Примеры решений определенных интегралов: Определенный интеграл, примеры решений

Содержание

Определенный интеграл, примеры решений

Определенный интеграл от функции на промежутке обозначается и равен разности двух значений первообразной функции, вычисленных при и (формула Ньютона-Лейбница):

   

Геометрический смысл определенного интеграла. Определенный интеграл есть площадь криволинейной трапеции ограниченной графиком функции , осью и прямыми и (рис. 1), то есть

   

Для вычисления определенных интегралов подходят все методы, которые используются для нахождения неопределенных интегралов.

Примеры

ПРИМЕР 1
Задание Вычислить интеграл

   

Решение Преобразуем подынтегральное выражение

   

Разобьем интеграл от суммы на сумму интегралов и вынесем за знак интеграла константы:

   

Полученные интегралы являются табличными, вычислим их:

   

   

   

Ответ
ПРИМЕР 2
Задание Вычислить интеграл

   

Решение Вынесем константу за знак интеграла и вычислим полученный табличный интеграл:

   

Ответ
ПРИМЕР 3
Задание Вычислить интеграл

   

Решение Сделаем замену , при этом пределы интегрирования изменятся: и . Подставляя все это в исходный интеграл, получим:

   

   

Ответ
ПРИМЕР 4
Задание Вычислить интеграл

   

Решение Внесем под знак дифференциала, тогда

   

Подставляя все в исходный интеграл, получим:

   

   

Ответ
ПРИМЕР 5
Задание Вычислить площадь криволинейной трапеции ограниченной функцией , осью и прямыми и .
Решение Сделаем рисунок (рис. 2).

По геометрическому смыслу определенного интеграла нахождение площади заданной криволинейной трапеции сводится к вычислению интеграла

   

Вычислим этот интеграл:

(кв. ед.)

Ответ

Как решать ⚠️ интегралы: формулы, примеры с объяснением

Одно из самых значимых понятий в математике — интеграл. Термин часто можно встретить при решении задач по математике и физике. С помощью интеграла существенно упрощается поиск площади под кривой, пройденного пути объекта, движущегося неравномерно, массы неоднородного тела, функции по производной.

Что такое интеграл — понятие и определение

Интеграл представляет собой аналог суммы для бесконечного числа бесконечно малых слагаемых.

Интеграл является эффективным инструментом для решения задач из математического анализа. Слово «интеграл» происходит от латинского «integer», то есть «целый». Впервые это понятие ввел Иоганн Бернулли.

Разобраться в определении интеграла можно, если рассмотреть понятный график функции:

Источник: avatars. {b}{f(x)dx}\)

где f(x) является той самой функцией, график которой ограничивает фигуру в верхней части;

a и b представляют собой пределы;

x соответствует направлению, вдоль которого построены столбцы на графике.

Процесс интегрирования является обратным дифференцированию. В том случае, когда требуется определить минимальный промежуток заданной функции, целесообразно взять от нее производную. Это объясняется тем, что производная или дифференциал являются быстрым методом поиска части чего-либо. Можно наглядно определить с помощью рисунка, что минимальная фигура, которая является частью целого, при таком числе составляющих компонентов не повторяет форму кривой функции. Таким образом, требуется уменьшить габариты таких частей, чтобы они максимально точно совпадали с графиком. Площадь наименьшего компонента фигуры будет стремиться к нулевому значению. Точность повышается с уменьшением размеров рассматриваемой части. Площадь геометрической фигуры состоит из суммы таких частей, которые стремятся к нулю.

Записать это можно с помощью уравнения:

\(P=\lim_{\Delta x_{i}\rightarrow 0}\sum{y_{i}\Delta x_{i}}\)

Подробно полученное выражение можно рассмотреть на графике:

Источник: avatars.mds.yandex.net

Площадь малой части фигуры определяется так же, как площадь прямоугольника. Значение Y нужно помножить на значение ΔХ. Так как фигура представляет собой совокупность малых частей, то их требуется сложить. Следует учитывать, что каждый компонент фигуры ΔХ стремится к нулевому значению. Поэтому формула, которая представлена выше, включает это условие и позволяет определить результат максимально точно.

Если обозначить количество частей ΔХ, стремящихся к бесконечности, то можно определить, что существует предел интегральной суммы, которая состоит из таких компонентов, стремящихся к нулю и к бесконечности по числу таких частей. Таким образом, правая граница фигуры, изображенной на графике, является пределом. В этом выражается геометрический смысл определенного интеграла.

Физический смысл интеграла состоит в том, что это сумма бесконечно малых величин на бесконечно большом интервале. Исходя из этого, можно определить любую величину, которая изменяется, согласно функции. К примеру, рассчитать общий путь по закону изменения скорости. Необходимость в интеграле возникла, когда потребовалось рассчитать площади каких-либо фигур и объем любых тел, выбранных произвольно.

В том случае, когда расчеты подразумевают наличие постоянной характеристики, к примеру, скорости, найти путь можно с помощью произведения этой постоянной скорости и времени. Этот же момент можно проверить при вычислении интеграла от такой функции и записи уравнения прямой. Но скорость в процессе движения может меняться. Данное изменение можно представить в виде зависимости. Тогда следует вписать граничные условия, например, в случае пути — это время, в интеграл скорости по времени. Полученное выражение будет равно площади трапеции, которая расположена под функцией скорости, что является физическим смыслом определенного интеграла.

{c_{3}} f(x) dx\)

Термин «неопределенный интеграл» применим в ситуациях, когда требует найти площадь криволинейной трапеции, путь в соответствии с известной скоростью тела, которое движется неравномерно, и для решения других подобных задач.

Свойства, которыми характеризуется неопределенный интеграл:

  1. Константу можно выносить за знак интеграла: \(\int kf(x) dx = k\int f(x) dx\)
  2. Интеграл разности или суммы функций соответствует разности или сумме интегралов от этих функций: \(\int ( f(x) \pm g(x) ) dx = \int f(x) dx \pm \int g(x) dx\)
  3. Производная интеграла определяется как выражение, находящееся под знаком интеграла: \(\bigg (\int f(x) dx \bigg )’ = f(x)\)
  4. Интеграл от производной функции равен сумме этой функции и постоянной: \(\int F'(x) dx = F(x) + C\)
  5. Интеграл дифференциала функции равен сумме этой функции и постоянной интегрирования: \(\int df(x) dx = f(x) + C\)