Области в комплексной плоскости | Математика
Рассмотрим задачи на нахождение областей в комплексной плоскости, заданных неравенствами. Чтобы решить данные неравенства с комплексными числами, вначале необходимо перейти к декартовым координатам, т.е. перейти к действительному представлению.
Чтобы представить комплексное число в действительной форме, нужно заменить комплексную переменную z действительными переменными x и y, а именно z = x + iy, где
x = Re(z), y = Im(z).
Пример 1. Найти на комплексной плоскости множество точек, удовлетворяющих неравенству
|z + i| < 2.
Решение неравенства с комплексными числами начинается с представления числа в действительной форме. Неравенство примет вид:
или
Для того, чтобы избавиться от ограждающего знака модуля, используют стандартную замену:
или
Как мы знаем из начальных уроков, |z| это модуль комплексного числа, х — действительная часть комплексного числа, y — это мнимая часть комплексного числа, которая находится в связке с мнимой единицей. Итоговый ответ, область решения — это часть плоскости, расположенная внутри круга
Пример 2. Изобразить на комплексной плоскости множество точек, удовлетворяющих неравенству
Заменяем переменную z представлением в действительной форме z = x + iy, приводим подобные члены, берем действительную часть от получившегося комплексного числа и
приводим к стандартному виду получившееся комплексное число:
Областью решения неравенства
является плоскость, расположенная выше прямой у = 1. Рисунок не прикрепляю, все просто — чертим прямую у = 1 и штрихуем область выше этой прямой.
Чтобы изобразить область, заданную несколькими неравенствами, нужно изобразить области, задаваемые отдельными неравенствами, а затем найти их общую часть.
Пример 3. Построить область, заданную неравенствамиВначале, заменяем z=x+iy, затем группируем подобные члены, чтобы сформировать действительное представление комплексного числа.
Первое неравенство задает внешнюю часть окружности радиуса 1 с центром в точке (-1; 0) с границей (белый круг). Второе неравенство задает внутреннюю часть окружности радиуса 1 с центром в точке (0; -1) без границы.
Сделаем рисунок в качестве графического доказательства. Область окружности, закрашенная зеленым цветом, является графическим ответом к решению заданного неравенства с комплексными числами:
matematyka.ru
Раздел 14 (ответы)
Раздел 14. Комплексные числа.
Записать в алгебраической форме число:
Ответ:
Записать в алгебраической форме число:
Запишем число
в тригонометрической форме:Тогда искомое число равно:
Ответ:
Для числа найти и
Ответ:
Записать в алгебраической форме число;
Для упрощения вычислений запишем числитель и знаменатель в показательной форме:
Ответ;
Нарисовать на комплексной плоскости область, заданную неравенствами:
Первое неравенство задает внутреннюю часть окружности с границей с радиусом
Второе неравенство задает первую четверть комплексной плоскости (включая положительные полуоси).
Таким образом, система задает внутреннюю часть с границей расположенной в первой четверти половины окружности с центром в точке .
Нарисовать на комплексной плоскости область, заданную неравенством:
Представим число
в алгебраической форме и решим неравенство:Решить уравнение. Ответ записать в алгебраической форме
Ответ:
Решить уравнение. Ответ записать в алгебраической форме
Запишем комплексное число в алгебраической форме и решим уравнение:
Ответ:
Найти все решения уравнения , лежащие в области
Определим все корни уравнения:
Проверим принадлежность полученных корней заданной области:
Все решения уравнения лежат вне заданной области.
Ответ: в заданной области нет решений уравнения.
Найти все решения уравнения , лежащие в области
Определим все корни уравнения:
Проверим принадлежность полученных корней заданной области:
Ответ:
studfile.net
Графический метод решения задач линейного программирования
1. Область решений линейных неравенств.
Пусть задано линейное неравенство с двумя переменными и
(1)
Если величины ирассматривать как координаты точки плоскости, то совокупность точек плоскости, координаты которых удовлетворяют неравенству (1), называется областью решений данного неравенства. Следовательно, областью решений неравенства (1) является полуплоскость с граничной прямой линией.
Пример 1. Найти полуплоскость, определяемую неравенством
.
Решение. Строим прямую по двум точкам, например, по точкам пересечения с осями координат (0; 4) и (6; 0). Эта линия делит плоскость на две части, т.е. на две полуплоскости. Берем любую точку плоскости, не лежащую на построенной прямой. Если координаты точки удовлетворяют заданному неравенству, то областью решений является та полуплоскость, в которой находится эта точка. Если же получаем неверное числовое неравенство, то областью решений является та полуплоскость, которой эта точка не принадлежит. Обычно для контроля берут точку (0; 0).
Подставим ив заданное неравенство. Получим. Следовательно, полуплоскость «к нулю» является областью решений данного неравенства (заштрихованная часть рис. 1).
Пример 2. Найти полуплоскость, определяемую неравенством
.
Решение. Строим прямую , например, по точкам (0; 0) и (1; 3). Т.к. прямая проходит через начало координат, точку (0; 0), то нельзя брать ее для контроля. Возьмем, например, точку (– 2; 0) и подставим ее координаты в заданное неравенство. Получим. Это неверно. Значит, областью решений данного неравенства будет та полуплоскость, которой не принадлежит контрольная точка (заштрихованная часть рис. 2).
2. Область решений системы линейных неравенств.
Пример. Найти область решений системы неравенств:
Решение. Находим область решений I-го неравенства (рис. 1) и II-го неравенства (рис. 2).
Все точки части плоскости, где штриховка наложилась, будут удовлетворять и первому и второму неравенству. Таким образом, получена область решений заданной системы неравенств (рис. 3).
Если к заданной системе неравенств добавить условия и, то область решений системы неравенствбудет находиться только вI координатной четверти (рис. 4).
Принцип нахождения решения системы линейных неравенств не зависит от количества неравенств, входящих в систему.
Примечание: Область допустимых решений (ОДР) если существует, то представляет собой замкнутый или незамкнутый выпуклый многоугольник.
3. Алгоритм графического метода решения злп
Если задача линейного программирования содержит только две переменные, то ее можно решить графическим методом, выполняя следующие операции:
Строим все полуплоскости, соответствующие ограничениям системы.
Находим область допустимых решений (ОДР), как множество точек, в котором пересекаются все построенные полуплоскости.
Строим вектор , выходящий из начала координат, гдеи– это коэффициенты при неизвестных в целевой функции. Этот вектор указывает направление возрастания целевой функции.
Перпендикулярно вектору проводим так называемую линию уровня(т.е. прямую, проходящую через начало координат).
Перемещаем линию уровня параллельно самой себе в направлении вектора(если задача на максимум (max)) или в противоположном направлении (если задача на минимум (min)) до тех пор, пока линия уровня имеет хотя бы одну общую точку с ОДР.
Находим координаты этой общей крайней точки, решая систему уравнений прямых, на пересечении которых она находится.
Подставляем эти координаты в целевую функцию и находим ее max (или min).
Пример. Решить задачу линейного программирования графическим методом
max
Решение. Третье и четвертое ограничения системы – двойные неравенства, преобразуем их к более привычному для подобных задач виду , этои, т.о. первое из полученных неравенств(или) относится к условию неотрицательности, а второек системе ограничений. Аналогично,этои.
Т.о. задача примет вид
max
,
Заменив знаки неравенств на знаки точных равенств, построим область допустимых решений по уравнениям прямых:
; ;;.
Областью решений неравенств является пятиугольник ABCDE.
Построим вектор . Через начало координат перпендикулярно вектору проведем линию уровня. И затем будем перемещать ее параллельно самой себе в направлении векторадо точки выхода из области допустимых решений. Это будет точкаС. Найдем координаты этой точки, решив систему, состоящую из уравнений первой и четвертой прямых:
.
Подставим координаты точки С в целевую функцию и найдем ее максимальное значение Пример. Построить линии уровня идля задачи линейного программирования:
max (min)
Решение. Область допустимых решений – открытая область (рис. 6). Линия уровня проходит через точкуВ. Функция Z имеет минимум в этой точке. Линию уровня построить нельзя, так как нет точки выхода из области допустимых решений, это значит, что.
Задания для самостоятельной работы.
Найти область решений системы неравенств:
а)б)
Решить графически задачу линейного программирования
min
Составить экономико-математическую модель и решить графически задачу линейного программирования
Фирма выпускает изделия двух видов А и В. Изделия каждого вида обрабатывают на двух станках (I и II). Время обработки одного изделия каждого вида на станках, время работы станков за рабочую смену, прибыль фирмы от реализации одного изделия вида А и вида В занесены в таблицу:
Станки | Время обработки одного изделия, мин. | Время работы станка за смену, мин. | |
А | В | ||
I | 10 | 20 | 1300 |
II | 4 | 13 | 720 |
Прибыль от одного изделия, грн. | 0,3 | 0,9 |
Изучение рынка сбыта показало, что ежедневный спрос на изделия вида В никогда не превышает спрос на изделия вида А более чем на 40 единиц, а спрос на изделия вида А не превышает 90 единиц в день.
Определить план производства изделий, обеспечивающий наибольшую прибыль.
studfile.net
Найти область решений и область допустимых решений системы неравенств — 22 Апреля 2015 — Примеры решений задач
Контрольная работа по дисциплине “Методы оптимальных решений”
Задание 1 Найти область решений и область допустимых решений системы неравенств:
$\left\{\begin{matrix}x_1-x_2\leq 1\\ x_1-2x_2\leq 1\\x_1\leq 0.25\end{matrix}\right..$
Решение.
Построим область решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (полуплоскости обозначены штрихом).
Построим уравнение x1-x2 = 1 по двум точкам.
Для нахождения первой точки приравниваем x1 = 0. Находим x2 = -1. Для нахождения второй точки приравниваем x2 = 0. Находим x1 = 1. Соединяем точку (0;-1) с (1;0) прямой линией. Определим полуплоскость, задаваемую неравенством. Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 1 • 0 — 1 • 0 — 1 ≤ 0, т.е. x1-x2 — 1≤ 0 в полуплоскости ниже прямой.
Построим уравнение x1-2x2 = 1 по двум точкам.
Для нахождения первой точки приравниваем x1 = 0. Находим x2 = -0.5. Для нахождения второй точки приравниваем x2 = 0. Находим x1 = 1. Соединяем точку (0;-0.5) с (1;0) прямой линией. Определим полуплоскость, задаваемую неравенством. Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 1 • 0 — 2 • 0 — 1 ≤ 0, т.е. x1-2x2 — 1≥ 0 в полуплоскости выше прямой.
Построим уравнение x1 = 0.25.
Эта прямая проходит через точку x1 = 0.25 параллельно оси OX2. Определим полуплоскость, задаваемую неравенством. Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 1 • 0 — 0.25 ≤ 0, т.е. x1 — 0.25≥ 0 в полуплоскости правее прямой.
Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи.
Получаем область решений (ОР), треугольник ABC
Область решения (ОР) системы, удовлетворяющая условиям неотрицательности (xj ≥ 0, j = 1,n), называется областью неотрицательных, или допустимых, решений (ОДР). Следовательно, задача области допустимых значений (ОДР) не имеет.
www.reshim.su
Графический метод — линейное программирование
Описание метода
Если в задаче линейного программирования имеется только две переменные, то ее можно решить графическим методом.
Рассмотрим задачу линейного программирования с двумя переменными и :
(1.1) ;
(1.2)
Здесь , есть произвольные числа. Задача может быть как на нахождение максимума (max), так и на нахождение минимума (min). В системе ограничений могут присутствовать как знаки , так и знаки .
Построение области допустимых решений
Графический метод решения задачи (1) следующий.
Вначале мы проводим оси координат и и выбираем масштаб. Каждое из неравенств системы ограничений (1.2) определяет полуплоскость, ограниченную соответствующей прямой.
Так, первое неравенство
(1.2.1)
определяет полуплоскость, ограниченную прямой . С одной стороны от этой прямой , а с другой стороны . На самой прямой . Чтобы узнать, с какой стороны выполняется неравенство (1.2.1), мы выбираем произвольную точку, не лежащую на прямой. Далее подставляем координаты этой точки в (1.2.1). Если неравенство выполняется, то полуплоскость содержит выбранную точку. Если неравенство не выполняется, то полуплоскость расположена с другой стороны (не содержит выбранную точку). Заштриховываем полуплоскость, для которой выполняется неравенство (1.2.1).
Тоже самое выполняем для остальных неравенств системы (1.2). Так мы получим заштрихованных полуплоскостей. Точки области допустимых решений удовлетворяют всем неравенствам (1.2). Поэтому, графически, область допустимых решений (ОДР) является пересечением всех построенных полуплоскостей. Заштриховываем ОДР. Она представляет собой выпуклый многоугольник, грани которого принадлежат построенным прямым. Также ОДР может быть неограниченной выпуклой фигурой, отрезком, лучом или прямой.
Может возникнуть и такой случай, что полуплоскости не содержат общих точек. Тогда областью допустимых решений является пустое множество. Такая задача решений не имеет.
Можно упростить метод. Можно не заштриховывать каждую полуплоскость, а вначале построить все прямые
(2)
Далее выбрать произвольную точку, не принадлежащую ни одной из этих прямых. Подставить координаты этой точки в систему неравенств (1.2). Если все неравенства выполняются, то область допустимых решений ограничена построенными прямыми и включает в себя выбранную точку. Заштриховываем область допустимых решений по границам прямых так, чтобы оно включало в себя выбранную точку.
Если хотя бы одно неравенство не выполняется, то выбираем другую точку. И так далее, пока не будет найдены одна точка, координаты которой удовлетворяют системе (1.2).
Нахождение экстремума целевой функции
Итак, мы имеем заштрихованную область допустимых решений (ОДР). Она ограничена ломаной, состоящей из отрезков и лучей, принадлежащих построенным прямым (2). ОДР всегда является выпуклым множеством. Оно может быть как ограниченным множеством, так и не ограниченным вдоль некоторых направлений.
Теперь мы можем искать экстремум целевой функции
(1.1) .
Для этого выбираем любое число и строим прямую
(3) .
Для удобства дальнейшего изложения считаем, что эта прямая проходит через ОДР. На этой прямой целевая функция постоянна и равна . такая прямая называется линией уровня функции . Эта прямая разбивает плоскость на две полуплоскости. На одной полуплоскости
.
На другой полуплоскости
.
То есть с одной стороны от прямой (3) целевая функция возрастает. И чем дальше мы отодвинем точку от прямой (3), тем больше будет значение . С другой стороны от прямой (3) целевая функция убывает. И чем дальше мы отодвинем точку от прямой (3) в другую сторону, тем меньше будет значение . Если мы проведем прямую, параллельную прямой (3), то новая прямая также будет линией уровня целевой функции, но с другим значением .
Таким образом, чтобы найти максимальное значение целевой функции, надо провести прямую, параллельную прямой (3), максимально удаленную от нее в сторону возрастания значений , и проходящую хотя бы через одну точку ОДР. Чтобы найти минимальное значение целевой функции, надо провести прямую, параллельную прямой (3) и максимально удаленную от нее в сторону убывания значений , и проходящую хотя бы через одну точку ОДР.
Если ОДР неограниченна, то может возникнуть случай, когда такую прямую провести нельзя. То есть как бы мы ни удаляли прямую от линии уровня (3) в сторону возрастания (убывания) , то прямая всегда будет проходить через ОДР. В этом случае может быть сколь угодно большим (малым). Поэтому максимального (минимального) значения нет. Задача решений не имеет.
Рассмотрим случай, когда крайняя прямая, параллельная произвольной прямой вида (3), проходит через одну вершину многоугольника ОДР. Из графика определяем координаты этой вершины. Тогда максимальное (минимальное) значение целевой функции определяется по формуле:
.
Решением задачи является
.
Также может встретиться случай, когда прямая параллельна одной из граней ОДР. Тогда прямая проходит через две вершины многоугольника ОДР. Определяем координаты и этих вершин. Для определения максимального (минимального) значения целевой функции, можно использовать координаты любой из этих вершин:
.
Задача имеет бесконечно много решений. Решением является любая точка, расположенная на отрезке между точками и , включая сами точки и .
Пример решения задачи линейного программирования графическим методом
Фирма выпускает платья двух моделей А и В. При этом используется ткань трех видов. На изготовление одного платья модели А требуется 2 м ткани первого вида, 1 м ткани второго вида, 2 м ткани третьего вида. На изготовление одного платья модели В требуется 3 м ткани первого вида, 1 м ткани второго вида, 2 м ткани третьего вида. Запасы ткани первого вида составляют 21 м, второго вида — 10 м, третьего вида — 16 м. Выпуск одного изделия типа А приносит доход 400 ден. ед., одного изделия типа В — 300 ден. ед.
Составить план производства, обеспечивающий фирме наибольший доход. Задачу решить графическим методом.
Решение
Пусть переменные и означают количество произведенных платьев моделей А и В, соответственно. Тогда количество израсходованной ткани первого вида составит:
(м)
Количество израсходованной ткани второго вида составит:
(м)
Количество израсходованной ткани третьего вида составит:
(м)
Поскольку произведенное количество платьев не может быть отрицательным, то
и .
Доход от произведенных платьев составит:
(ден. ед.)
Тогда экономико-математическая модель задачи имеет вид:
Решаем графическим методом.
Проводим оси координат и .
Строим прямую .
При .
При .
Проводим прямую через точки (0; 7) и (10,5; 0).
Строим прямую .
При .
При .
Проводим прямую через точки (0; 10) и (10; 0).
Строим прямую .
При .
При .
Проводим прямую через точки (0; 8) и (8; 0).
Прямые и являются осями координат.
Область допустимых решений (ОДР) ограничена построенными прямыми и осями координат. Чтобы узнать, с какой стороны, замечаем, что точка принадлежит ОДР, поскольку удовлетворяет системе неравенств:
Заштриховываем область, чтобы точка (2; 2) попала в заштрихованную часть. Получаем четырехугольник OABC.
Строим произвольную линию уровня целевой функции, например,
(П1.1) .
При .
При .
Проводим прямую через точки (0; 4) и (3; 0).
Далее замечаем, что поскольку коэффициенты при и целевой функции положительны (400 и 300), то она возрастает при увеличении и . Проводим прямую, параллельную прямой (П1.1), максимально удаленную от нее в сторону возрастания , и проходящую хотя бы через одну точку четырехугольника OABC. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.
Решение задачи: ;
Ответ
.
То есть, для получения наибольшего дохода, необходимо изготовить 8 платьев модели А. Доход при этом составит 3200 ден. ед.
Пример 2
Решить задачу линейного программирования графическим методом.
Решение
Решаем графическим методом.
Проводим оси координат и .
Строим прямую .
При .
При .
Проводим прямую через точки (0; 6) и (6; 0).
Строим прямую .
Отсюда .
При .
При .
Проводим прямую через точки (3; 0) и (7; 2).
Строим прямую .
Строим прямую (ось абсцисс).
Область допустимых решений (ОДР) ограничена построенными прямыми. Чтобы узнать, с какой стороны, замечаем, что точка принадлежит ОДР, поскольку удовлетворяет системе неравенств:
Заштриховываем область по границам построенных прямых, чтобы точка (4; 1) попала в заштрихованную часть. Получаем треугольник ABC.
Строим произвольную линию уровня целевой функции, например,
.
При .
При .
Проводим прямую линию уровня через точки (0; 6) и (4; 0).
Поскольку целевая функция увеличивается при увеличении и , то проводим прямую, параллельную линии уровня и максимально удаленную от нее в сторону возрастания , и проходящую хотя бы через одну точку треугольника АВC. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.
Решение задачи: ;
Ответ
.
Пример отсутствия решения
Решить графически задачу линейного программирования. Найти максимальное и минимальное значение целевой функции.
Решение
Решаем задачу графическим методом.
Проводим оси координат и .
Строим прямую .
При .
При .
Проводим прямую через точки (0; 8) и (2,667; 0).
Строим прямую .
При .
При .
Проводим прямую через точки (0; 3) и (6; 0).
Строим прямую .
При .
При .
Проводим прямую через точки (3; 0) и (6; 3).
Прямые и являются осями координат.
Область допустимых решений (ОДР) ограничена построенными прямыми и осями координат. Чтобы узнать, с какой стороны, замечаем, что точка принадлежит ОДР, поскольку удовлетворяет системе неравенств:
Заштриховываем область, чтобы точка (3; 3) попала в заштрихованную часть. Получаем неограниченную область, ограниченную ломаной ABCDE.
Строим произвольную линию уровня целевой функции, например,
(П3.1) .
При .
При .
Проводим прямую через точки (0; 7) и (7; 0).
Поскольку коэффициенты при и положительны, то возрастает при увеличении и .
Чтобы найти максимум, нужно провести параллельную прямую, максимально удаленную в сторону возрастания , и проходящую хотя бы через одну точку области ABCDE. Однако, поскольку область неограниченна со стороны больших значений и , то такую прямую провести нельзя. Какую бы прямую мы не провели, всегда найдутся точки области, более удаленные в сторону увеличения и . Поэтому максимума не существует. можно сделать сколь угодно большой.
Ищем минимум. Проводим прямую, параллельную прямой (П3.1) и максимально удаленную от нее в сторону убывания , и проходящую хотя бы через одну точку области ABCDE. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.
Минимальное значение целевой функции:
Ответ
Максимального значения не существует.
Минимальное значение
.
Автор: Олег Одинцов. Опубликовано:
1cov-edu.ru