Планетарная модель атома резерфорда кратко: «На чем основана планетарная модель атома?» – Яндекс.Кью – Урок 24. строение атома. опыты резерфорда — Физика — 11 класс

Урок 24. строение атома. опыты резерфорда — Физика — 11 класс

Физика, 11 класс

Урок №24. Строение атома. Опыты Резерфорда

На уроке рассматриваются: понятия атомное ядро, опыты Резерфорда, планетарная модель строения атома; сравниваются модели атома Томсона и Резерфорда, даны некоторые сведения о фактах, подтверждающих сложное строение атома, о работах учёных по созданию модели строения атома.

Атомное ядро — тело малых размеров, в котором сконцентрирована почти вся масса и весь положительный заряд атома.

Размеры ядра: диаметр порядка 10-12—10-13 см (у разных ядер диаметры различны).

Размер атома: примерно 10-8 см, т. е. от 10 до 100 тысяч раз превышает размеры ядра.

Планетарная модель атома Резерфорда: в целом атом нейтрален, в центре атома расположено положительно заряжённое ядро, в котором сосредоточена почти вся масса атома, электроны движутся по орбитам вокруг ядра, заряд ядра, как и число электронов в атоме, равен порядковому номеру элемента в периодической системе Д.И.Менделеева.

Ядро атома водорода названо протоном и рассматривается как элементарная частица.

Ядро атома водорода имеет положительный заряд, равный по модулю заряду электрона, и массу, примерно в 1836,1 раза больше массы электрона.

Частота излучений атома водорода составляет ряд серий: серия Бальмера, серия Лаймана, серия Пашена и другие, каждая из которых образуется в процессе перехода атома в одно из энергетических состояний.

Обязательная литература по теме урока:

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 279 – 283.
  2. Степанова Г.Н. (сост.) Сборник задач по физике для 10-11 классов общеобразовательных учреждений.5-е изд., доп. — М.: «Просвещение», 1999 — С. 221-222
  3. Анциферов Л.И., Физика: электродинамика и квантовая физика. 11кл. Учебник для общеобразовательных учреждений. – М.: Мнемозина, 2001. – С. 270-274.
  4. Рымкевич А.П. Физика. Задачник. 10-11 классы. – М.: Дрофа, 2013. — С. 155 – 156.
  5. Кикоин А. К. За пределы таблицы //Квант. — 1991. — № 1. — С. 38,39,42-44

Основное содержание урока

Долгое время, физика накапливала факты о свойстве вещества для полного представления о строении атома. И только в XIX веке изучение атомического строения вещества существенно сдвинулось с точки покоя.

Большую роль в развитии атомистической теории сыграл выдающийся русский химик Дмитрий Иванович Менделеев, разработавший в 1869 году периодическую систему элементов, в которой впервые был поставлен вопрос о единой природе атомов.

Важным свидетельством сложной структуры атомов явились исследования спектров, излучаемые веществом, которые привели к открытию линейчатых спектров атомов. В начале XIX века в излучении атома водорода были открыты спектральные линии в видимой части спектра.

Идеи электронной структуры атома теоретически и гипотетически формулировались учёными. В 1896 году Хендрик Лоренц создал электронную теорию о том, что электроны являются частью атома. Эту гипотезу в 1897 году подтвердили эксперименты Джозефа Джона Томсона. Им был сформулирован вывод о том, что существуют частицы с наименьшим отрицательным зарядом — электроны и они являются частью атомов.

По мысли Томсона, положительный заряд занимает весь объём атома и распределён он в этом сферическом объёме равномерно. У более сложных атомов в положительно заряжённом шаре есть несколько электронов, так что атом подобен кексу, в котором роль изюма играют электроны. Распространённый термин этой модели — «Пудинг с изюмом» или «Булочка с изюмом».

Таким образом, к началу XX века учёные сделали вывод о том, что атомы материи имеют сложную внутреннюю структуру. Они являются электрически нейтральными системами, а носителями отрицательного заряда атомов являются лёгкие электроны, масса которых составляет лишь малую долю массы атомов. Однако модель атома Томсона находилась в полном противоречии с экспериментами по изучению распределения положительных зарядов.

Электрон – наименьшая электроотрицательная заряжённая элементарная частица

Масса покоя электрона me = 9,1·10-31кг;

— отношение заряда электрона к его массе.

Немецкий физик Филипп фон Ленард в 1903 году проводил опыты, в которых пучок быстрых электронов легко проходил через тонкую металлическую фольгу. На основании этого Ленард предположил, что атом состоит из нейтральных частиц или нейтральных дуплетов с совмещённым положительным и отрицательным зарядами, рассредоточенными в атоме, где большая площадь представляет собой пустоту.

В 1904 году японский физик Хентаро Нагаока выдвинул гипотезу о том, что атом состоит из тяжелого положительно заряженного ядра, окруженного кольцами из большого числа электронов, колебания которых и являются причиной испускания атомных спектров, по аналогии с теорией устойчивости колец Сатурна.

Но в физике уже более 200 лет существует главное правило: окончательный выбор между гипотезами может быть сделан только на основе опыта. Эксперименты, проведенные в первый раз Эрнестом Резерфордом, сыграли решающую роль в понимании структуры атома.

30.08.1871 г. – 19.10.1937 г.

Эрнест Резерфорд

Британский физик новозеландского происхождения

Лауреат Нобелевской премии по химии 1908 года

Для экспериментального изучения распределения положительного заряда, а значит, и массы внутри атома Эрнест Резерфорд в 1906 г. предложил применить зондирование атома α-частицами, скорость которых составляет 1/15 скорости света.

Эти частицы возникают при распаде, например, радия и некоторых других радиоактивных элементов. Сами же α-частицы – это ионизированные атомы гелия, положительный заряд гелия в два раза больше заряда электрона

+2He. Этими частицами Резерфорд бомбардировал атомы тяжёлых элементов (золото, медь и др.). Если бы электроны были равномерно распределены по всему объёму атома (по модели атома Томсона), электроны не могли бы заметно изменять траекторию α –частиц, так как размеры и масса электронов в 8000 раз меньше массы α-частиц. Точно так же камушек в несколько десятков граммов при столкновении с автомобилем не может изменить его скорость.

Изменение направления движения α-частиц может вызвать только массивная часть атома, при этом положительно заряжённая. Весь прибор размещался в сосуде, из которого был откачан воздух. Радиоактивный препарат, помещался внутри свинцового цилиндра, вдоль которого был высверлен узкий канал. Пучок α -частиц из канала падал на тонкую фольгу из тяжёлого металла. После рассеяния α-частицы попадали на полупрозрачный экран, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось сцинтилляцией (вспышкой света), которую можно было наблюдать в микроскоп.

Чтобы обнаружить отклонение α-частиц на большие углы Резерфорд окружил фольгу экранами. Сотрудники Резерфорда вели счёт α-частиц, попадающих в регистрирующее устройство при отклонении их на от первоначального направления на определённый угол φ (фи). Данные из серии опытов, за определённый период времени, приведены в таблице:

Угол отклонения α-частиц φ, °

15

60

105

150

180

Число частиц N

132000

477

70

33

1-3

Отсюда можно сделать вывод: такое поведение α-частиц возможно только в том случае, если они упруго взаимодействуют с массивным положительно заряжённым телом малых по сравнению с атомом размеров.

Позднее Резерфорд признался, что, предложив своим ученикам провести эксперимент по наблюдению за рассеянием α-частиц, он сам не верил в положительный результат. Он сравнил такой эффект с 15-дюймовым снарядом, как если бы его выстрелили в кусок тонкой бумаги, а снаряд возвратился бы и нанёс обратный удар.

Резерфорд понял, что α-частица могла быть отброшена назад лишь в том случае, если положительный заряд атома и его масса сконцентрированы в очень малой области пространства. Так Резерфорд пришел к мысли о существовании атомного ядра.

Подсчитывая число α-частиц, рассеянных на различные углы, Резерфорд смог оценить размеры ядра. Оказалось, что ядро имеет диаметр порядка 10-12—10-13 см (у разных ядер диаметры различны). Размер же самого атома 10-8 см, то есть от 10 до 100 тысяч раз превышает размеры ядра. Впоследствии удалось определить и заряд ядра.

Планетарная модель атома Резерфорда:

в целом атом нейтрален, в центре атома расположено положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Число внутриатомных электронов, как и заряд ядра, равны порядковому номеру элемента в периодической системе Д. И. Менделеева.

Электроны движутся вокруг ядра, подобно тому как планеты обращаются вокруг Солнца.

Такой характер движения электронов определяется действием кулоновских сил притяжения со стороны ядра.

Закон Кулона:

qα — заряд α-частицы;

q — положительный заряд атома;

r — его радиус;

— коэффициент пропорциональности.

Ядро атома водорода имеет положительный заряд, который по модулю равен заряду электрона, и массу, примерно в 1836,1 раза больше массы электрона.

Размер атома водорода — это радиус орбиты его электрона

Простая и наглядная планетарная модель атома имеет прямое экспериментальное обоснование. Она кажется совершенно необходимой для объяснения опытов по рассеиванию α-частиц. Но на основе этой модели нельзя объяснить факт существования атома, его устойчивость. Ведь движение электронов по орбитам происходит с ускорением. Ускоренно движущийся заряд должен излучать электромагнитные волны с частотой, равной частоте его обращения вокруг ядра. Электроны должны приближаться к ядру, подобно тому как спутник приближается к Земле при торможении в верхних слоях атмосферы. Атом должен прекратить свое существование. В действительности ничего подобного не происходит. Атомы устойчивы и в невозбужденном состоянии могут существовать неограниченно долго, совершенно не излучая электромагнитные волны

В начале XX века было уже известно, что вещество излучает свет конкретных длин волн в определенных, очень узких спектральных интервалах — спектральных линиях, все линии имеют конечную длину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном состоянии). Классическим примером линейчатого спектра является спектр атома водорода.

Швейцарский физик и математикИоганн Якоб Бальмер определил, что в видимой части спектра атома водорода имеются четыре линии, соответствующие длинам волн: λ1 = 434 нм; λ2 = 486 нм; λ3 = 410 нм; λ4 = 656 нм

Частота излучений атома водорода составляет ряд серий, каждая из которых образуется в процессе перехода атома в одно из энергетических состояний, переходов электрона с верхних энергетических уровней на нижние уровни.

На рисунке можно увидеть переходы электрона на другой энергетический уровень, частоты излучения которого находятся в видимой области спектра.

Серию уровней назвали в честь швейцарского учителя Иоганна Бальмера, который ещё в 1885 году основываясь на результатах экспериментов вывел формулу для определения частот видимой части спектра водорода:

где Z – число протонов в атоме или порядковый номер в периодической таблице Менделеева;

n и m (целое число – 1, 2, 3, 4, 5, и так далее) — энергетические уровни, где m > n.

В этой формуле v — не частота, которая измеряется в с-1, а волновое число, которое равно обратному значению длины волны 1/λ и которое измеряется в м-1.

R — это постоянная Ридберга (для данного вещества), которая определена из спектральных данных, учитывая, что скорость распространения видимого излучения составляет:

Не согласующийся с опытом вывод о неизбежной гибели атома вследствие потери энергии на излучение — это результат применения законов классической физики к явлениям, происходящим внутри атома. Отсюда следует, что к таким явлениям законы классической физики неприменимы. Все выводы об устойчивости атома и спектре, которые излучает атом будут подтверждены Нильсом Бором в 1913 году.

Рассмотрим задачи тренировочного блока урока.

1. Формула Бальмера – Ридберга для водорода приводится в виде:

Коэффициент RH носит название постоянной Ридберга для водорода и его можно вычислить из данной формулы. Полученный результат равен _______·107 м-1, если известно, что при переходе атома водорода из четвёртого энергетического состояния во второе происходит излучение с длиной волны 486,13 нм.

Дано:

m = 4

n = 2

RH — ?

Решение:

Постоянная Ридберга для водорода:

Выведем постоянную Ридберга RH из формулы Бальмера – Ридберга:

Подставим известные значения в формулу:

Ответ:

2. Рассчитайте на какое наименьшее расстояние α-частица может приблизиться к ядру атома золота, двигаясь по прямой, проходящей через центр ядра. Масса α-частицы, её заряд, скорость движения и заряд ядра золота приведены в таблице:

Масса α-частицы, кг

Заряд α-частицы, Кл

Скорость движения α-частицы, м/с

Заряд ядра золота, Кл

Расстояние сближения, м

6,6·10-27

3,2·10-19

1,9·107

1,3·10-17

?

По закону сохранения энергии максимальная кинетическая энергия α-частицы будет равна максимальной потенциальной энергии взаимодействия частицы с ядром атома золота:

Потенциальная энергия кулоновского взаимодействия зарядов.

Для определения наименьшего расстояния между α-частицей и ядра атома золота используем формулу взаимодействия заряжённых частиц — закон Кулона:

— коэффициент пропорциональности.

Чтобы определить силу взаимодействия зарядов на кратчайшем расстоянии, запишем II закон Ньютона, устанавливающий зависимость силы от ускорения, для движения тела движущегося по окружности с центростремительным ускорением:

Приравняем выражения для силы взаимодействия двух точечных зарядов:

Отсюда выразим расстояние сближения двух зарядов, считая его радиусом от центра ядра золота до точки сближения с α-частицей:

Подставим числовые значения в полученную формулу:

Ответ:

Масса α-частицы, кг

Заряд α-частицы, Кл

Скорость движения α-частицы, м/с

Заряд ядра золота, Кл

Расстояние сближения, м

6,6·10-27

3,2·10-19

1,9·107

1,3·10-17

3,1·10-14

Доклад на тему « модель атома Э.Резерфорда» (9класс)

До конца XIX века считалось, что атом неделим. Но после того как английский физик Джозеф Джон Томсон в 1897 г. открыл электрон, стало понятно, что учёные ошибались.

Итак, открыв электрон, Томсон пришёл к выводу, что он обладает массой и имеет отрицательный заряд. Было сделано предположение, что электрон является составной частью атома. Но раз он имеет отрицательный заряд, следовательно, в состав атома должны входить частицы, имеющие положительный заряд, так как в целом атом нейтрален.

hello_html_m3ab9db12.gif

Модель атома Томсона

Томсон предложил свою модель атома. Он считал, что атом имеет форму шара. Внутри этого шара находится положительно заряженное вещество, в котором существуют отрицательно заряженные электроны. Свою модель Томсон в шутку называл «булочкой с изюмом». То есть, в его модели электроны как бы вкраплены в какую-то положительно заряженную массу, как изюминки в булочке.

Опыт Резерфорда

hello_html_m734d013.png

Опыт Резерфорда

Дальнейшие исследования атома учёными показали, что модель, предложенная Томсоном, была неправильной.

В 1909 г. английский физик Эрнест Резерфорд провёл опыт с рассеиванием альфа-частиц, которые образуются при распаде химического элемента радия. Масса альфа-частиц в 8000 раз превышает массу электрона.

В эксперименте Резерфорда пучок альфа-частиц пропускался через тонкую золотую фольгу. Нужно сказать, что фольга была настолько тонка, что её толщина составляла практически один слой молекул. Если Томсон был прав, и атом состоял из некоего облака с электронами, то альфа-частицы, обладающие большой массой, должны были легко проходить через фольгу. Но на деле оказалось, что часть альфа-частиц действительно проходила, отклоняясь лишь на небольшой угол, а часть словно наталкивалась на какое-то препятствие и отскакивала назад. Это было невероятно. Впоследствии Резерфорд сравнивал свой опыт с выстрелом 15-дюймовым снарядом по папиросной бумаге.   Результат его опыта был таким, как если бы снаряд не только не пробил папиросную бумагу, но и отскочил от неё. То есть внутри атома существовало что-то, мешавшее альфа-частицам проходить сквозь атом. Так как альфа-частицы имели положительный заряд, то, скорее всего, они проходили мимо других частиц с положительным зарядом. И размеры этих частиц были намного меньше размеров самого атома. Атом золота должен был состоять из ядра, имеющего положительный заряд и окружавших его отрицательно заряженных электронов.

Можно сказать, что это было рождение ядерной физики.

Планетарная модель атома

Модель атома Резерфорда

Резерфорд предложил свою модель атома, которая объясняла строение атома. Он считал, что вся основная масса атома сосредоточена в положительно заряженном ядре. А вокруг этого ядра вращаются отрицательно заряженные электроны так, как планеты вращаются вокруг Солнца. И вращаются электроны под действием кулоновской силы, действующей на них со стороны ядра. Модель Резерфорда была названа планетарной.

Электроны в атоме вращаются с такой огромной скоростью, что образуют над поверхностью ядра подобие облака. Все атомы располагаются на некотором расстоянии друг от друга. И не «слипаются» они, потому что вокруг ядра каждого атома существует свое электронное «облако», заряженное отрицательно. И это «облако» отталкивается от отрицательно заряженного электронного «облака» другого атома.

Но модель атома Резерфорда имела недостатки. Она была несовместима с законами классической физики. Почему электрон не падает на ядро? Потому что вращается вокруг него. Но, вращаясь, он должен излучать электромагнитные волны и терять энергию. И, постепенно растратив всю энергию, электрон должен упасть на ядро. Но этого не происходит в действительности. То есть, процессы, происходящие в атоме, не подчиняются классическим законам.

Впоследствии датский физик Нильс Бор дал объяснение этому явлению. Он предположил, что электроны в атоме двигаются только по стационарным орбитам, находясь на которых они не излучают энергию. И Бор оказался прав.

Планетарная модель атома: опыт Резерфорда

 

В 1903 году английским ученым Томсоном была предложена модель атома, которую в шутку назвали «булочкой с изюмом». По его версии атом представляет собой сферу с равномерным положительным зарядом, в которой как изюминки вкраплены отрицательно заряженные электроны.

Однако дальнейшие исследования атома показали, что эта теория несостоятельна. И через несколько лет другой английский физик – Резерфорд провел серию опытов. На основе результатов им была выстроена гипотеза о строении атома, которая до сих пор является всемирно признанной.

Опыт Резерфорда: предложение своей модели атома

В своих опытах Резерфорд пропускал пучок альфа-частиц сквозь тонкую золотую фольгу. Золото было выбрано за пластичность, которая позволила создать очень тонкую фольгу, толщиной едва ли не в один слой молекул. За фольгой располагался специальный экран, подсвечивавшийся при бомбардировке попадающими на него альфа частицами. По теории Томсона альфа-частицы должны были беспрепятственно проходить сквозь фольгу, совсем немного отклоняясь в стороны. Однако, оказалось, что часть частиц так и вела себя, а совсем небольшая часть отскакивала назад, как будто ударившись во что-то.

То есть было установлено, что внутри атома существует нечто твердое и небольшое, от чего и отскакивали альфа-частицы. Тогда-то Резерфорд и предложил планетарную модель строения атома. Планетарная модель атома по Резерфорду объясняла результаты проведения как его экспериментов, так и опытов его коллег. До сего дня не предложено лучшей модели, хотя некоторые аспекты этой теории все равно не согласуются с практикой в некоторых очень узких областях науки. Но в основном, планетарная модель атома самая пригодная из всех. В чем же состоит эта модель?

Планетарная модель строения атома

Как следует из названия, атом сравнивается с планетой. В данном случае планету представляет из себя ядро атома. А вокруг ядра на довольно большом расстоянии вращаются электроны, как и вокруг планеты вращаются спутники. Только скорость вращения электронов в сотни тысяч раз превосходит скорость вращения самого быстрого спутника. Поэтому при своем вращении электрон создает как бы облако над поверхностью ядра. И существующие заряды электронов отталкивают такие же заряды, образованные другими электронами вокруг других ядер. Поэтому атомы не «слипаются», а располагаются на некотором расстоянии друг от друга.

И когда мы говорим о столкновении частиц, имеется в виду, что они подходят друг к другу на достаточно большое расстояние и отталкиваются полями своих зарядов. Непосредственного контакта не происходит. Частицы в веществе вообще расположены очень далеко друг от друга. Если бы каким-либо способом удалось схлопнуть вместе частицы какого-либо тела, оно бы уменьшилось в миллиарды раз. Земля стала бы меньше яблока размером. Так что основной объем любого вещества, как ни странно это звучит, занимает пустота, в которой расположены заряженные частицы, удерживающиеся на расстоянии электронными силами взаимодействия.

Нужна помощь в учебе?



Предыдущая тема: Радиоактивность: альфа-, бета-, гамма-излучение
Следующая тема:&nbsp&nbsp&nbspАтомное ядро: заряд ядра

Все неприличные комментарии будут удаляться.

Резерфорд, Эрнест — Википедия

В Википедии есть статьи о других людях с фамилией Резерфорд.

Эрне́ст Резерфо́рд; 1-й барон Резерфорд Нельсонский (англ. Ernest Rutherford; 30 августа 1871, Спринг-Грув, Новая Зеландия — 19 октября 1937, Кембридж) — британский физик новозеландского происхождения. Известен как «отец» ядерной физики. Лауреат Нобелевской премии по химии 1908 года.

В 1911 году своим знаменитым опытом рассеяния альфа-частиц доказал существование в атомах положительно заряженного ядра и отрицательно заряженных электронов вокруг него[7]. На основе результатов опыта создал планетарную модель атома.

Герб Эрнеста Резерфорда

Резерфорд родился в Новой Зеландии в небольшом посёлке Спринг-Грув (англ. Spring Grove), расположенном на севере Южного острова близ города Нельсона, в семье фермера, выращивавшего лён. Отец — Джеймс Резерфорд, иммигрировал из г. Перт (Шотландия). Мать — Марта Томпсон, родом из Хорнчёрча, графство Эссекс, Англия. В это время другие шотландцы эмигрировали в Квебек (Канада), но семье Резерфорд не повезло и бесплатный билет на пароход правительство предоставило до Новой Зеландии, а не до Канады.

Эрнест был четвёртым ребёнком в семье из двенадцати детей. Имел удивительную память, богатырское здоровье и силу. С отличием окончил начальную школу, получив 580 баллов из 600 возможных и премию в 50 фунтов стерлингов для продолжения учёбы в колледже Нельсона. Очередная стипендия позволила ему продолжить обучение в Кентербери-колледже в Крайстчерче (ныне Новозеландский университет)[8]. В те времена это был маленький университет со 150 студентами и всего 7 профессорами[9]. Резерфорд увлекается наукой и с первого дня начинает исследовательскую работу.[9]

Его магистерская работа, написанная в 1892 году, называлась «Магнетизация железа при высокочастотных разрядах». Работа касалась обнаружения высокочастотных радиоволн, существование которых было доказано в 1888 году немецким физиком Генрихом Герцем. Резерфордом был придуман и изготовлен прибор — магнитный детектор, один из первых приёмников электромагнитных волн.

Окончив университет в 1894 году, Резерфорд в течение года был преподавателем в средней школе[9]. Наиболее одарённым молодым подданным британской короны, проживавшим в колониях, один раз в два года предоставлялась особая Стипендия имени Всемирной выставки 1851 года — 150 фунтов в год[10], дававшая возможность поехать для дальнейшего продвижения в науке в Англию. В 1895 году Резерфорд был удостоен этой стипендии, так как тот, кто её сначала получил — Маккларен, отказался от неё. Осенью того же года, заняв деньги на билет на пароход до Великобритании, Резерфорд прибывает в Англию в Кавендишскую лабораторию Кембриджского университета и становится первым докторантом её директора Джозефа Джона Томсона. 1895 год был первым годом, когда (по инициативе Дж. Дж. Томсона) студенты, закончившие другие университеты, могли продолжать научную работу в лабораториях Кембриджа. Вместе с Резерфордом этой возможностью воспользовались, записавшись в Кавендишскую лабораторию, Джон Мак-Леннан, Джон Таунсенд и Поль Ланжевен. С Ланжевеном Резерфорд работал в одной комнате и подружился с ним, эта дружба продолжалась до конца их жизни[9].

В том же 1895 году была заключена помолвка с Мэри Джорджиной Ньютон (1876—1945) — дочерью хозяйки пансиона, в котором жил Резерфорд. (Свадьба состоялась в 1900 году, 30 марта 1901 года у них родилась дочь — Эйлин Мэри (1901—1930), впоследствии жена Ральфа Фаулера, известного астрофизика.)

Резерфорд планировал заниматься детектором радиоволн или волн Герца, сдать экзамены по физике и получить степень магистра. Но в следующем году оказалось, что государственная почта Великобритании выделила деньги Маркони на эту же самую работу и отказалась её финансировать в Кавендишской лаборатории. Так как стипендии не хватало даже на еду, Резерфорд вынужден был начать работать репетитором и ассистентом у Дж. Дж. Томсона по теме изучения процесса ионизации газов под действием рентгеновских лучей. Вместе с Дж. Дж. Томсоном Резерфорд открывает явление насыщения тока при ионизации газа[9].

В 1898 году Резерфорд открывает альфа- и бета-лучи. Спустя год Поль Вийяр открыл гамма-излучение (название этого типа ионизирующего излучения, как и первых двух, предложено Резерфордом).

С лета 1898 года учёный делает первые шаги в исследовании только что открытого явления радиоактивности урана и тория. Осенью Резерфорд по предложению Томсона, преодолев конкурс в 5 человек, занимает должность профессора университета Макгилла в Монреале (Канада) с окладом 500 фунтов стерлингов или 2500 канадских долларов в год. В этом университете Резерфорд плодотворно сотрудничает с Фредериком Содди, в то время младшим лаборантом химического факультета, впоследствии (как и Резерфорд) нобелевским лауреатом по химии (в 1921 году). В 1903 году Резерфорд и Содди выдвинули и доказали революционную идею о преобразовании элементов в процессе радиоактивного распада. В 1900 году он женился на Джорджине Ньютон в англиканской церкви в Крайстчерч[11][12][13]. В 1905 г. в сентябре на год в Монреаль в лабораторию к Резерфорду приехал учиться Отто Ган, будущий нобелевский лауреат по химии из Германии.

Получив широкую известность благодаря своим работам в области радиоактивности, Резерфорд становится востребованным учёным и получает многочисленные предложения работы в научно-исследовательских центрах различных стран мира. Весной 1907 года он покидает Канаду и начинает профессорскую деятельность в университете Виктории (ныне — Манчестерский университет) в Манчестере (Англия), где его зарплата стала выше примерно в 2,5 раза.

В 1908 году Резерфорду была присуждена Нобелевская премия по химии «за проведённые им исследования в области распада элементов в химии радиоактивных веществ».

Важным и радостным событием в жизни стало избрание учёного членом Лондонского Королевского общества в 1903 году, а с 1925 по 1930 года он занимал пост его президента. В 1931—1933 годах Резерфорд был президентом Института Физики.

В 1914 году Резерфорд удостоен дворянского титула и становится «сэром Эрнстом». 12 февраля в Букингемском дворце король посвятил его в рыцари: он был облачён в придворный мундир и препоясан мечом.

Свой геральдический герб, утверждённый в 1931 году, пэр Англии барон Резерфорд Нельсон (так стал зваться великий физик после возведения в дворянское звание) увенчал птицей киви, символом Новой Зеландии. Рисунок герба — изображение экспоненты — кривой, характеризующей монотонный процесс убывания со временем числа радиоактивных атомов.

Эрнест Резерфорд скончался 19 октября 1937 года через четыре дня после срочной операции по поводу неожиданного заболевания — ущемления грыжи — в возрасте 66 лет (хотя его родители прожили до 90 лет)[9]. Он был похоронен в Вестминстерском аббатстве, рядом с могилами Ньютона, Дарвина и Фарадея.[14][15][16]

Первый опыт превращения веществ, азота и кислорода, сделанный Эрнестом Резерфордом

Согласно воспоминаниям П. Л. Капицы, Резерфорд был ярким представителем английской экспериментальной школы в физике, которая характерна стремлением разобраться в сути физического явления и проверить, может ли оно быть объяснено существующими теориями (в отличие от «немецкой» школы экспериментаторов, которая исходит из существующих теорий и стремится проверить их опытом). Он мало пользовался формулами и мало прибегал к математике, но был гениальным экспериментатором, напоминая в этом отношении Фарадея[9]. Отмечаемым Капицей важным качеством Резерфорда как экспериментатора была его наблюдательность. В частности, благодаря ей он открыл эманацию тория, заметив различия в показаниях электроскопа, измерявшего ионизацию, при открытой и закрытой дверце в приборе, перекрывавшей поток воздуха[9]. Другой пример — открытие Резерфордом искусственной трансмутации элементов, когда облучение ядер азота в воздухе альфа-частицами сопровождалось появлением высокоэнергичных частиц (протонов), имевших больший пробег, но очень редких[9].

Резерфорд написал и опубликовал три тома работ. Все они носят экспериментальный характер.

1904 год — «Радиоактивность».

1905 год — «Радиоактивные превращения».

1930 год — «Излучения радиоактивных веществ» (в соавторстве с Дж. Чедвиком и Ч. Эллисом).

12 учеников Резерфорда стали лауреатами Нобелевской премии по физике и химии. Один из наиболее талантливых учеников Генри Мозли, экспериментально показавший физический смысл Периодического закона, погиб в 1915 году на Галлиполи в ходе Дарданелльской операции. В Монреале Резерфорд работал с Ф. Содди, О. Ханом; в Манчестере — с Х. Гейгером (в частности, помог тому разработать счётчик для автоматического подсчёта числа ионизирующих частиц), в Кембридже — с Н. Бором, П. Капицей и многими другими знаменитыми в будущем учёными.

Изучение явления радиоактивности[править | править код]

Схема опыта по обнаружению сложного состава радиоактивного излучения. 1 — радиоактивный препарат, 2 — свинцовый цилиндр, 3 — фотопластинка.

После открытия радиоактивных элементов началось активное изучение физической природы их излучения. Резерфорду удалось обнаружить сложный состав радиоактивного излучения.

Опыт состоял в следующем. Радиоактивный препарат помещали на дно узкого канала свинцового цилиндра, напротив помещалась фотопластинка. На выходившее из канала излучение действовало магнитное поле. При этом вся установка находилась в вакууме.

В магнитном поле пучок распадался на три части. Две составляющие первичного излучения отклонялись в противоположные стороны, что указывало на наличие у них зарядов противоположных знаков. Третья составляющая сохраняла прямолинейность распространения. Излучение, обладающее положительным зарядом, получило название альфа-лучи, отрицательным — бета-лучи, нейтральным — гамма-лучи.

Изучая природу альфа-излучения, Резерфорд провёл следующий эксперимент. На пути альфа-частиц он поместил счётчик Гейгера, который измерял число испускающихся частиц за определённое время. После этого при помощи электрометра он измерил заряд частиц, испущенных за это же время. Зная суммарный заряд альфа-частиц и их количество, Резерфорд рассчитал заряд одной такой частицы. Он оказался равен двум элементарным.

По отклонению частиц в магнитом поле он определил отношение её заряда к массе. Оказалось, что на один элементарный заряд приходятся две атомные единицы массы.

Таким образом, было установлено, что при заряде, равном двум элементарным, альфа-частица имеет четыре атомные единицы массы. Из этого следует, что альфа-излучение — это поток ядер гелия.

В 1920 году Резерфорд высказал предположение, что должна существовать частица массой, равной массе протона, но не имеющая электрического заряда — нейтрон. Однако обнаружить такую частицу ему не удалось. Её существование было экспериментально доказано Джеймсом Чедвиком в 1932 году.

Кроме того, Резерфорд уточнил на 30 % отношение заряда электрона к его массе.

Радиоактивные превращения[править | править код]

На основе свойств радиоактивного тория Резерфорд открыл и объяснил радиоактивное превращение химических элементов. Учёный обнаружил, что активность тория в закрытой ампуле остаётся неизменной, но если препарат обдувать даже очень слабым потоком воздуха, его активность значительно уменьшается. Было высказано предположение о том, что одновременно с альфа-частицами торий испускает радиоактивный газ.

Результаты совместной работы Резерфорда и его коллеги Фредерика Содди были опубликовали в 1902—1903 годах в ряде статей в «Philosophical Magazine». В этих статьях, проанализировав полученные результаты, авторы пришли к выводу о возможности превращения одних химических элементов в другие.

В результате атомного превращения образуется вещество совершенно нового вида, полностью отличное по своим физическим и химическим свойствам от первоначального вещества

Э. Резерфорд, Ф. Содди

В те времена господствовала идея о неизменности и неделимости атома, другие выдающиеся учёные, наблюдая аналогичные явления, объясняли их присутствием «новых» элементов в исходном веществе с самого начала. Однако время показало ошибочность подобных представлений. Последующие работы физиков и химиков показали, в каких случаях одни элементы могут превращаться в другие и какие законы природы управляют этими превращениями.[17]

Закон радиоактивного распада[править | править код]

Выкачивая воздух из сосуда с торием, Резерфорд выделил эманацию тория (газ, известный сейчас как торон или радон-220, один из изотопов радона) и исследовал её ионизирующую способность. Было выяснено, что активность этого газа каждую минуту убывает вдвое.

Изучая зависимость активности радиоактивных веществ от времени, учёный открыл закон радиоактивного распада.

Поскольку ядра атомов химических элементов достаточно устойчивы, Резерфорд предположил, что для их преобразования или разрушения нужна очень большая энергия. Первое ядро, подвергнутое искусственному преобразованию — ядро атома азота. Бомбардируя азот альфа-частицами с большой энергией, Резерфорд обнаружил появление протонов — ядер атома водорода.

Схема опыта по рассеянию ɑ-частиц. 1 — радиоактивный препарат, 2 — свинцовый цилиндр, 3 — фольга из исследуемого материала, 4 — полупрозрачный экран, покрытый ZnS, 5 — микроскоп.
Эксперимент Гейгера — Марсдена с золотой фольгой[править | править код]
Вверху: Ожидаемые результаты: α-частицы, проходящие через ядро в модели Томсона. Внизу: Наблюдаемые результаты: небольшая часть частиц отклоняется, указывая на небольшой, концентрированный положительный заряд. Обратите внимание, что изображения не в масштабе, а в действительности ядро значительно меньше, чем электронная оболочка.

Резерфорд — один из немногих лауреатов Нобелевской премии, кто сделал свою самую известную работу после её получения.[18] Совместно с Хансом Гейгером и Эрнстом Марсденом в 1909 году, он провёл эксперимент, который продемонстрировал существование ядра в атоме. Резерфорд попросил Гейгера и Марсдена в этом эксперименте искать альфа-частицы с очень большими углами отклонения, что не ожидалось от модели атома Томсона в то время. Такие отклонения, хотя и редкие, были найдены, и вероятность отклонения оказалась гладкой, хотя и быстро убывающей функцией угла отклонения.

Позднее Резерфорд признался, что, когда предложил своим ученикам провести эксперимент по рассеиванию альфа-частиц на бо́льшие углы, он сам не верил в положительный результат.

Это было почти столь же невероятно, как если бы вы стреляли 15-дюймовым снарядом в кусок тонкой бумаги, а снаряд возвратился бы к вам и нанёс удар.

Эрнест Резерфорд

Резерфорд смог интерпретировать полученные в результате эксперимента данные, что привело его к разработке планетарной модели атома в 1911 году. Согласно этой модели атом состоит из очень маленького положительно заряженного ядра, содержащего большую часть массы атома, и обращающихся вокруг него лёгких электронов.

  • За добрый нрав Капицa прозвал Резерфорда «Крокодилом».«Это животное никогда не поворачивает назад и потому может символизировать Резерфордовскую проницательность и его стремительное продвижение вперед», — пояснял Капица. В 1931 году «Крокодил» выхлопотал 15 тысяч фунтов стерлингов на постройку и оборудование специального здания лаборатории для Капицы. В феврале 1933 года в Кембридже состоялось торжественное открытие лаборатории. На торцевой стене 2-этажного здания был высечен по камню огромный, во всю стену крокодил. Его по заказу Капицы сделал известный скульптор Эрик Гилл. Резерфорд сам объяснил, что это он. Входную дверь открыли позолочённым ключом в форме крокодила.[19]

25 октября 21-го года.

Отношения с Резерфордом, или, как я его называю, Крокодилом, улучшаются.

Отрывок из письма Капицы матери, процитированный Даниилом Даниным в кн. «Резерфорд» из цикла ЖЗЛ.

По словам Ива, Капица так объяснял придуманное им прозвище: «Это животное никогда не поворачивает назад и потому может символизировать Резерфордовскую проницательность и его стремительное продвижение вперёд». Капица добавлял, что «в России на Крокодила смотрят со смесью ужаса и восхищения». В советских биографических очерках существует другая версия: «Дело в том, что у Резерфорда был громкий голос и он не умел управлять им. Могучий голос метра, встретившего кого-нибудь в коридоре, предупреждал тех, кто находился в лабораториях, о его приближении, и сотрудники успевали «собраться с мыслями». Это дало Капице основание прозвать Резерфорда Крокодилом. Объясняют это ассоциацией с героем популярной детской книжки Крокодилом, который проглотил будильник. Его тиканье предупреждало детей о приближении страшного зверя.» (Ф. Кедров. Капица: жизнь и открытия. М.: Московский рабочий. 1979)

  • Э. Резерфорд, открывший ядро атома, скептически отзывался о перспективах ядерной энергетики и говорил, что его это не интересует, и он считает, что если это произойдёт, то ничего удивительного в этом не будет.[20][21]
  • Когда Пётр Капица приехал работать в Кембридж к Резерфорду, то он ему сказал, что штат лаборатории уже укомплектован. Тогда Капица спросил:
 — Какую допустимую погрешность вы допускаете в экспериментах?
 — Обычно около 3 %.
 — А сколько человек работает в лаборатории?
 — 30.
 — Тогда 1 человек составляет примерно 3 % от 30.
Резерфорд рассмеялся и принял Капицу в качестве «допустимой погрешности». В действительности же Капицу взяли в лабораторию благодаря рекомендации физика Иоффе[источник не указан 2763 дня].
  • Получив в 1908 году известие о присуждении ему Нобелевской премии по химии, Резерфорд заявил: «Вся наука — или физика, или коллекционирование марок». (All science is either physics or stamp collecting.)[22]

Резерфорд является одним из самых уважаемых в мире учёных[23]. В 1914 году Георг V посвятил Резерфорда в рыцари,[24] в качестве рыцаря-бакалавра. В 1925 году принял его[25] в члены Ордена Заслуг, а в 1931 году назначил Резерфорда[26] бароном.

В честь Эрнеста Резерфорда названы:

Труды Резерфорда на русском языке[править | править код]

  • Резерфорд Э. Нуклеарное строение атома // Успехи физических наук. — 1921. — Т. 2, № 2.
  • Резерфорд Э. Биография альфа-частицы // Успехи физических наук. — 1924. — Т. 4, № 2-3.
  • Резерфорд Э. Естественное и искусственное разложение элементов // Успехи физических наук. — 1925. — Т. 5, № 1-2.
  • Резерфорд Э. Атомные ядра и их превращения // Успехи физических наук. — 1928. — Т. 8, № 1.
  • Резерфорд Э. Дискуссия о строении атомного ядра // Успехи физических наук. — 1929. — Т. 9, № 5.
  • Резерфорд Э., Чадвик Дж. и др. Дискуссия о структуре атомного ядра // Успехи физических наук. — 1932. — Т. 12, № 5-6.
  • Резерфорд Э. Современная алхимия // Успехи физических наук. — 1938. — Т. 19, № 1.
  • Резерфорд, Э. Радиоактивность. // Избранные научные труды / Отв. ред. Г.Н.Флеров. Сост. и ред. перевода Ю.М.Ципенюк.. — М.: Наука, 1971. — (Классики науки).
  • Резерфорд, Э. Строение атома и искусственное превращение элементов. // Избранные научные труды / Отв. ред. Г.Н.Флеров. Сост. и ред. перевода Ю.М.Ципенюк.. — М.: Наука, 1972. — (Классики науки).

О нём[править | править код]

  1. 1 2 Ernest Rutherford — 1834.
  2. ↑ Find a Grave — 1995. — ed. size: 165000000
  3. ↑ Ernest Rutherford
  4. Капица П. Л. Резерфорд Эрнест // Большая советская энциклопедия: [в 30 т.] / под ред. А. М. Прохорова — 3-е изд. — М.: Советская энциклопедия, 1975. — Т. 21 : Проба — Ременсы. — С. 582.
  5. ↑ идентификатор BNF: платформа открытых данных — 2011.
  6. 1 2 3 4 5 6 Earnest Rutherford
  7. ↑ Опыт Резерфорда (неопр.). Elementy.Ru. Дата обращения 30 апреля 2014.
  8. Рукк, Н.С. Биография Эрнеста Резерфорда (неопр.). Дата обращения 19 августа 2009. Архивировано 11 февраля 2012 года.
  9. 1 2 3 4 5 6 7 8 9 (Капица, 1938)
  10. ↑ (Д.Данин, «Резерфорд»)
  11. ↑ Family history in from the cold.
  12. ↑ Historic St Paul’s Church in the Christchurch suburb of Papanui is being fully restored.
  13. ↑ McLintock, A.H. (18 September 2007), Rutherford, Sir Ernest (Baron Rutherford of Nelson, O.M., F.R.S.), An Encyclopaedia of New Zealand (1966 ed.), Te Ara – The Encyclopedia of New Zealand, ISBN 978-0-478-18451-8, <http://www.teara.govt.nz/en/1966/rutherford-sir-ernest/1>. Проверено 2 апреля 2008. 
  14. ↑ http://to-name.ru/biography/ernest-rezerford.htm — Эрнест Резерфорд. Биография
  15. ↑ http://www.e-reading-lib.org/chapter.php/94407/110/Danin_-_Rezerford.html — Краткая хронология жизни и деятельности Эрнста Резерфорда
  16. ↑ New Zealand Scientists Part of Nobel Award (неопр.). Scoop (16 October 2007). Дата обращения 13 июля 2012. Архивировано 12 июля 2012 года. (англ.)
  17. ↑ http://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/radioaktivnie_prevrashcheniya.html?page=0,0 — РАДИОАКТИВНЫЕ ПРЕВРАЩЕНИЯ|Энциклопедия Кругосвет
  18. ↑ cite: http://www.encyclopediabritanica.com/nucleus (atom)
  19. ↑ «Квант» № 6, 1987, с. 14
  20. ↑ Сергей Капица. «Россия и мир в демографическом зеркале». 2-я лекция, стенограмма.
  21. ↑ The Times archives, September 12, 1933, «The British association — breaking down the atom»
  22. ↑ Короткие истории / Физики продолжают шутить
  23. ↑ P. P. O’Shea: Ernest Rutherford. His Honours and Distinctions. In: Notes and Records of the Royal Society of London. Band 27, Nummer 1, 1972, S. 67 (doi:10.1098/rsnr.1972.0009).
  24. The London Gazette. Nummer 28806, 24. Februar 1914, S. 1546 (PDF).
  25. The London Gazette. Nummer 33007, Supplement, 1. Januar 1925, S. 3 (PDF).
  26. The London Gazette. Nummer 33675, Supplement, 1. Januar 1931, S. 1 (PDF).

В чем был недостаток модели Резерфорда?

1. Электроны вращаются вокруг ядра, следовательно, обладают центростремительным ускорением. проблемы: а) Ускоренно движущиеся электроны излучают электромагнитные волны, поэтому их энергия должна уменьшаться, а вместе с этим должен уменьшаться радиус орбиты. Значит, атом должен быть неустойчивым: примерно за 10 с электрон должен упасть на ядро. б) Нагретое тело, непрерывно теряя энергию вследствие излучения, должно охладиться до абсолютного нуля. 2. Энергия атома может иметь произвольное значение, значит, и величина поглощаемой (излучаемой) атомом энергии может быть произвольной. проблемы: Невозможно объяснить спектральные закономерности.

Планетарная модель атома Бора-Резерфорда. В 1911 году Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда») . Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию. Расчеты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда») . Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *