а также быть получены в виде стекла. Например, Se выращивался в моноклинной и тригональной кристаллических структурах или в виде стекла (которое можно также считать полимером).

— Алмаз обладает отличной термической проводимостью, превосходными механическими и оптическими характеристиками, высокой механической прочностью. Ширина энергетического разрыва — dE = 5,47 эВ.

— Кремний – полупроводник, используемый в солнечных батареях, а в аморфной форме – в тонкоплёночных солнечных батареях. Является наиболее используемым полупроводником в фотоэлементах, прост в производстве, обладает хорошими электрическими и механическими качествами. dE = 1,12 эВ.

— Германий – полупроводник, используемый в гамма-спектроскопии, высокоэффективных фотоэлементах. Использовался в первых диодах и транзисторах. Требует меньше очистки, чем кремний. dE = 0,67 эВ.

— Селен – полупроводник, который применяется в селеновых выпрямителях, обладающих высокой радиационной устойчивостью и способностью к самовосстановлению.

кремний полупроводник

Двухэлементные соединения

Свойства полупроводников, образуемых элементами 3 и 4 групп таблицы Менделеева, напоминают свойства веществ 4 группы. Переход от 4 группы элементов к соединениям 3–4 гр. делает связи частично ионными по причине переноса заряда электронов от атома 3 группы к атому 4 группы. Ионность меняет свойства полупроводников. Она является причиной увеличения кулоновского межионного взаимодействия и энергии энергетического разрыва зонной структуры электронов. Пример бинарного соединения этого типа – антимонид индия InSb, арсенид галлия GaAs, антимонид галлия GaSb, фосфид индия InP, антимонид алюминия AlSb, фосфид галлия GaP.

Ионность возрастает, а значение её еще больше растёт в соединениях веществ 2—6 групп, таких как селенид кадмия, сульфид цинка, сульфид кадмия, теллурид кадмия, селенид цинка. В итоге у большинства соединений 2—6 групп запрещённая зона шире 1 эВ, кроме соединений ртути. Теллурид ртути – полупроводник без энергетического зазора, полуметалл, подобно α-олову.

Полупроводники 2-6 групп с большим энергетическим зазором находят применение в производстве лазеров и дисплеев. Бинарные соединения 2– 6 групп со суженным энергетическим разрывом подходят для инфракрасных приемников. Бинарные соединения элементов 1–7 групп (бромид меди CuBr, иодид серебра AgI, хлорид меди CuCl) по причине высокой ионности обладают запрещённой зоной шире З эВ. Они фактически не полупроводники, а изоляторы. Рост энергии сцепления кристалла по причине кулоновского межионного взаимодействия способствует структурированию атомов каменной соли с шестикратной, а не квадратичной координацией. Соединения 4–6 групп — сульфид и теллурид свинца, сульфид олова — также полупроводники. Степень ионности данных веществ тоже содействует образованию шестикратной координации. Значительная ионность не препятствует наличию у них очень узких запрещённых зон, что позволяет использовать их для приёма ИК-излучения. Нитрид галлия — соединение 3-5 групп с широким энергетическим зазором, нашёл применение в полупроводниковых лазерах и светодиодах, работающих в голубой части спектра.

— GaAs, арсенид галлия – второй по востребованности после кремния полупроводник, обычно используемый в качестве подложки для других проводников, например, GaInNAs и InGaAs, в ИК-сетодиодах, высокочастотных микросхемах и транзисторах, высокоэффективных фотоэлементах, лазерных диодах, детекторах ядерного излечения. dE = 1,43 эВ, что позволяет повысить мощность приборов по сравнению с кремнием. Хрупок, содержит больше примесей, сложен в изготовлении.

— ZnS, сульфид цинка – цинковая соль сероводородной кислоты с диапазоном запрещённой зоны 3,54 и 3,91 эВ, используется в лазерах и в качестве люминофора.

— SnS, сульфид олова – полупроводник, используемый в фоторезисторах и фотодиодах, dE= 1,3 и 10 эВ.

полупроводниковые материалы

Оксиды

Оксиды металлов преимущественно являются прекрасными изоляторами, но есть и исключения. Примеры полупроводников этого типа – оксид никеля, оксид меди, оксид кобальта, двуокись меди, оксид железа, оксид европия, оксид цинка. Так как двуокись меди существует в виде минерала куприта, её свойства усиленно исследовались. Процедура выращивания полупроводников этого типа еще не совсем понятна, поэтому их применение пока ограничено. Исключение составляет оксид цинка (ZnO), соединение 2—6 групп, применяемый в качестве преобразователя и в производстве клеящих лент и пластырей.

Положение кардинально изменилось после того, как во многих соединениях меди с кислородом была открыта сверхпроводимость. Первым высокотемпературным сверхпроводником, открытым Мюллером и Беднорцем, стало соединение, основанное на полупроводнике La2CuO4 с энергетическим зазором 2 эВ. Замещая трёхвалентный лантан двухвалентным барием или стронцием, в полупроводник вводятся переносчики заряда дырки. Достижение необходимой концентрации дырок превращает La2CuO4 в сверхпроводник. В данное время наибольшая температура перехода в сверхпроводящее состояние принадлежит соединению HgBaCa2Cu3O8. При высоком давлении её значение составляет 134 К.

ZnO, оксид цинка, используется в варисторах, голубых светодиодах, датчиках газа, биологических сенсорах, покрытиях окон для отражения инфракрасного света, как проводник в ЖК-дисплеях и солнечных батареях. dE=3.37 эВ.

Слоистые кристаллы

Двойные соединения, подобные дииодиду свинца, селениду галлия и дисульфиду молибдена, отличаются слоистым строением кристалла. В слоях действуют ковалентные связи значительной силы, намного сильнее ван-дер-ваальсовских связей между самими слоями. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоёв изменяется введением сторонних атомов – интеркаляцией.

MoS2, дисульфид молибдена применяется в высокочастотных детекторах, выпрямителях, мемристорах, транзисторах. dE=1,23 и 1,8 эВ.

элементы полупроводников

Органические полупроводники

Примеры полупроводников на основе органических соединений – нафталин, полиацетилен (CH2)n, антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. Органические полупроводники обладают преимуществом перед неорганическими: им легко придавать нужные качества. Вещества с сопряжёнными связями вида –С=С–С=, обладают значительной оптической нелинейностью и, благодаря этому, применяются в оптоэлектронике. Кроме того, зоны энергетического разрыва органических полупроводников изменяются изменением формулы соединения, что намного легче, чем у обычных полупроводников. Кристаллические аллотропы углерода фуллерен, графен, нанотрубки – тоже полупроводниками.

— Фуллерен имеет структуру в виде выпуклого замкнутого многогранника из чётного количества атомов углеорода. А легирование фуллерена С60 щелочным металлом превращает его в сверхпроводник.

— Графен образован одноатомным слоем углерода, соединённого в двумерную гексагональную решётку. Обладает рекордной теплопроводностью и подвижностью электронов, высокой жёсткостью

— Нанотрубки представляют собой свернутые в трубку пластины графита, имеющие несколько нанометров в диаметре. Эти формы углерода имеют большую перспективу в наноэлектронике. В зависимости от сцепления могут проявлять металлические или полупроводниковые качества.

характеристика полупроводников

Магнитные полупроводники

Соединения с магнитными ионами европия и марганца обладают любопытными магнитными и полупроводниковыми свойствами. Примеры полупроводников этого типа – сульфид европия, селенид европия и твёрдые растворы, подобные Cd1-x­MnxTe. Содержание магнитных ионов влияет на то, как в веществах проявляются такие магнитные свойства, как антиферромагнетизм и ферромагнетизм. Полумагнитные полупроводники – это твёрдые магнитные растворы полупроводников, которые содержат магнитные ионы в небольшой концентрации. Такие твёрдые растворы обращают на себя внимание своей перспективностью и большим потенциалом возможных применений. Например, в отличие от немагнитных полупроводников, в них можно достигнуть в миллион раз большего фарадеевского вращения.

Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Перовскиты, подобные Mn0,7Ca0,3O3, своими свойствами превосходят переход металл-полупроводник, прямая зависимость которого от магнитного поля имеет следствием явление гигантской магнето-резистивности. Применяются в радиотехнических, оптических приборах, которые управляются магнитным полем, в волноводах СВЧ-устройств.

Полупроводниковые сегнетоэлектрики

Этот тип кристаллов отличается наличием в них электрических моментов и возникновением спонтанной поляризации. Например, такими свойствами обладают полупроводники титанат свинца PbTiO3, титанат бария BaTiO3, теллурид германия GeTe, теллурид олова SnTe, которые при низких температурах имеют свойства сегнетоэлектрика. Эти материалы применяются в нелинейно-оптических, запоминающих устройствах и пьезодатчиках.

Разнообразие полупроводниковых материалов

Помимо упомянутых выше полупроводниковых веществ, есть много других, которые не попадают ни под один из перечисленных типов. Соединения элементов по формуле 1-3-52 (AgGaS2) и 2-4-52 (ZnSiP2) образуют кристаллы в структуре халькопирита. Связи соединений тетраэдрические, аналогично полупроводникам 3–5 и 2–6 групп с кристаллической структурой цинковой обманки. Соединения, которые образуют элементы полупроводников 5 и 6 групп (подобно As2Se3), – полупроводниковые в форме кристалла или стекла. Халькогениды висмута и сурьмы используются в полупроводниковых термоэлектрических генераторах. Свойства полупроводников этого типа чрезвычайно интересны, но они не обрели популярность по причине ограниченного применения. Однако то, что они существуют, подтверждает наличие ещё до конца не исследованных областей физики полупроводников.

Типы полупроводников. Свойства, практическое применение.

Здравствуйте, дорогие друзья. В этой статье речь пойдет о полупроводниках. Мы рассмотрим типы полупроводников, их свойства и практическое применение.

Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.

Самым известным полупроводником является кремний (Si). Но, кроме него, есть много других. Примером могут служить такие природные полупроводниковые материалы, как цинковая обманка (ZnS), куприт (Cu2O), галенит (PbS) и многие другие. Семейство полупроводников, включая полупроводники, синтезированные в лабораториях, представляет собой один из наиболее разносторонних классов материалов, известных человеку.

Характеристика полупроводников

Из 104 элементов таблицы Менделеева 79 являются металлами, 25 – неметаллами, из которых 13 химических элементов обладают полупроводниковыми свойствами и 12 – диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.

Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.

Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие органические соединения, например полиацетилен (СН)n, – полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd1-xMnxTe) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La2CuO4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La1-xSrx)2CuO4.

Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10-4 до 107 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника — от 0 до 3 эВ. Металлы и полуметаллы – это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs – 1,5 эВ. GaN, материал для оптоэлектронных приборов в синей области, имеет запрещённую зону шириной 3,5 эВ.

Типы полупроводников, энергетический зазор

Валентные орбитали атомов в кристаллической решётке разделены на две группы энергетических уровней – свободную зону, расположенную на высшем уровне и определяющую электропроводность полупроводников, и валентную зону, расположенную ниже. Эти уровни, в зависимости от симметрии решётки кристалла и состава атомов, могут пересекаться или располагаться на расстоянии друг от друга. В последнем случае между зонами возникает энергетический разрыв или, другими словами, запрещённая зона.

Расположение и заполнение уровней определяет электропроводные свойства вещества. По этому признаку вещества делят на проводники, изоляторы и полупроводники. Ширина запрещённой зоны полупроводника варьируется в пределах 0,01–3 эВ, энергетический зазор диэлектрика превышает 3 эВ. Металлы из-за перекрытия уровней энергетических разрывов не имеют.

Полупроводники и диэлектрики, в противовес металлам, имеют заполненную электронами валентную зону, а ближайшая свободная зона, или зона проводимости, отгорожена от валентной энергетическим разрывом – участком запрещённых энергий электронов.

Типы полупроводников

  Типы полупроводников, ширина запрещенной зоны

В диэлектриках тепловой энергии либо незначительного электрического поля недостаточно для совершения скачка через этот промежуток, электроны в зону проводимости не попадают. Они не способны передвигаться по кристаллической решётке и становиться переносчиками электрического тока.

Чтобы возбудить электропроводимость, электрону на валентном уровне нужно придать энергию, которой бы хватило для преодоления энергетического разрыва. Лишь при поглощении количества энергии, не меньшего, чем величина энергетического зазора, электрон перейдёт из валентного уровня на уровень проводимости.

В том случае, если ширина энергетического разрыва превышает 4 эВ, возбуждение проводимости полупроводника облучением либо нагреванием практически невозможно – энергия возбуждения электронов при температуре плавления оказывается недостаточной для прыжка через зону энергетического разрыва. При нагреве кристалл расплавится до возникновения электронной проводимости. К таким веществам относится кварц (dE = 5,2 эВ), алмаз (dE = 5,1 эВ), многие соли.

Примесная и собственная проводимость полупроводников

Чистые полупроводниковые кристаллы имеют собственную проводимость. Такие полупроводники именуются собственными. Собственный полупроводник содержит равное число дырок и свободных электронов. При нагреве собственная проводимость полупроводников возрастает. При постоянной температуре возникает состояние динамического равновесия количества образующихся электронно-дырочных пар и количества рекомбинирующих электронов и дырок, которые остаются постоянными при данных условиях.

Наличие примесей оказывает значительное влияние на электропроводность полупроводников. Добавление их позволяет намного увеличить количество свободных электронов при небольшом числе дырок и увеличить количество дырок при небольшом числе электронов на уровне проводимости.

Примесные полупроводники – это проводники, обладающие примесной проводимостью. Примеси, которые с лёгкостью отдают электроны, называются донорными. Донорными примесями могут быть химические элементы с атомами, валентные уровни которых содержат большее количество электронов, чем атомы базового вещества. Например, фосфор и висмут – это донорные примеси кремния.

Энергия, необходимая для прыжка электрона в область проводимости, носит название энергии активизации. Примесным полупроводникам необходимо намного меньше ее, чем основному веществу. При небольшом нагреве либо освещении освобождаются преимущественно электроны атомов примесных полупроводников. Место покинувшего атом электрона занимает дырка. Но рекомбинации электронов в дырки практически не происходит. Дырочная проводимость донора незначительна. Это происходит потому, что малое количество атомов примеси не позволяет свободным электронам часто приближаться к дырке и занимать её. Электроны находятся около дырок, но не способны их заполнить по причине недостаточного энергетического уровня.

Типы полупроводников

  Типы полупроводников, собственная проводимость

Незначительная добавка донорной примеси на несколько порядков увеличивает число электронов проводимости по сравнению с количеством свободных электронов в собственном полупроводнике. Электроны здесь – основные переносчики зарядов атомов примесных полупроводников. Эти вещества относят к полупроводникам n-типа.

Примеси, которые связывают электроны полупроводника, увеличивая в нём количество дырок, называют акцепторными. Акцепторными примесями служат химические элементы с меньшим числом электронов на валентном уровне, чем у базового полупроводника. Бор, галлий, индий – акцепторные примеси для кремния.

Одноэлементные полупроводники

Самым распространённым полупроводником является, конечно, кремний. Вместе с германием он стал прототипом широкого класса полупроводников, обладающих подобными структурами кристалла.

Структура кристаллов Si и Ge та же, что у алмаза и α-олова. В ней каждый атом окружают 4 ближайших атома, которые образуют тетраэдр. Такая координация называется четырехкратной. Кристаллы с тетрадрической связью стали базовыми для электронной промышленности и играют ключевую роль в современной технологии. Некоторые элементы V и VI группы таблицы Менделеева также являются полупроводниками. Примеры полупроводников этого типа – фосфор (Р), сера (S), селен (Se) и теллур (Те). В этих полупроводниках атомы могут иметь трехкратную (Р), двухкратную (S, Se, Те) или четырехкратную координацию. В результате подобные элементы могут существовать в нескольких различных кристаллических структурах, а также быть получены в виде стекла. Например, Se выращивался в моноклинной и тригональной кристаллических структурах или в виде стекла (которое можно также считать полимером).

Типы полупроводников

  Типы полупроводников, кремний 
  • Алмаз обладает отличной термической проводимостью, превосходными механическими и оптическими характеристиками, высокой механической прочностью. Ширина энергетического разрыва — dE = 5,47 эВ.
  • Кремний – полупроводник, используемый в солнечных батареях, а в аморфной форме – в тонкоплёночных солнечных батареях. Является наиболее используемым полупроводником в фотоэлементах, прост в производстве, обладает хорошими электрическими и механическими качествами. dE = 1,12 эВ.
  • Германий – полупроводник, используемый в гамма-спектроскопии, высокоэффективных фотоэлементах. Использовался в первых диодах и транзисторах. Требует меньше очистки, чем кремний. dE = 0,67 эВ.
  • Селен – полупроводник, который применяется в селеновых выпрямителях, обладающих высокой радиационной устойчивостью и способностью к самовосстановлению.

Двухэлементные соединения

Свойства полупроводников, образуемых элементами 3 и 4 групп таблицы Менделеева, напоминают свойства веществ 4 группы. Переход от 4 группы элементов к соединениям 3–4 гр. делает связи частично ионными по причине переноса заряда электронов от атома 3 группы к атому 4 группы. Ионность меняет свойства полупроводников. Она является причиной увеличения кулоновского межионного взаимодействия и энергии энергетического разрыва зонной структуры электронов. Пример бинарного соединения этого типа – антимонид индия InSb, арсенид галлия GaAs, антимонид галлия GaSb, фосфид индия InP, антимонид алюминия AlSb, фосфид галлия GaP.

Ионность возрастает, а значение её еще больше растёт в соединениях веществ 2—6 групп, таких как селенид кадмия, сульфид цинка, сульфид кадмия, теллурид кадмия, селенид цинка. В итоге у большинства соединений 2—6 групп запрещённая зона шире 1 эВ, кроме соединений ртути. Теллурид ртути – полупроводник без энергетического зазора, полуметалл, подобно α-олову.

Полупроводники 2-6 групп с большим энергетическим зазором находят применение в производстве лазеров и дисплеев. Бинарные соединения 2– 6 групп со суженным энергетическим разрывом подходят для инфракрасных приемников. Бинарные соединения элементов 1–7 групп (бромид меди CuBr, иодид серебра AgI, хлорид меди CuCl) по причине высокой ионности обладают запрещённой зоной шире З эВ. Они фактически не полупроводники, а изоляторы. Нитрид галлия — соединение 3-5 групп с широким энергетическим зазором, нашёл применение в полупроводниковых лазерах и светодиодах, работающих в голубой части спектра.

Типы полупроводников

  Типы полупроводников, полупроводниковые материалы
  • GaAs, арсенид галлия – второй по востребованности после кремния полупроводник, обычно используемый в качестве подложки для других проводников, например, GaInNAs и InGaAs, в ИК-сетодиодах, высокочастотных микросхемах и транзисторах, высокоэффективных фотоэлементах, лазерных диодах, детекторах ядерного излечения. dE = 1,43 эВ, что позволяет повысить мощность приборов по сравнению с кремнием. Хрупок, содержит больше примесей, сложен в изготовлении.
  • ZnS, сульфид цинка – цинковая соль сероводородной кислоты с диапазоном запрещённой зоны 3,54 и 3,91 эВ, используется в лазерах и в качестве люминофора.
  • SnS, сульфид олова – полупроводник, используемый в фоторезисторах и фотодиодах, dE= 1,3 и 10 эВ.

Типы полупроводников, оксиды

Оксиды металлов преимущественно являются прекрасными изоляторами, но есть и исключения. Примеры полупроводников этого типа – оксид никеля, оксид меди, оксид кобальта, двуокись меди, оксид железа, оксид европия, оксид цинка. Так как двуокись меди существует в виде минерала куприта, её свойства усиленно исследовались. Процедура выращивания полупроводников этого типа еще не совсем понятна, поэтому их применение пока ограничено. Исключение составляет оксид цинка (ZnO), соединение 2—6 групп, применяемый в качестве преобразователя и в производстве клеящих лент и пластырей.

Положение кардинально изменилось после того, как во многих соединениях меди с кислородом была открыта сверхпроводимость. Первым высокотемпературным сверхпроводником, открытым Мюллером и Беднорцем, стало соединение, основанное на полупроводнике La2CuO4 с энергетическим зазором 2 эВ. Замещая трёхвалентный лантан двухвалентным барием или стронцием, в полупроводник вводятся переносчики заряда дырки. Достижение необходимой концентрации дырок превращает La2CuO4 в сверхпроводник. В данное время наибольшая температура перехода в сверхпроводящее состояние принадлежит соединению HgBaCa2Cu3O8. При высоком давлении её значение составляет 134 К.

ZnO, оксид цинка, используется в варисторах, голубых светодиодах, датчиках газа, биологических сенсорах, покрытиях окон для отражения инфракрасного света, как проводник в ЖК-дисплеях и солнечных батареях. dE=3.37 эВ.

Слоистые кристаллы

Двойные соединения, подобные дииодиду свинца, селениду галлия и дисульфиду молибдена, отличаются слоистым строением кристалла. В слоях действуют ковалентные связи значительной силы, намного сильнее ван-дер-ваальсовских связей между самими слоями. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоёв изменяется введением сторонних атомов – интеркаляцией.

Типы полупроводников

  Типы полупроводников, слоистые кристаллы

MoS2, дисульфид молибдена применяется в высокочастотных детекторах, выпрямителях, мемристорах, транзисторах. dE=1,23 и 1,8 эВ.

Органические полупроводники

Примеры полупроводников на основе органических соединений – нафталин, полиацетилен (Ch3)n, антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. Органические полупроводники обладают преимуществом перед неорганическими: им легко придавать нужные качества. Вещества с сопряжёнными связями вида –С=С–С=, обладают значительной оптической нелинейностью и, благодаря этому, применяются в оптоэлектронике. Кроме того, зоны энергетического разрыва органических полупроводников изменяются изменением формулы соединения, что намного легче, чем у обычных полупроводников. Кристаллические аллотропы углерода фуллерен, графен, нанотрубки – тоже полупроводниками.

  • Фуллерен имеет структуру в виде выпуклого замкнутого многогранника из чётного количества атомов углеорода. А легирование фуллерена С60 щелочным металлом превращает его в сверхпроводник.
  • Графен образован одноатомным слоем углерода, соединённого в двумерную гексагональную решётку. Обладает рекордной теплопроводностью и подвижностью электронов, высокой жёсткостью
  • Нанотрубки представляют собой свернутые в трубку пластины графита, имеющие несколько нанометров в диаметре. Эти формы углерода имеют большую перспективу в наноэлектронике. В зависимости от сцепления могут проявлять металлические или полупроводниковые качества.

Магнитные полупроводники

Соединения с магнитными ионами европия и марганца обладают любопытными магнитными и полупроводниковыми свойствами. Примеры полупроводников этого типа – сульфид европия, селенид европия и твёрдые растворы, подобные Cd1-x­MnxTe. Содержание магнитных ионов влияет на то, как в веществах проявляются такие магнитные свойства, как антиферромагнетизм и ферромагнетизм. Полумагнитные полупроводники – это твёрдые магнитные растворы полупроводников, которые содержат магнитные ионы в небольшой концентрации. Такие твёрдые растворы обращают на себя внимание своей перспективностью и большим потенциалом возможных применений. Например, в отличие от немагнитных полупроводников, в них можно достигнуть в миллион раз большего фарадеевского вращения.

Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Перовскиты, подобные Mn0,7Ca0,3O3, своими свойствами превосходят переход металл-полупроводник, прямая зависимость которого от магнитного поля имеет следствием явление гигантской магнето-резистивности. Применяются в радиотехнических, оптических приборах, которые управляются магнитным полем, в волноводах СВЧ-устройств.

Разнообразие полупроводниковых материалов

Помимо упомянутых выше полупроводниковых веществ, есть много других, которые не попадают ни под один из перечисленных типов. Соединения элементов по формуле 1-3-52 (AgGaS2) и 2-4-52 (ZnSiP2) образуют кристаллы в структуре халькопирита. Связи соединений тетраэдрические, аналогично полупроводникам 3–5 и 2–6 групп с кристаллической структурой цинковой обманки. Соединения, которые образуют элементы полупроводников 5 и 6 групп (подобно As2Se3), – полупроводниковые в форме кристалла или стекла. Халькогениды висмута и сурьмы используются в полупроводниковых термоэлектрических генераторах. Свойства полупроводников этого типа чрезвычайно интересны, но они не обрели популярность по причине ограниченного применения. Однако то, что они существуют, подтверждает наличие ещё до конца не исследованных областей физики полупроводников.

Видео, типы полупроводников

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Свойства полупроводниковых материалов: применение полупроводников

Полупроводники это вещества, которые обладают промежуточными свойствами проводников и диэлектриков в отношении удельной проводимости. Сопротивление полупроводников характеризуется следующими особенностями:

  • Сильная выраженная зависимость от количества и состава примесей в веществе;
  • Повышение температуры вызывает уменьшение сопротивления.
Полупроводниковые элементы

Полупроводниковые элементы

Важно! При температуре, стремящейся к абсолютному нулю, все полупроводники становятся диэлектриками.

Механизм электрической проводимости

Проводимость таких материалов, как полупроводники, имеет иной характер, чем у обычных проводников. Главное условие возникновения тока в материалах – наличие достаточного количества свободных электронов. Кристаллическая структура полупроводниковых материалов характеризуется ковалентными химическими связями, когда каждый электрон ядра связан с двумя рядом стоящими атомами.

Электроны веществ участвуют в переносе заряда при получении некоторой энергии. Работа энергии для полупроводников имеет значение порядка единиц электрон-вольт (эВ). У проводников это значение меньше, у диэлектриков, соответственно, больше.

Дырка

Важная особенность рассматриваемых материалов – они могут обладать особым типом проводимости – дырочной. В электронной оболочке атома в момент отрыва и ухода электрона образуется свободное место, которое принято именовать дыркой. Соответственно, дырка имеет положительный заряд, направление движения противоположно потоку электронов.

Обратите внимание! Подвижность электронов выше, чем у дырок.

Электронная и дырочная проводимость

Электронная и дырочная проводимость

Энергетические зоны

Все вещества характеризуются энергетическими зонами электронов оболочки атома. Таких зон три:

  • Зона проводимости;
  • Запрещенная зона;
  • Зона валентности.

Название запрещенной зоны говорит о том, что электрон находиться в ней не может. Поэтому для возникновения тока электрон должен переместиться в зону проводимости из стабильной валентной зоны. Чем шире запрещенная зона, тем свойства материала приближаются к диэлектрикам.

Энергетические зоны

Энергетические зоны

Подвижность

При воздействии электрического поля в материалах начинается движение носителей заряда. В рассматриваемом случае это электроны и дырки. Зависимость между скоростью движения и величиной напряженности электрического поля при отсутствии влияния нагрева называется подвижностью. Рост числа взаимных столкновений является причиной того, что при увеличении концентрации подвижность падает.

Собственная плотность

Наличие запрещенной зоны не служит препятствием к образованию собственных носителей заряда. Плотность электронов и дырок определяется сложной зависимостью, которая показывает, что собственная плотность заряженных частиц растет при увеличении температуры.

Виды полупроводников

Множество веществ, к которым можно отнести полупроводники, классифицируется по величине и характеру проводимости.

По характеру проводимости

В силу того, используется чистое вещество либо, в которое внесены примеси, проводимость может иметь различный характер.

Собственная проводимость

В силу разных причин в чистых материалах могут появляться свободные электроны и дырки. В результате образуется собственная проводимость.

Важно! Собственная проводимость характеризуется равной концентрацией дырок и электронов.

Собственная проводимость германия

Собственная проводимость германия

Примесная проводимость

Большая часть полупроводников, образованных четырехвалентными атомами, имеет собственную проводимость. При целенаправленном внесении примесей веществ третьей или пятой валентности получаются кристаллы, обладающие примесной проводимостью, в которых количество дырок и электронов прямо зависит от типа и количества примесных атомов на единицу объема чистого вещества.

По виду проводимости

Выше было рассмотрено, что в полупроводниках в процессе переноса заряда участвуют не только «традиционные» электроны, но и условные положительные заряды – дырки. Поэтому полупроводниковые материалы имеют два типа проводимости.

Электронные полупроводники (n-типа)

Присутствие в четырехвалентном веществе пятивалентной примеси приводит к тому, что пятый электрон примеси вынужден переместиться на более высокую орбиту, в результате чего на его освобождение требуется небольшое количество энергии.

Такие примесные полупроводники называют веществами n-типа, от слова «negative» – отрицательный. Примеси в данном случае называют донорными, так как они способствуют появлению в веществе свободных электронов.

Дырочные полупроводники (р-типа)

При добавлении трехвалентной примеси возникает противоположная ситуация, когда в кристаллической решетке четырехвалентного материала примесь забирает недостающий электрон, а в основном веществе образуется дырка. Такие примеси именуют акцепторными, а примесный полупроводник, соответственно, называется p-типа, поскольку «positive» – положительный.

Использование в радиотехнике

Каждый специалист, техник, обладающий познаниями в электронике, знает, что абсолютно вся современная электроника основана на применении полупроводниковых элементов. Любой аналоговый или цифровой (дискретный) прибор имеет в своей основе схемы, построенные с применением диодов и транзисторов.

Полупроводниковый диод

Одно из первых устройств, использующих свойства полупроводимости, – это полупроводниковый диод. Конструкция заключается в соединении пары полупроводников с разными типами проводимости.

В результате физических процессов движения электронов и дырок на границе веществ возникает электрическое поле, и образуется так называемый p-n переход.

P-n переход

P-n переход

P-n переход обладает свойством односторонней проводимости, то есть ток через диод возникает только при подключении p-области (анода) к полюсу источника напряжения, а n-области (катода) – к минусу.

Вольт-амперная характеристика диода

Вольт-амперная характеристика диода

В обратной полярности ток также имеется, но его величина, по сравнению с прямым, намного меньше. Стабилитрон – вид диода, основная область его работы находится на обратной ветви характеристики. Параметр p-n перехода подобран таким образом, что в узкой области обратного тока напряжение на стабилитроне практически не меняется.

Первый диод – детектор, использовался еще в то время, когда теория полупроводников находилась в зачаточном состоянии.

Разнообразные диоды

Разнообразные диоды

Транзистор

Транзистор, или, как раннее его называли, триод, имеет две области из материала с одинаковой проводимостью и тонкую область полупроводника с другой. Принцип работы транзистора заключается в том, что малый ток в тонкой области, называемой базой, может управлять гораздо большим током через другие области, соответственно, коллектор и эмиттер.

В зависимости от схемы включения, транзистор может иметь различное назначение: как усилительный, генераторный и преобразовательный полупроводниковый элемент.

Применение полупроводников не ограничивается вышеперечисленными областями. Существуют изделия с тремя и более p-n переходами или вообще без них. Варистор – резистор с сопротивлением, зависящим от величины протекающего тока, тоже полупроводниковый элемент.

Виды транзисторов

Виды транзисторов

Типы полупроводников в периодической системе элементов

В периодической таблице химэлементов полупроводники сосредоточены в периодах со 2-го по 6-й. Их делят на такие типы:

  • Одноэлементные. Собственный полупроводник обычно принадлежит IV группе, реже используются элементы из других групп;
  • Сложные – двух и более элементные.

Обратите внимание! Свойства полупроводниковых материалов характеризуются тем, что при увеличении номера группы ширина запрещенной зоны уменьшается.

Физические свойства и применение

Сильная зависимость собственной проводимости от значения температуры является основным физическим свойством полупроводников. Главным образом это выражается тем, что при температуре, близкой к абсолютному нулю, наблюдается полное отсутствие свободных носителей.

Некоторые вещества обладают оптическими свойствами. К примеру, простой чистый кремний используется в производстве солнечных батарей, сложные соединения, в особенности, арсенид галлия, применяются для изготовления светодиодов. Полупроводниковый лазер имеет малые габариты и высокие технические параметры, что позволило воплотить в жизнь оптоволоконные средства коммуникации.

Полупроводниковый лазер

Полупроводниковый лазер

Легирование

Характеристика полупроводника в сильной степени зависит от его чистоты. Выращивая в особых условиях сверхчистые монокристаллы вещества, необходимые свойства придают при помощи легирования (введения в состав донорных или акцепторных примесей).

Методы получения

Для выращивания монокристаллов высокой чистоты используют два метода:

  • Метод Чохральского, при котором монокристалл выращивают из расплава вещества;
  • Зонная плавка, когда очистка образца производится путем расплавления небольшого участка с постепенным продвижением зоны расплава подвижной индукционной катушкой.

Также физики используют методики химического и физического осаждения, которые позволяют создавать тонкие слои вещества вплоть до слоев в одну молекулу толщиной.

Зонная плавка

Зонная плавка

Оптика полупроводников

Многие полупроводники обладают оптическими свойствами, в частности, фотопроводимостью, то есть свойством изменения электрического сопротивления под воздействием электромагнитного излучения.

В оптоэлектронике наиболее часто используются такие материалы, которые поглощают излучение в том случае, когда ширина запрещенной зоны меньше энергии кванта. Основной материал оптоэлектроники – арсенид галлия.

Список полупроводников

Полупроводники примеры которых будут рассмотрены ниже, нашли самое широкое распространение. Группы обозначаются буквами с указанием валентности. Первый материал обозначается буквой «А», второй – буквой «В». Для упрощения буквенные символы иногда опускают, оставляя только валентное число. Далее приведен краткий перечень распространенных материалов.

Группа IV

  • Германий;
  • Кремний;
  • Карбид кремния.

Группа III-V

Арсенид, фосфид, нитрид индия и галлия. Также сюда входит трехкомпонентный полупроводник арсенид галлия-индия.

Группа II-VI

Селенид, сульфид, теллурид цинка и кадмия.

Группа I-VII

Единственное вещество – хлорид мели.

Группа IV-VI

Сульфид, теллурид свинца и олова.

Группа V-VI

Висмута теллурид.

Группа II-V

  • Фосфид цинка;
  • Антимонид олова.

Другие

  • Сульфид олова;
  • Оксид меди;
  • Железный оксид.

Органические полупроводники

Некоторые органические соединения также обладают полупроводниковыми свойствами:

  • Органические красители;
  • Ароматические соединения;
  • Полимеры;
  • Пигменты.

Магнитные полупроводники

Некоторые полупроводниковые материалы обладают свойствами ферромагнетиков, что позволяет создавать устройства с новыми областями применения.

Прошло то время, когда полупроводниковая техника была дорога и нетехнологична, по сравнению с электровакуумным оборудованием. В настоящее время вся электро,- и радиотехника базируется на монолитных полупроводниковых компонентах. Такие устройства имеют высокую надежность и стабильность параметров.

Видео

Полупроводники. Структура полупроводников. Типы проводимости и возникновение тока в полупроводниках.

Здравствуйте уважаемые читатели сайта sesaga.ru. На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).

Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник. Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.

Полупроводниковые радиокомпоненты

Общие понятия.

Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.

Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний (Si) и Германий (Ge).

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.

Свойства полупроводников.

Электропроводность проводников сильно зависит от окружающей температуры.
При очень низкой температуре, близкой к абсолютному нулю (-273°С), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается.

Если на полупроводник навести свет, то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники примесей определенных веществ, их электропроводность резко увеличивается.

Строение атомов полупроводников.

Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона.

Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом.

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны.

Межатомная связь полупроводников

Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной.

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному, заимствованных от четырех соседних атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу. На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.

Электропроводность полупроводника.

Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.

Упрощенная межатомная связь в полупроводнике

При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов. Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным», а там где он находился до этого, образуется пустое место, которое условно называют дыркой.

Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительным электрическим зарядом равным отрицательному заряду электрона.

А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике.

Явление возникновения тока в полупроводнике

Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток.
Вследствие тепловых явлений, в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь положительным полюсом источника напряжения, будут перемещаться в его сторону, оставляя после себя дырки, которые будут заполняться другими освободившимися электронами. То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток.

Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку. Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, также притягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.

Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки, находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.

Пока в полупроводнике действует электрическое поле, этот процесс непрерывен: нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).

Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному.

Электронно-дырочная проводимость.

В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала, так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной.

Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной.

Электронная проводимость.

Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним» – то есть свободным. И чем больше будет таких атомов в кристалле, тем больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи.

Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n», или полупроводники n-типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n-типа основными носителями заряда являются – электроны, а не основными – дырки.

Дырочная проводимость.

Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка. Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем больше будет таких атомов в кристалле, тем больше будет дырок.

Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами. Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.

Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p-типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением и исчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p-типа основными носителями заряда являются дырки, а не основными — электроны.

Теперь, когда Вы имеете некоторое представление о явлениях, происходящих в полупроводниках, Вам не составит труда понять принцип действия полупроводниковых радиокомпонентов.

На этом давайте остановимся, а в следующей части рассмотрим устройство, принцип работы диода, разберем его вольт-амперную характеристику и схемы включения.
Удачи!

Источник:

1. Борисов В.Г. — Юный радиолюбитель. 1985г.
2. Сайт academic.ru: http://dic.academic.ru/dic.nsf/es/45172.

Полупроводниковые приборы — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 декабря 2019; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 декабря 2019; проверки требуют 4 правки.

Полупроводниковые приборы, ПП — широкий класс электронных приборов, изготавливаемых из полупроводников.

К полупроводниковым приборам относятся:

  • Интегральные схемы (микросхемы)
  • Полупроводниковые диоды (в том числе варикапы, стабилитроны, диоды Шоттки),
  • Тиристоры, фототиристоры,
  • Транзисторы,
  • Приборы с зарядовой связью,
  • Полупроводниковые СВЧ-приборы (диоды Ганна, лавинно-пролётные диоды),
  • Оптоэлектронные приборы (фоторезисторы, фотодиоды, фототранзисторы, солнечные элементы, детекторы ядерных излучений, светодиоды, полупроводниковые лазеры, электролюминесцентные излучатели),
  • Терморезисторы, датчики Холла.
в СССР

Исследование и первые попытки создания полупроводниковых приборов проводились в СССР ещё в 1920-х — 1930-х годах. В 1924 году в Нижегородской радиолаборатории учёный О. В. Лосев создал полупроводниковый детектор-усилитель и детектор-генератор электромагнитных излучений на частоты до десятков МГц. На этой основе впервые в мире было создано детекторное приёмопередаточное устройство — кристадин[1].

Позже в СССР для развития отрасли были созданы научно-исследовательские институты и центры. В 1956 году введён в эксплуатацию Завод полупроводниковых приборов. Среди продукции завода на то время — пальчиковые лампы широкого применения и сверхминиатюрные стержневые лампы, первые полупроводниковые диоды Д2, диоды Д9, Д10, Д101-103А, Д11, стабилитроны Д808-813[2].

в России

Холдинг «Росэлектроника» объединяет предприятия-производители электроной продукции.

см. Категория:Производители полупроводниковых приборов

Микросхемы

При изготовлении микросхем используется метод фотолитографии (проекционной, контактной и др.), при этом схему формируют на подложке (обычно из кремния), полученной путём резки алмазными дисками монокристаллов кремния на тонкие пластины.

  • С. Зи. Физика полупроводниковых приборов. В 2-х тт. 2-е изд. М., Мир, 1984.
  • М. С. Шур. Физика полупроводниковых приборов. В 2-х тт. М., Мир, 1992.
  • Лебедев А. И. Физика полупроводниковых приборов. — М.: Физматлит, 2008.
  • Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учебник для вузов. — 8-е издание, исправленное.. — М.: Лань, 2006. — 480 с.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *