Правило подобия треугольников – Признаки подобных треугольников | Треугольники

Содержание

Признаки подобных треугольников | Треугольники

Признаки подобия треугольников позволяют доказать, что треугольники являются подобными, на основании 2-3 равенств (вместо 6 по определению).

В школьном курсе геометрии, как правило, изучают три признака подобия произвольных треугольников.

1-й признак подобия треугольников

( подобие треугольников по двум углам)

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

   

2-й признак подобия треугольников

( подобие треугольников по двум сторонам и углу между ними)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие  треугольники подобны.

   

3-й признак подобия треугольников

( подобие треугольников по трём сторонам)

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

   

   

Есть еще 4-й признак подобия треугольников —

( подобие треугольников по двум сторонам и наибольшему углу)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а наибольший угол одного равен наибольшему углу другого, то такие треугольники подобны.

Доказав, что треугольники подобны, можно использовать свойства подобных треугольников.

Для доказательства подобия прямоугольных треугольников используют другие признаки. Их мы запишем в следующий раз.

Подобие правильных и подобие равнобедренных треугольников рассмотрим позже.

Признаки подобия треугольников широко используются при решении задач как в курсе планиметрии, так и в курсе стереометрии. Например, на основании подобия прямоугольных треугольников доказывается свойство биссектрисы треугольника.

www.treugolniki.ru

Подобные треугольники. Признаки и свойства

Категория: Справочные материалы

Елена Репина 2013-08-22 2014-01-31

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

8

Коэффициентом подобия называют число k, равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны  подобных треугольников — стороны, лежащие напротив равных углов.

коэффициент подобия треуг

 

Признаки подобия треугольников

 

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

3ed II признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

12

 III признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

4e

Свойства подобных треугольников

 

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников
     равно коэффициенту подобия.r
  • Отношение длин соответствующих элементов подобных треугольников (в частности,  длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

 

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

подобные треугольники

2. Треугольники  AOD и COB

, образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия – k=\frac{AO}{OC}.

 podobie v trapetsii

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

подобие в прямоугольном треугольнике

внимание

Здесь вы найдете  подборку задач по теме «Подобные треугольники»

.

Автор: egeMax | комментариев 48

egemaximum.ru

Признаки подобия треугольников — это… Что такое Признаки подобия треугольников?


Признаки подобия треугольников

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого.

Признаки подобия треугольников

Признаки подобия треугольников — геометрические признаки, позволяющие установить, что два треугольника являются подобными без использования всех элементов.

Первый признак

Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.


Дано: ∆ABC и ∆A1B1C1, ∠A=∠A1

, ∠B=∠B1.

Доказать: ∆ABC \sim ∆A1B1C1.

Доказательство

Второй признак

Если две стороны одного треугольника пропорциональны двум сторонам другого и углы между этими сторонами равны, то треугольники подобны.


Дано: ∆ABC и ∆A1B1C1, ∠A=∠A1, \frac{AB}{A_1B_1} = \frac{AC}{A_1C_1}.

Доказать: ∆ABC \sim ∆A1B1C1.

Доказательство

Третий признак

Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.


Дано: ∆ABC и ∆A1B1C1, \frac{AB}{A_1B_1} = \frac{AC}{A_1C_1} = \frac{BC}{B_1C_1}.

Доказать: ∆ABC \sim ∆A1B1C1.

Доказательство

Признаки подобия прямоугольных треугольников

  1. По острому углу — см. первый признак;
  2. По двум катетам — см. второй признак;
  3. По катету и гипотенузе — см. второй признак.

Свойства подобных треугольников

Треугольники, на которые высота, опущенная из прямого угла, делит прямоугольный треугольник, подобны всему треугольнику по первому признаку, а значит:

Связанные определения

  • Коэффициент подобия — число k, равное отношению сходственных сторон подобных треугольников.
  • Сходственные стороны подобных треугольников — стороны, лежащие напротив равных углов.

Литература

  • Геометрия 7-9/Л. С. Атанасян и др. — 12-е изд. — М.: Просвещение, 2002. — 384 c.: ил.

См. также

Ссылки

Wikimedia Foundation. 2010.

  • Признак Абеля
  • Признание: Два лица зла (фильм)

Смотреть что такое «Признаки подобия треугольников» в других словарях:

  • Признаки равенства треугольников — Стандартные обозначения Треугольник  простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника …   Википедия

  • Подобие треугольников — Признаки подобия треугольников геометрические признаки, позволяющие установить, что два треугольника являются подобными без использования всех элементов. Содержание 1 Признаки подобия треугольников 1.1 Первый признак …   Википедия

  • Преобразование подобия — Подобие  преобразование евклидова пространства, при котором для любых двух точек A, B и их образов A , B имеет место соотношение | A B | = k | AB | , где k  положительное число, называемое коэффициентом подобия. Содержание 1 Примеры 2 Связанны …   Википедия

  • Подобные треугольники — Подобные треугольники  треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого. Содержание 1 Признаки подобия треугольников 1.1 Первый признак …   Википедия

  • Треугольник — У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве)  это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… …   Википедия

  • Подобие — У этого термина существуют и другие значения, см. Подобие (значения). Подобие  преобразование евклидова пространства, при котором для любых двух точек , и их образов , имеет место соотношение , где   положительное число, называемое… …   Википедия

  • Подобные фигуры — Подобие  преобразование евклидова пространства, при котором для любых двух точек A, B и их образов A , B имеет место соотношение | A B | = k | AB | , где k  положительное число, называемое коэффициентом подобия. Содержание 1 Примеры 2 Связанны …   Википедия

  • подобие — я; ср. 1. Пренебр. Нечто похожее, сходное с чем л. Жалкое п. старинного полонеза. П. человеческой фигуры. Не Гамлет, а его бесконечные подобия. Лепить по своему подобию (влияя на кого л., воспитывая кого л., делать его похожим на себя). 2. Матем …   Энциклопедический словарь

  • Площадь треугольника — Стандартные обозначения Треугольник  простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника …   Википедия

  • подобие — я; ср. 1) пренебр. Нечто похожее, сходное с чем л. Жалкое подо/бие старинного полонеза. Подо/бие человеческой фигуры. Не Гамлет, а его бесконечные подобия. Лепить по своему подобию (влияя на кого л., воспитывая кого л., делать его похожим на… …   Словарь многих выражений


dic.academic.ru

Подобные треугольники. Признаки подобия. Видеоурок. Геометрия 8 Класс

На данном уроке мы рассмотрим подобные треугольники и признаки подобия треугольников. Отметим, что равенство треугольников – это частный случай подобия, и решим несколько примеров.

Тема: Повторение курса геометрии 8 класса

Урок: Подобные треугольники. Признаки подобия

В подобных треугольниках важное место занимает понятие отношения отрезков. Напомним, что отношением отрезков AB и CD называется отношение их длин. Если отношения двух пар отрезков равны, то говорят, что отрезки пропорциональны (см. Рис. 1):

Треугольники  и  в некотором смысле похожи. Если их соответствующие углы равны:

а отношения соответствующих сторон одинаковы:

, k – коэффициент подобия, то треугольники называются подобными:

.

Рис. 1

Треугольник  называется подобным треугольнику  (), если все их соответствующие углы равны между собой, и отношения сходственных сторон (т.е. сторон, лежащих против равных углов) равны.

Отметим, что мы уже имели дело с частным случаем подобия – равенством двух треугольников . Напомним, что два треугольника называются равными, если все их соответствующие углы равны, и все стороны соответственно равны. В данном случае мы имеем дело с подобными треугольниками, коэффициент подобия которых равен единице.

Чтобы установить подобие треугольников, нужно установить справедливость приведенных шести равенств (углов и отношений сторон), но не всегда возможно это сделать. Для этого существуют признаки подобия треугольников.

Всего существует три признака подобия. Перечислим их:

1.      По равенству двух углов: если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны:.

2.      По пропорциональности двух сторон и равенству угла между ними: если две стороны одного треугольника пропорциональны соответственно двум сторонам другого треугольника, а углы, заключённые между этими сторонами, равны, то такие треугольники подобны: .

3.      По пропорциональности трёх сторон: если три стороны одного треугольника пропорциональны соответственно трём сторонам другого треугольника, то такие треугольники подобны: .

Пример 1: доказать, что периметр треугольника  относится к периметру треугольника  как коэффициент подобия, если заданные треугольники подобны.

Напомним, что периметр – это сумма линейных элементов, сумма трех сторон треугольника.

Итак, имеем два подобных треугольника: .

Доказать, что .

Доказательство:

Комментарий: мы выразили сторону одного треугольника через сторону второго с помощью коэффициента подобия, записали отношение периметров треугольников, подставили туда полученные выражения, вынесли за скобки общий множитель и сократили дробь.

 

Напомним, что площади подобных треугольников относятся как квадрат коэффициента подобия:

Пояснение: площадь треугольника – это произведение двух линейных элементов – сторона на высоту.

Пример 2 – задача 549: стороны данного треугольника: 15 см, 20 см и 30 см (см. Рис. 2). Найдите стороны треугольника, подобного данному, если его периметр равен 26 см.

В предыдущей задаче мы доказали, что отношение периметров подобных треугольников равно коэффициенту подобия. Периметр треугольника  нам задан, периметр треугольника  мы можем найти, так как нам заданы длины его сторон, таким образом, мы найдем коэффициент подобия и определим искомые длины сторон.

Рис. 2

Итак, мы рассмотрели подобные треугольники, вспомнили, какие треугольники называются подобными и в чем смысл подобия треугольников. Также вспомнили признаки подобия треугольников. Выяснили, что равенство треугольников – это частный случай подобия.

 

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Fmclass.ru (Источник).
  2. Edu.glavsprav.ru (Источник).
  3. Dpva.info (Источник).

 

Домашнее задание

  1. Задание 1: на стороне ВС треугольника  отмечена точка М так, что треугольники  и  подобны. Найдите АВ, если ВМ = 4 см, СМ = 5 см.
  2. Задание 2: диагональ АС трапеции ABCD с основаниями AD = 12 см и ВС = 3 см разделяет ее на два подобных треугольника. Найдите АС.
  3. Задание 3: диагональ АС, равная 6 см, разделяет трапецию ABCD на два подобных треугольника. Известны боковые стороны трапеции АВ = 4 см и CD = 6 см. Найдите периметр трапеции.

interneturok.ru

Формулы, теоремы и свойства элементов треугольника. Справочник репетитора по математике

Теоретичесикие шпаргалки по элементарной геометрии для занятий с репетитором по математике. Базовый школьный уровень. Свойства элементов треугольника. В помощь для решению задач по всему курсу планиметрии. Для тренировки решения задач С4 на ЕГЭ по математике.

1) Определение тригонометрических функций острого угла в прямоугольном треугольнике и теорема Пифагора
Определение тригонометрических функций острого угла в прямоугольном треугольнике3
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов, то есть AB^2=BC^2+AC^2

2) Формулы площади треугольника
Площадь треугольника
1)  S = \dfrac{1}{2}a \cdot h_a

2)  S = \dfrac{1}{2}a \cdot b \cdot Sin C

3)  S = \sqrt{p(p-a)(p-b)(p-c)} ,

где p = \frac {a+b+c}{2} (Формула Герона)

4)  S = p \cdot r, где r- вписанной окружности

5)  S = \dfrac{abc}{4R}, где R — радиус описанной окружности

3) Подобие треугольников

Подобные треугольники Определение: два треугольника называются подобными, если у них соответствующие углы равны и соответствующие стороны пропорциональны, то есть
\angle A =  \angle A_1 ;  \angle B = \angle B_1 ; \angle C = \angle C_1 и \dfrac {AB}{A_1B_1}=\dfrac {AC}{A_1C_1}=\dfrac {BC}{B_1C_1}

Обозначение: \vartriangle ABC \sim \vartriangle A_1B_1C_1

4) Признаки подобия двух треугольников
1 признак подобия треугольников

1-й признак: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.


Коротко: если \angle A =  \angle A_1 ;  \angle B = \angle B_1 , то \vartriangle ABC \sim \vartriangle A_1B_1C_1

2 признак подобия треугольников
2-й признак:если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами равны, то треугольники подобны

Коротко: если \dfrac {AB}{A_1B_1}=\dfrac {BC}{B_1C_1} и \angle B = \angle B_1 , то \vartriangle ABC \sim \vartriangle A_1B_1C_1

3 признак подобия треугольников3-й признак:если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то треугольники подобны, то есть


Коротко: если \dfrac {AB}{A_1B_1}=\dfrac {AC}{A_1C_1}=\dfrac {BC}{B_1C_1} , то \vartriangle ABC \sim \vartriangle A_1B_1C_1

5) Свойства подобных треугольников

если \vartriangle ABC \sim \vartriangle A_1B_1C_1 , то

\dfrac {AB}{A_1 B_1}=\dfrac {AC}{A_1 C_1}=\dfrac {BC}{B_1 C_1}= \dfrac {P}{P_1}=\dfrac {m}{m_1}=\dfrac {b}{b_1} = \dfrac {h}{h_1}=\dfrac {r}{r_1}= \dfrac {R}{R_1} = \sqrt{\dfrac {S}{S_1}} , где

m и m_1  — любые соответствующие медианы (проведенные к соответствующим сторонам)

b и b_1  — любые соответствующие биссектрисы (проведенные к соответствующим сторонам)

h и h_1  — любые соответствующие высоты (проведенные к соответствующим сторонам)

6) Подобие прямоугольных треугольников. Высота, проведенная из вершины прямого угла

Высота, проведенная из вершины прямого угла Теорема: высота в прямоугольном треугольнике, поведенная из вершины прямого угла образует два треугольника, подобных исходному. Для катетов и высоты исходного треугольника верны следующие формулы:
CA=\sqrt{AN \cdot AB}
CB=\sqrt{BN \cdot AB}
CN=\sqrt{AN \cdot NB}


7) Свойство медиан в треугольнике.

Свойства точки пересечения медиан в треугольнике

Теорема 1: Все медианы треугольника пересекаются в одной точке (центр тяжести треугольника) и делятся этой точкой в отношении 2:1, считая от вершин. То есть

AO:OA_1 = 2:1
BO:OB_1 = 2:1
CO:OC_1 = 2:1


Свойство медианы в треугольникеТеорема 2: Каждая медиана, проведенная в треугольнике делит этот треугольник на две равновеликие части (на два треугольника с равными площадями),

То есть S_{\text{BAN}} = S_{\text{CAN}}

Свойство медиан в теугольнике


Теорема 3: все три медианы делят треугольник на 6 равновеликих треугольников, то есть

S_{\text{BON}} = S_{\text{CON}} = S_{\text{COK}} = S_{\text{AOK}}=
= S_{\text{AOM}} = S_{\text{BOM}}

8) Свойство биссектрис в треугольнике
Свойство биссектрисы в треугольникеТеорема 1: Каждая биссектриса угла в треугольнике делит его противолежащую сторону на отрезки, пропорциональные к двум другим сторонам треугольника.

То есть \dfrac{BN}{BA}=\dfrac{CN}{CA}

Свойство точки пересечения биссектрис в треугольникеТеорема 2: Все биссектрисы в треугольнике пересекаются в одной точке, которая является центром вписанной с треугольник окружности. В любой треугольник можно вписать окружность и только одну.

Свойство точки пересечения серединных перпендикуляров в треугольнике

9) Свойство точки пересечения серединных перпендикуляров к сторонам треугольника:

Теорема: все серединные перпендикуляры к сторонам треугольника пересекаются в одной точке и эта точка является центром описанной около треугольника окружности. Вокруг любого треугольника можно описать окружность и только одну.

10) Теорема о разделительном отрезке в треугольнике
Теорема о разделительном отрезке в треугольнике
Теорема: Отрезок, соединяющий вершину треугольника с противоположной стороной делит ее на отрезки, пропорциональные площадям образованных треугольников.

То есть \dfrac{BN}{NC}=\dfrac{S_{\text{ABN}}} {S_{\text{ANC}}}

11) Средняя линия треугольника

Cредняя линия в треугольнике

Теорема: Средняя линия треугольника, соединяющая середины двух его сторон параллельна третьей стороне и равна ее половине.

То есть MN и MN = \dfrac{1}{2} BC


12) Теорема синусов и теорема косинусов

Теорема синусов и косинусов
Теорема синусов: Cтороны треугольника пропорциональны синусам противолежащих углов и каждое отношение стороны к синусу равно диаметру описанной около треугольника окружности.

То есть \dfrac{a}{sina}=\dfrac{b}{sinb}=\dfrac{c}{sinc}=2R

Теорема косинусов: Квадрат стороны треугольника равне сумме квадратов двух других сторон минус удвоенное произведение этих сторон на синус угла между ними, то есть
a^2=b^2+c^2-2bcCosA
b^2=a^2+c^2-2acCosB
c^2=a^2+b^2-2abCosC

13) Теорема Менелая
Теорема Менелая
Теорема: Произведение отношений отрезков, на которые произвольная прямая делит стороны треугольника (или их продолжения) равно единице

То есть \dfrac{BM}{MA} \cdot \dfrac{AK}{KC} \cdot \dfrac{CN}{NB}=1

Комментарий репетитора по математике: несправедливо выброшенная теорема из школьного курса геометрии. Рекомендую репетиторам включить ее в подготовку, по крайней мере к вузовским олимпиадам и вступительным экзаменам по математике в МГУ. В программу ЕГЭ теорема Менелая не входит, но несколько типов задач без нее решаются очень сложно.

14) Теорема Чевы
Теорема Чевы

Теорема:если через вершины треугольника и произвольную внутреннюю точку провести отрезки к противоположным сторонам (чевианы), то их точки пересечения разделят стороны на отрезки, произведение отношений которых равно единице.

То есть \dfrac{BM}{MA} \cdot \dfrac{AK}{KC} \cdot \dfrac{CN}{NB}=1

Колпаков А.Н. Репетитор по математике.

Метки: Геометрия, Справочник репетитора, Ученикам

ankolpakov.ru

Подобные треугольники — это… Что такое Подобные треугольники?


Подобные треугольники

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого.

Признаки подобия треугольников

Признаки подобия треугольников — геометрические признаки, позволяющие установить, что два треугольника являются подобными без использования всех элементов.

Первый признак

Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.


Дано: ∆ABC и ∆A1B1C1, ∠A=∠A1, ∠B=∠B1.

Доказать: ∆ABC \sim ∆A1B1C1.

Доказательство

Второй признак

Если две стороны одного треугольника пропорциональны двум сторонам другого и углы между этими сторонами равны, то треугольники подобны.


Дано: ∆ABC и ∆A1B1C1, ∠A=∠A1, \frac{AB}{A_1B_1} = \frac{AC}{A_1C_1}.

Доказать: ∆ABC \sim ∆A1B1C1.

Доказательство

Третий признак

Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.


Дано: ∆ABC и ∆A1B1C1, \frac{AB}{A_1B_1} = \frac{AC}{A_1C_1} = \frac{BC}{B_1C_1}.

Доказать: ∆ABC \sim ∆A1B1C1.

Доказательство

Признаки подобия прямоугольных треугольников

  1. По острому углу — см. первый признак;
  2. По двум катетам — см. второй признак;
  3. По катету и гипотенузе — см. второй признак.

Свойства подобных треугольников

Треугольники, на которые высота, опущенная из прямого угла, делит прямоугольный треугольник, подобны всему треугольнику по первому признаку, а значит:

Связанные определения

  • Коэффициент подобия — число k, равное отношению сходственных сторон подобных треугольников.
  • Сходственные стороны подобных треугольников — стороны, лежащие напротив равных углов.

Литература

  • Геометрия 7-9/Л. С. Атанасян и др. — 12-е изд. — М.: Просвещение, 2002. — 384 c.: ил.

См. также

Ссылки

Wikimedia Foundation. 2010.

  • Подобные фигуры
  • Поднять тремя пальцами

Смотреть что такое «Подобные треугольники» в других словарях:

  • Признаки подобия треугольников — Подобные треугольники  треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого. Содержание 1 Признаки подобия треугольников 1.1 Первый признак …   Википедия

  • Теорема Пифагора — Теорема Пифагора  одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 …   Википедия

  • Пифагора теорема — Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства …   Википедия

  • ГЕОМЕТРИЯ — раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… …   Энциклопедия Кольера

  • ПОДОБНЫЙ — ПОДОБНЫЙ, подобная, подобное; подобен, подобна, подобно. 1. кому чему. Сходный, совершенно похожий. Происшествие, подобное этому, было в прошлом году. 2. Такой, этот (о котором говорится). «Где еще мыслимы подобные вещи?» Маяковский. Перечислить… …   Толковый словарь Ушакова

  • Высота треугольника — У этого термина существуют и другие значения, см. Высота (значения). Высота в треугольниках различного типа Высота треугольника  перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зав …   Википедия

  • Теорема Наполеона — Теорема Наполеона  утверждение евклидовой планиметрии о равносторонних треугольниках …   Википедия

  • подо́бный — ая, ое; бен, бна, бно. 1. кому чему. Сходный с кем , чем л., похожий на кого , что л. [Белесова:] Если бы вы или кто нибудь из подобных вам людей навещали меня хоть изредка, мне было бы лучше, теплее на душе. А. Островский, Богатые невесты. Он… …   Малый академический словарь

  • ПОДОБИЕ — ср. (доба, время, пора, срок, год, година: добрый, удобный, сдобный и пр.) сходство, согласие, одновидность, схожесть. И подобия нет подлинника. | Вещь сделанная по образцу или в подражанье; изображенье чего; образ чего либо. Иссеченное из камня… …   Толковый словарь Даля

  • Мгновенный центр скоростей — Мгновенный центр скоростей  при плоскопараллельном движении точка, обладающая следующими свойствами: а) её скорость в данный момент времени равна нулю; б) относительно неё в данный момент времени вращается тело. Содержание 1 Положение… …   Википедия


dic.academic.ru

Признаки подобия треугольников [wiki.eduVdom.com]

Теорема 1. Первый признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Доказательство. Пусть ABC и $А_1В_1С_1$ — треугольники, у которых $\angle A = \angle A_1 ; \angle B = \angle B_1$ , и, следовательно, $\angle C = \angle C_1$ . Докажем, что $\triangle ABC \sim \triangle A_1B_1C_1$ (рис.1).

Рис.1

Отложим на ВА от точки В отрезок $ВА_2$, равный отрезку $A_1B_1$ , и через точку $А_2$ проведем прямую, параллельную прямой АС. Эта прямая пересечет ВС в некоторой точке $С_2$ . Треугольники $А_1В_1С_1\text{ и }А_2ВС_2$ равны: $А_1В_1 = А_2В$ по построению, $\angle В = \angle В_1$ по условию и $\angle А_1 = \angle А_2$ , так как $\angle А_1 = \angle А$ по условию и $\angle А = \angle А_2$ как соответственные углы. По лемме 1 о подобных треугольниках имеем: $\triangle A_2BC_2 \sim \triangle ABC$ , и значит, $\triangle ABC \sim \triangle A_1B_1C_1$ . Теорема доказана.

По аналогичной схеме устанавливаются теоремы 2 и 3.

Теорема 2. Второй признак подобия треугольников. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то треугольники подобны.

Теорема 3. Третий признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Из теоремы 1 вытекает следующее.

Следствие 1. В подобных треугольниках сходственные стороны пропорциональны сходственным высотам, т. е. тем высотам, которые опущены на сходственные стороны.



Пример 1. Подобны ли два равносторонних треугольника?

Решение. Так как в равностороннем треугольнике каждый внутренний угол равен 60° (следствие 3), то два равносторонних треугольника подобны по первому признаку.


Пример 2. В треугольниках ABC и $А_1В_1С_1$ известно, что $\angle A = \angle A_1 ; \angle B = \angle B_1 ; АВ = 5 м, ВС = 7 м, А_1В_1 = 10 м, А_1С_1 = 8 м.$ Найти неизвестные стороны треугольников.

Решение. Треугольники, определенные условием задачи, подобны по первому признаку подобия. Из подобия треугольников следует: $$ \frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = \frac{AC}{A_1C_1} \,\,\, (1) $$ Подставив в равенство (1) данные из условия задачи, получим: $$ \frac{5}{10} = \frac{7}{B_1C_1} = \frac{AC}{8} \,\,\, (2) $$ Из равенства (2) составим две пропорции $$ \frac{5}{10} = \frac{7}{B_1C_1} \\ \frac{5}{10} = \frac{AC}{8} \\ \text{ откуда }В_1С_1 = 14 (м), АС = 4 (м). $$


Пример 3. Углы В и $В_1$ треугольников ABC и $А_1В_1С_1$ равны. Стороны АВ и ВС треугольника ABC в 2,5 раза больше сторон $A_1B_1$ и $B_1C_1$ треугольника $A_1B_1C_1$. Найти АС и $A_1C_1$ , если их сумма равна 4,2 м.

Решение. Пусть условию задачи отвечает рисунок 2.

Рис.2

Из условия задачи: $$ 1) \angle B = \angle B_1 ; \\ 2) \frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = 2,5 \\ 3) AC + A_1C_1 = 4,2 м. $$ Следовательно, $\triangle ABC \sim \triangle А_1В_1С_1$. Из подобия этих треугольников следует $$ \frac{AC}{A_1C_1} = 2,5\text{ , или }АС = 2,5\bullet А_1С_1 $$ Так как АС = 2,5 • А1С1, то АС + А1C1 = 2,5 • А1С1 + A1C1 = 4,2, откуда A1C1 = 1,2 (м), АС = 3 (м).


Пример 4. Подобны ли треугольники ABC и А1В1С1, если АВ = 3 см, ВС = 5 см, АС = 7 см, А1В1 = 4,5 см, B1C1 = 7,5 см, A1C1 = 10,5 см?

Решение. Имеем: $$ \frac{AB}{A_1B_1} = \frac{3}{4,5} = \frac{1}{1,5} \\ \frac{BC}{B_1C_1} = \frac{5}{7,5} = \frac{1}{1,5} \\ \frac{AC}{A_1C_1} = \frac{7}{10,5} = \frac{1}{1,5} $$ Следовательно, треугольники подобны по третьему признаку.


Пример 5. Доказать, что медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

Решение. Рассмотрим произвольный треугольник ABC. Обозначим буквой О точку пересечения его медиан $АА_1\text{ и }ВВ_1$ и проведем среднюю линию $A_1B_1$ этого треугольника (рис.3).

Рис.3

Отрезок $A_1B_1$ параллелен стороне АВ, поэтому $\angle 1 = \angle2 \text{ и } \angle 3 = \angle 4 $. Следовательно, треугольники АОВ и $A_1OB_1$ подобны по двум углам, и, значит, их стороны пропорциональны: $$ \frac{AO}{A_1O} = \frac{BO}{B_1O} = \frac{AB}{A_1B_1} $$

Но $AB = 2A_1B_1$ , поэтому $AO = 2A_1O$ и $BO = 2B_1O$ .

Аналогично доказывается, что точка пересечения медиан $BB_1\text{ и }CC_1} делит каждую из них в отношении 2:1, считая от вершины, и, следовательно, совпадает с точкой О.

Итак, все три медианы треугольника ABC пересекаются в точке О и делятся ею в отношении 2:1, считая от вершины.

Замечание. Ранее отмечалось, что биссектрисы треугольника пересекаются в одной точке, серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. На основе последнего утверждения устанавливается, что и высоты треугольника (или их продолжения) пересекаются в одной точке. Эти три точки и точка пересечения медиан называются замечательными точками треугольника.


Пример 6. Проектор полностью освещает экран А высотой 90 см, расположенный на расстоянии 240 см. На каком наименьшем расстоянии в см. от проектора нужно расположить экран Б, высотой 150 см, так, что бы он был полностью освещён, если настройки проектора остаются неизменными.

Видео-решение.



wiki.eduvdom.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *