Признаки пропорциональности треугольников – Признаки подобия треугольников — урок. Геометрия, 8 класс.

Содержание

Подобные треугольники ℹ️ признаки подобия, свойства, теоремы об отношении площадей с доказательствами, формулы и правила построения, примеры решения задач

Подобных треугольников

Общие сведения

Специалисты рекомендуют начинать любое обучение с азов. Следует применять принцип, который называется «от простого к сложному». В плоскостной геометрии (Евклида) существует два понятия: аксиомы и теоремы. К первым относятся утверждения, не требующие доказательства. Они являются базовыми элементами науки и позволяют доказывать другие гипотезы или утверждения.

Кроме того, на основании доказанных гипотез можно производить операции по доказательству более сложных теорем. Иными словами, геометрия состоит из базисных элементов — аксиом, при использовании которых можно преобразовывать утверждения в неоспоримые факты, а также при комбинациях появляется возможность доказательства более сложных (составных) элементов. Примером последнего случая является гипотеза Пифагора для прямоугольного треугольника. Чтобы ее доказать, нужно знать аксиомы геометрии, а также теорему об отношении площадей подобных треугольников (S/S’). Далее необходимо разобрать основные объекты геометрии.

Объекты геометрии

Простейшим объектом геометрии является точка. С помощью нее строятся простые фигуры, благодаря которым образуются более сложные формы. К элементарным компонентам можно отнести следующие: прямая, отрезок, луч. Первая состоит из множества точек, соединенных между собой в одной плоскости и находящихся в поперечном сечении, диаметр которого эквивалентен диаметру точек. При соединении простейших объектов получается бесконечная линия без перегибов.

Лучом называется часть прямой, имеющая начальную точку, но у которой нет конечной границы. Еще существует один элемент, у которого присутствуют обе границы (левая и правая). Он называется отрезком. Следует отметить, что луч и отрезок могут лежать на одной прямой, а также последний может являться частью первого.

Лучи математика

При комбинации двух лучей, исходящих из одной точки получается плоский угол. Он измеряется в градусах или радианах. Следует отметить, что в геометрии существует понятие «нулевого» угла. Это возможно, когда лучи совпадают. При комбинации трех углов можно получить треугольник. Существует также другое определение этой фигуры: треугольником (Δ) называется фигура, состоящая из трех точек, одна из которых не лежит на одной прямой с остальными.

Треугольники бывают разносторонними, равнобедренными и равносторонними. Кроме того, в зависимости от градусной меры, они делятся на такие классы: остроугольные, тупоугольные и прямоугольные. Необходимо также отметить, что сумма углов этой геометрической фигуры эквивалентна 180 градусам.

Нужно обратить внимание на такие термины: высоту, медиану и биссектрису. Первой называется перпендикуляр, проведенный из вершины к противоположной стороне. Медиана — отрезок, проведенный из противоположной вершины к середине стороны. Биссектрисой угла является луч или отрезок, который делит его на два равнозначных по величине. В равнобедренном и равностороннем Δ эти элементы совпадают.

Основные аксиомы Евклида

Аксиомой называется утверждение, не требующее доказательств и воспринимаемое в виде факта. Существуют следующие утверждения, которые можно применять при решении задач:

Подобные треугольники
  1. Если на плоскости существует некоторая прямая, то в этом случае точки классифицируются на две группы по отношению к ней: лежащие и не лежащие.
  2. Через две точки можно провести только одну прямую.
  3. При заданных прямой и точке, не лежащей на ней, через последнюю можно провести только одну прямую, которая будет параллельна (||) исходной.
  4. Когда даны три угла, один из которых эквивалентен другому, а последний — третьему, тогда можно сделать вывод об их равенстве. Аналогичное утверждение существует и для отрезков.
  5. Любая прямая содержит две точки, а также точку, лежащую между ними.
  6. Точки, находящиеся на одной плоскости, могут соединяться в любой последовательности вспомогательными отрезками.

Следует обратить внимание на последнюю аксиому. Она позволяет строить любые фигуры на плоскости и в пространстве. Математики очень часто применяют такой прием при решении задач и доказательстве некоторых тождеств при помощи создания дополнительных элементов на чертеже.

Например, в некотором упражнении по нахождению отдельных параметров треугольника в условии содержится очень мало данных. Последний можно вписать в окружность или дополнить до квадрата или прямоугольника. Далее следует разобраться в признаках подобия треугольников.

Подобие двух треугольников

Треугольники являются подобными, когда углы одного эквивалентны всем градусным мерам углов другого, а стороны одного равны сторонам другого, с учетом коэффициента гомотетии. Последний называют еще коэффициентом подобия. Он равен отношению сторон подобных треугольников. Например, дано два подобных Δ ABC и A’B’C’ (больший). Коэффициент подобия треугольников обозначается литерой «k». Он больше 0 и вычисляется по такой формуле: k = A’B’ / AB = B’C’ / BC = A’C’ / AC. Подобие фигур обозначается таким образом: ΔABC ∼ ΔA’B’C’.

Не во всех случаях бывают известны углы и стороны фигур. Для этого были сформулированы три признака (условия или критерия), по которым можно определить подобие.

Признаки подобия треугольников

Первое условие

Формулировка первого признака подобия треугольников гласит, что равенство двух углов между собой соответствует подобию двух фигур. Подробнее исходные данные записываются в таком виде: ΔABC ∼ ΔA’B’C’, когда ∠ВАС = ∠B’A’C’ и ∠ABC = ∠A’B’C’. Доказать утверждение довольно просто. Для этого следует рассчитать третий угол у треугольников исходя из того, что сумма трех углов составляет 180 градусов.

Коэффициент подобия треугольников

Далее необходимо наложить один Δ на другой, чтобы ∠ВАС совпал с ∠B’A’C’. Используя теорему Фалеса для сторон угла, которые делят на отрезки AC / A’C’ = BC / B’C’ вершины малого Δ на пропорциональные части. Аналогично доказывается пропорциональность для двух других сторон. Однако для этого следует наложить уже треугольники таким образом, чтобы совпали другие углы. Такие же действия проделать и для третьего угла. На основании определения о подобии треугольников утверждение доказано. Из доказательства математики получили некоторые следствия, которые будут очень полезны при решении задач:

  1. Фигуры (Δ) подобны при параллельности 3 сторон одного Δ сторонам другого, при перпендикулярности одно стороны другой, а также отсутствия || двух сторон одного Δ сторонам другого.
  2. Фигура, полученная при помощи параллельного переноса со сторонами, которые умножаются на некоторый постоянный коэффициент, подобна исходной.

Равенство AC / A’C’ = BC / B’C’ эквивалентно коэффициенту подобия. Этот факт можно использовать при решении задач и доказательства других геометрических утверждений или тождеств.

Второй критерий

Математики выделяют еще один признак подобия треугольников по двум пропорциональным сторонам и углу между ними. Для доказательства следует рассмотреть ΔABC и ΔA’B’C’ со сторонами, связанными таким тождеством: AB / A’B’ = AC / A’C’. Кроме того, углы между ними равны: ∠ВАС = ∠B’A’C’. Далее нужно достроить ΔABC до четырехугольника ABCС». Вершина С» должна располагаться в зеркальном отображении относительно стороны AB. Полученный ΔABC» ∼ ΔA’B’C’ по I признаку, поскольку у них два угла равны. Следовательно, тождество можно править таким образом: AB / A’B’ = AC» / A’C’.

По условию должно выполняться условие AB / A’B’ = AC / A’C’. Тогда AC = AC». На основании этого факта можно сделать вывод о равенстве ΔABC и ΔABC». Следовательно, теорема доказана, поскольку эти треугольники (ΔABC» и ΔA’B’C’) подобны по I признаку.

Третий признак

Свойства подобных треугольников

Третий признак подобия двух треугольников формулируется таким образом: два треугольника являются подобными, когда стороны одного пропорциональны сторонам другой фигуры. Для доказательства необходимо рассмотреть ΔABC и ΔA’B’C’ со сторонами: AB / A’B’ = AC / A’C’ = BC / B’C’.

Математики рекомендуют отметить некоторую точку C» относительно стороны AB. Она не должна лежать на последней. Кроме того, расстояния от C и C» до стороны AB должны быть эквивалентны. Иными словами, следует построить ΔABС», который является «зеркальным» отображением ΔABC относительно его стороны AB. Если AB / A’B’ = AC» / A’C’, то ΔABC» ∼ ΔA’B’C’ по I признаку.

Следующий шаг — доказательство равенства ΔABC и ΔABC». Они равны по двум сторонам AC = AC» и BC = BC». Следовательно, ΔABC ∼ ΔA’B’C’ подобные.

Теорема об отношении площадей

Для решения задач специалисты рекомендуют применять еще теорему об отношении площадей. Обязательным условием ее использования являются ΔABC ∼ ΔA’B’C’ с коэффициентом подобия «k». Ее формулировка имеет такой вид: величина отношения площадей двух подобных треугольников прямо пропорциональна квадрату гомотетии.

Исходя из равенства углов ∠ВАС = ∠B’A’C’ можно записать такое соотношение, в котором тригонометрическая функция не учитывается, поскольку при делении равных коэффициентов получается 1: S / S’ = (AB * AC) / (A’B’ * A’C’). По свойству произведения дробей верно такое преобразование: (AB / A’B’) * (AC / A’C’) = k * k = k 2 . Утверждение доказано полностью.

Теорема об отношении площадей

Некоторые свойства и следствия

Математики также считают, что используя некоторые свойства и следствия из теорем, можно расширить возможности по решению задач. Свойства подобных треугольников можно применять и к другим плоским или объемным фигурам. Следствия классифицируются на несколько типов:

  1. Отношение площадей плоских фигур прямо пропорционально квадрату их k.
  2. Куб коэффициента подобия прямо пропорционален объему большей фигуры и обратно пропорционален объему меньшей: V / V’ = k 3 .
  3. Коэффициент «k» эквивалентен отношению периметров (P), а также биссектрис, медиан, высот и перпендикуляров, которые являются серединными.
  4. В прямоугольном Δ длина высоты, опущенной на гипотенузу, эквивалентна среднему геометрическому двух проекций на соответствующий катет. Если она опущена из прямого ∠, то значит делит фигуру на подобные Δ по I признаку.
  5. Величина катета эквивалентна средней величине в геометрической интерпретации гипотенузы и произведению проекции катета на гипотенузу.

Например, второе свойство можно применить для решения такого упражнения: дан объем большего конуса V = 125 м 3 , а необходимо найти значение V’ для малого, зная коэффициент k, который равен 3. Задача решается очень просто: V’ = [V]^(1/3) = [125]^(1/3) = 5 (м 3 ).

Пример решения

Существуют множество типов задач, однако наиболее часто попадаются такие, в которых необходимо доказать, что фигуры являются подобными. Стороны ΔABC равны таким значениям: 10, 12 и 25. Кроме того, существует еще ΔA’B’C’ со сторонами 5, 6 и 10. Фигуры не имеют точек пересечения. Необходимо доказать их подобие.

Подобные треугольники признаки

Для решения рисунок чертить необязательно, поскольку для доказательства необходимо применение не геометрического метода, а алгебраического. Следует ввести обозначения для ΔABC: AB = 10, BC = 12 и AC = 25. Аналогичную процедуру необходимо сделать для ΔA’B’C’: сторона A’B’ равна числу 5, B’C’ = 6 и A’C’ = 10.

Далее нужно вычислить коэффициент k для каждой из сторон: k1 = AB / A’B’ = 10 / 5 = 2, k2 = BC / B’C’ = 12 / 6 = 2 и k3 = AC / A’C’ = 25 / 10 = 2,5. Из соотношений следует, что фигуры не являются подобными, поскольку не выполняется такое равенство: k = k1 = k2 = k3. Для наглядности можно построить также таблицу со значениями коэффициентов.

Таким образом, для решения задач по нахождению параметров подобных треугольников необходимо знать признаки подобия, а также некоторые свойства, которые рекомендуют использовать специалисты-математики.


nauka.club

Признаки подобия треугольников Википедия

Подобные треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

В данной статье рассматриваются свойства подобных треугольников в евклидовой геометрии. Некоторые утверждения являются неверными для неевклидовых геометрий.

Признаки подобия треугольников[ | ]

Признаки подобия треугольников — геометрические признаки, позволяющие установить, что два треугольника являются подобными, без использования всех элементов.

Первый признак[ | ]

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.

то есть: △ABC∼△A1B1C1⇔∠A=∠A1, ∠B=∠B1.{\displaystyle \triangle ABC\sim \triangle A_{1}B_{1}C_{1}\Leftrightarrow \angle A=\angle A_{1},\ \angle B=\angle B_{1}.}

Дано: △ABC{\displaystyle \triangle ABC} и △A1B1C1, ∠A=∠A1, ∠B=∠B1.{\displaystyle \triangle A_{1}B_{1}C_{1},\ \angle A=\angle A_{1},\ \angle B=\angle B_{1}.}

Доказать: △ABC∼△A1B1C1.{\displaystyle \triangle ABC\sim \triangle A_{1}B_{1}C_{1}.}

Доказательство

Из теоремы о сумме углов треугольника можно получить, что все углы треуголь

ru-wiki.ru

Свойства

  1. Каждая из высот является одновременно биссектрисой и медианой.

  2. Центры описанной и вписанной окружностей совпадают.

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Определение. Треугольник называют прямоугольным, если у него есть прямой угол.

Свойства

  1. Прямоугольный треугольник имеет две взаимно перпендикулярные стороны, называемые катетами; третья его сторона называется гипотенузой. По свойствам перпендикуляра и наклонных гипотенуза длиннее каждого из катетов (но меньше их суммы).

  2. Сумма двух острых углов прямоугольного треугольника равна прямому углу.

  3. Две высоты прямоугольного треугольника совпадают с его катетами. Поэтому одна из четырех замечательных точек попадает в вершины прямого угла треугольника.

  4. Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.

  5. Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.

Рис. 11.

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

Геометрическая формулировка. В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.

Алгебраическая формулировка. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b: a2 + b2 = c2.

Обратная теорема Пифагора. Для всякой тройки положительных чисел a, b и c, такой, что a2 + b2 = c2, существует прямоугольный треугольник с катетами a и b и гипотенузой c.

Признаки равенства прямоугольных треугольников:

  1. по катету и гипотенузе;

  2. по двум катетам;

  3. по катету и острому углу;

  4. по гипотенузе и острому углу.

Признаки равенства и подобия треугольников признаки равенства треугольников

Первый признак равенства треугольников.

Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны (см. рис. 12).

Рис. 12.

AB=DE

AC=DF.

ﮮ A = ﮮ D

ΔABC=Δ DEF по двум сторонам и углу между ними

Второй признак равенства треугольников.

Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны(см. рис. 13.

Рис. 13.

AC=DF

ﮮ A = ﮮ D

ﮮ C = ﮮ F

ΔABC=ΔDEF по стороне и прилежащим к ней углам.

Третий признак равенства треугольников

Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны. (см. рис. 14

Рис. 14.

AB=DE

BC=EF

AC=DF

ΔABC=ΔDEF по трём сторонам.

Признаки подобия треугольников

Первый признак

Два треугольника подобны, если два угла одного треугольника соответственно равны двум углам другого треугольника (см. рис. 15).

Рис. 15.

Второй признак

Два треугольника подобны, если две стороны одного треугольника пропорциональны двум сторонам другого и углы, образованные этими сторонами в этих треугольниках, равны(см. рис. 16).

Рис. 16.

Третий признак

Два треугольника подобны, если три стороны одного треугольника пропорциональны сторонам другого треугольника (см. рис. 17).

Рис. 17.

Прямоугольные треугольники подобны, если гипотенуза и катет одного треугольника пропорциональны гипотенузе и катету другого треугольника.

Итак, это треугольник с одной стороны.

Загадки треугольника

С другой стороны треугольник это — тайный оккультный знак, встречающийся во многих цивилизациях. Три угла, три грани — магическое число 3. Не удивительно, что треугольник можно найти на тайных письменах, символах, пентаграммах. И совсем не удивительно, что самые загадочные места и строения могут быть связаны тоже с треугольниками. Например, египетские пирамиды (в Египте треугольник символизировал триаду духовной воли, любви-интуиции и высшего разума человека, то есть его личность и душу.) Или звезда Давида (еврейский символ, образованный наложением двух треугольников). А еще Бермудский треугольник.

Платон утверждал, что вообще вся “Поверхность состоит из треугольников”. На самом деле треугольники используются везде и всюду. Уже со времён палеолита и неолита в древнем искусстве очень широко распространяются изображения равностороннего треугольника. Первобытные люди покрывали сферические сосуды сетью круглых равносторонних треугольников. Символическое изображение треугольника есть в архитектуре и строительстве (пирамиды и др.), во фрагментах одежды и украшениях. Вожди племен североамериканских индейцев носили на груди символ власти: равносторонний треугольник. В Африке женщины туарегов также украшали себя большими пластинами из равносторонних треугольников.

Один из самых загадочных и интересных треугольников– Бермудский треугольник”. Еще это место называют аномальной зоной.

Рис. 18

На самом деле это место, которое традиционно считается самым ужасным, самым жутким местом планеты. Здесь бесследно исчезало множество кораблей и самолетов — большинство из них после 1945 года. Здесь погибло более тысячи человек. Однако при поисках не удалось обнаружить ни одного трупа или обломка.

Над океаном плыл рассвет.

Светлело небо, голубея.

Фелюга* шла к Бермудам, нет

Таинственней загадки, злее.

Проникнув в эпицентр Бермуд,

мы видим розу из тумана.

В ней тени кораблей плывут,

«Мэри Селест» без капитана.

Ворота в рай иль ад, не знаем,

но мы войдем туда сейчас.

Сиянье ширится, сгораем…

Не поминайте лихом нас.

Бермудский треугольник не имеет четких границ, нельзя найти на карте его точное обозначение. Разные ученые определяют его местоположение на свое усмотрение. Самое распространенное его определение — это область в Атлантическом океане между Бермудами, Пуэрто-Рико и Майами. Общая площадь — 1 млн. квадратных километров. Однако название этой области тоже условное, поэтому название “Бермудский треугольник” не является географическим.

Древние говорили, что Земля поделена на правильные треугольники, а Платон заявлял, что “Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из 12 кусков кожи”, т.е. 12 пентаграмм.

В свою очередь, каждая пентаграмма делится на треугольники большие и треугольники помельче. Таким образом, поверхность Земли предстает в виде в пересечении вершин треугольников, в которых образуются “энергетические узлы”. Эта идея разработана русскими исследователями Н. Гончаровым, В. Морозовым и В. в соответствии с которой цивилизации развивались в “энергетических узлах”. В пересечении вершин треугольников образуются особенно богатые запасы полезных ископаемых, в некоторых “узлах” порой исчезают материальные предметы (Бермудский треугольник).

Стихи о треугольнике

О, треугольник, как ты прекрасен.

Как красив и богат,

Ибо ты имеешь три стороны.

Три угла, три вершины.

Ты один можешь быть:

И равнобедренным, и равносторонним,

И прямоугольным…

Ибо ты могуч…

…По тебе судят теоремы,

Тебе посвятили три признака равенства.

Ведь, чтобы доказать, что ты равен,

Нужно приложить силы.

Ибо даже медиана, проведенная

К основанию равнобедренного треугольника

Является высотой и биссектрисой.

И не каждый знает, что в треугольнике

Медианы, высоты, биссектрисы

Пересекаются в одной точке.

И что бы мы знали без Великого треугольника!

Ибо даже стол не может стоять на двух ножках.

Ода треугольнику в стихах.

Вы всем известны,

Без вас не обойтись нигде,

Вы так чудесны,

Вы так нужны везде.

Вы — Геометрические фигуры,

Треугольники мои.

Треугольник, треугольник”.

Самый лучший из фигур,

Ты родился из трех точек

И прекрасных трех прямых.

Но не думайте, ребята,

Треугольник не простой…

Он бывает и прямой,

Равнобедренный…любой!!!

О медиане и …

Медиана – она мышка Яна,

Зацепившись хвостом за вершину,

Спустилась к основанию

Прямо в середину!

Высота стоит столбом – вертикально.

Она измерит даже дом капитально.

Биссектриса — почему так назвали, не пойму…

Потому что, потому

Она ходит по углам

И делит угол пополам.

Биссектриса – это киска,

Которая ловит мышку по углам,

И делит угол пополам!

Медианка – хулиганка

Бросит вещи по углам и

Стороны делит пополам

В треугольнике она стоит

Прямо – как всегда.

Высота, высота!

С высоты глядит на нас:

“С медианой ты не путай,

Есть ведь разница у нас”.

Медиана – как лиана,

Только разница одна –

Из вершины в середину

Не промахнется никогда.

Ода признакам треугольников

О, треугольники, вы так прекрасны,

Три признака ваши для нас не сложны.

Вот первый из них:

Если две стороны и угол между ними

Одного треугольника равны

Двум сторонам и углу между ними другого треугольника,

То такие треугольники равны.

А теперь будьте умны…

Приставьте числительные одна и два

К словам “сторона” и “угла”

И пред ваши очи вмиг

Второй признак подбежит.

А у третьего признака нет углов,

А только три стороны равны.

Третий признак легче всех.

Ну, а вы, мной ободрены,

Додумайте его непременно.

Вы отроки – други, запомните ныне

Сии признаки равенства треугольников.

studfile.net

Подобие треугольников. Часть 1

Определение и свойства подобных треугольников

Числа a1, a2, a3, …, an называются пропорциональными числам b1, b2, b3, …, bn, если выполняется равенство: a1/b1 = а2/b2 = a3/b3 = … = an/bn = k, где k – некоторое число, которое называют коэффициентом пропорциональности.

Пример. Числа 6; 7,5 и 15 пропорциональны числам ‑4; 5 и 10. Коэффициентом пропорциональности является число ‑1,5, поскольку

6/-4 = -7,5/5 = 15/-10 = -1,5.

Пропорциональность чисел имеет место быть, если эти числа связаны пропорцией.Подобие треугольников

Известно, что пропорцию можно составить не менее чем из четырех чисел, поэтому понятие пропорциональности применимо как минимум к четырем числам (одна пара чисел пропорциональна другой паре, или одна тройка чисел пропорциональна другой тройке, и т.д.).

Рассмотрим на рис. 1 два треугольника АВС и А1В1С1 с равными попарно углами: A = A1, B = B1, C = C1.

Стороны, которые противолежат равным парам углов обоих треугольников, называются сходственными. Так, на рис. 1 стороны AB и A1B1, AC и A1C1, BC и B1C1, сходственные, поскольку лежат напротив соответственно равных углов треугольников ABC и A1B1C1.

Дадим определение подобных треугольников:

Два треугольника называются подобными, если их углы попарно равны, а сходственные стороны пропорциональны.

Отношение сходственных сторон подобных треугольников называется коэффициентом подобия.

Подобные треугольники обозначаются следующим образом: Δ ABC ~ Δ A1B1C1.

Итак, на рис. 2 имеем: Δ ABC ~ Δ A1B1C1

углы A = A1, B = B1, C = C1 и AB/A1B1 = ВC/В1C1 = АС/А1С1 = k, где k – коэффициент подобия. Из рис. 2 видно, что у подобных треугольников одинаковые пропорции, и отличаются они лишь масштабом.

Замечание 1: Равные треугольники подобны с коэффициентом 1.

Замечание 2: При обозначении подобных треугольников следует упорядочить их вершины таким образом, чтобы углы при них были попарно равны. Например, для треугольников, изображенных на рисунке 2 говорить, что Δ ABC ~ Δ B1C1A1 некорректно. Соблюдая правильный порядок вершин, удобно выписывать пропорцию, связывающую сходственные стороны треугольников, не обращаясь к чертежу: в числителе и знаменателе соответствующих отношений должны стоять пары вершин, занимающих одинаковые позиции в обозначении подобных треугольников. К примеру, из записи «Δ ABC ~ Δ KNL» следует, что углы A = K, B = N, C = L, и АВ/KN = BC/NL = AC/KL.

Замечание 3: Те требования, которые перечислены в определении подобных треугольников, являются избыточными. Признаки подобия треугольников, которые содержат меньше требований к подобным треугольникам докажем чуть позже.

Сформулируем свойства подобных треугольников:

  1. Отношение соответственных линейных элементов подобных треугольников равно коэффициенту их подобия. К таким элементам подобных треугольников относятся те, которые измеряются в единицах длины. Это, например, сторона треугольника, периметр, медиана. Угол или площадь к таким элементам не относятся.
  2. Отношение площадей подобных треугольников равно квадрату коэффициента их подобия.

Пусть треугольники ABC и A1B1C1 подобны с коэффициентом k (рис. 2).

Подобие треугольниковДокажем, что SABC/SA1B1C1 = k2.

Поскольку углы подобных треугольников попарно равны, т.е A = A1, и по теореме об отношении площадей треугольников, имеющих по равному углу, имеем:

SABC/SA1B1C1 = (AB · AC) / (A1B1 · A1C1) = AB/A1B1 · AC/A1C1.  

В силу подобия треугольников AB/A1B1 = k и AC/A1C1 = k,

поэтому SABC/SA1B1C1 = AB/A1B1 · AC/A1C1 = k · k = k2.

Замечание: Сформулированные выше свойства подобных треугольников справедливы и для произвольных фигур.

Признаки подобия треугольников

Требования, которые предъявляются к подобным треугольникам определением (это равенство углов и пропорциональность сторон) являются избыточными. Устанавливать подобие треугольников можно и по меньшему количеству элементов.

Так, при решении задач чаще всего используется первый признак подобия треугольников, утверждающий, что для подобия двух треугольников достаточно равенства их углов:

Первый признак подобия треугольников (по двум углам): Если два угла одного треугольника соответственно равны двум углам второго треугольника, то эти треугольники подобны (рис. 3).Подобие треугольников

Пусть даны треугольники Δ ABC, Δ A1B1C1, в которых углы A = A1, B = B1. Необходимо доказать, что Δ ABC ~ Δ A1B1C1.

Доказательство.

1) По теореме о сумме углов треугольника имеем:

угол C = 180° (угол A + угол B) = 180° (угол A1 + угол B1) = угол C1.

2) По теореме об отношении площадей треугольников, имеющих по равному углу,

SABC/SA1B1C1 = (AB · AC) / (A1B1 · A1C1) = (AB · ВC) / (A1B1 · В1C1) = (AС · ВC) / (A1С1 · В1C1).

3) Из равенства (AB · AC) / (A1B1 · A1C1) = (AB · ВC) / (A1B1 · В1C1) следует, что AC/A1C1 = BС/В1С1.

4) Из равенства (AB · ВC) / (A1B1 · В1C1) = (AС · ВC) / (A1С1 · В1C1) следует, что AВ/A1В1 = АС/А1С1.

Таким образом, у треугольников ABCи A1B1C1 DA = DA1, DB = DB1, DC = DC1, и AB/A1B1 = АС/А1С1.

5) AB/A1B1 = АС/А1С1 = ВC/В1C1, то есть сходственные стороны пропорциональны. А значит, Δ ABC ~ Δ A1B1C1 по определению.

Теорема о пропорциональных отрезках. Деление отрезка в заданном отношении

Теорема о пропорциональных отрезках является обобщением теоремы Фалеса.

Для использования теоремы Фалеса необходимо, чтобы параллельные прямые, пересекающие две данные прямые, отсекали на одной из них равные отрезки. Обобщенная же теорема Фалеса утверждает, что если параллельные прямые пересекают две данные прямые, то отрезки, отсекаемые ими на одной прямой, пропорциональны отрезкам, отсекаемым на второй прямой.

Теорема о пропорциональных отрезках доказывается аналогично теореме Фалеса (только вместо равенства треугольников здесь используется их подобие).

Теорема о пропорциональных отрезках (обобщенная теорема Фалеса): Параллельные прямые, пересекающие две данные прямые, отсекают на них пропорциональные отрезки.

Свойство медиан треугольника

Первый признак подобия треугольников позволяет доказать свойство медиан треугольника:

Свойство медиан треугольника: Медианы треугольника пересекаются в одной точке, и делятся этой точкой в отношении 2 : 1, считая от вершины (рис. 4).

Точка пересечения медиан называется центроидом треугольника.

Пусть дан Δ ABC, у которого AA1, BB1, CC1 – медианы, кроме того, AA1∩CC1 = O. Необходимо доказать, что BB1 ∩ CC1 = O и АО/ОА1 = ВО/ОВ1 = СО/ОС1 = 2.

Доказательство.

1) Проведем среднюю линию A1C1. По теореме о средней линии треугольника A1C1 || AC, и A1C1 = AC/2.

2) Треугольники AOC и A1OC1 подобны по двум углам (угол AOC = углу A1OC1 как вертикальные, угол OAC = углу OA1C1 как внутренние накрест лежащие при A1C1 || AC и секущей AA1), следовательно, по определению подобных треугольников АО/А1О = ОС/ОС1 = АС/А1С1 = 2.

3) Пусть BB1∩CC1 = O1. Аналогично пунктам 1 и 2 можно доказать, что ВО/О1В1 = СО11С = 2. Но поскольку на отрезке СС1 существует единственная точка О, делящая его в отношении СО : ОС1 = 2 : 1, то точки О и О1 совпадают. Значит, все медианы треугольника пересекаются в одной точке, делящей каждую из них в отношении 2 : 1, считая от вершины.

В курсе геометрии в теме «площади многоугольников» доказывается тот факт, что медиана разбивает произвольный треугольник на две равновеликие части. Кроме того, при пересечении трех медиан треугольника образуется шесть равновеликих треугольников.

 Остались вопросы? Не знаете, как решать задачи на подобие треугольников?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Признаки подобия треугольников. Средняя линия.

Тестирование онлайн

  • Подобие треугольников

  • Пропорциональные отрезки в треугольнике

Определение

Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.

Теорема. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.

Признаки подобия треугольников

Теорема. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Теорема. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

Теорема. Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Средняя линия треугольника

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Теорема. Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

fizmat.by

Подобие прямоугольных треугольников | Треугольники

Подобие прямоугольных треугольников обычно доказывают, используя не общие признаки, а специальные признаки подобия для прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

1- й признак подобия прямоугольных треугольников

( подобие прямоугольных треугольников по острому углу)

Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.

   

 — прямоугольные (∠C=90º, ∠C=90º).

Если

   

то

   

(по острому углу).

2- й признак подобия прямоугольных треугольников

( подобие прямоугольных треугольников по двум катетам)

Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие треугольники подобны.

   

 — прямоугольные (∠C=90º, ∠C=90º).

Если

   

то

   

(по двум катетам).

3- й признак подобия прямоугольных треугольников

( подобие прямоугольных треугольников по катету и гипотенузе)

Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники подобны.

   

 — прямоугольные (∠C=90º, ∠C=90º).

Если

   

то

   

(по катету и гипотенузе).

Из подобия прямоугольных треугольников следуют соотношения между высотой, проведённой к гипотенузе, гипотенузой, катетами и проекциями катетов на гипотенузу, а также свойство биссектрисы треугольника.

www.treugolniki.ru

Свойства треугольника. В том числе равенство и подобие, равные треугольники, стороны треугольника, углы треугольника, площадь треугольника

Свойства треугольника. Обозначения в треугольнике, Виды треугольников. Формулы площади треугольника.

Основные свойства треугольников, Конгруэнтные (равные) треугольники, Признаки равенства, Равенство прямоугольных треугольников, Подобные треугольники, Признаки подобия, Свойства подобных треугольников, Подобие в прямоугольных треугольниках, Теорема Пифагора, Теорема синусов, Теорема косинусов, Основные линии — Медиана, Биссектриса, Высота треугольника, Срединный перпендикуляр, Средняя линия треугольника, Формулы площади треугольника, в т.ч. формула Герона, Окружности вписанные в треугольники и описанные вокруг треугольников

Меню

Треугольник -это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами.

  • Для инженера это еще и единственная «жесткая» плоская фигура на свете.
  • Раздел математики, посвященный изучению закономерностей треугольников — тригонометрия.
  • Сумма всех углов в треугольнике равна 180°.

Обозначения в треугольнике.

Вершины треугольника обычно обозначаются заглавными латинскими буквами (A, B, C), величины углов при соответственных вершинах — греческими буквами (α, β, γ), а длины противоположных сторон — прописными латинскими буквами (a, b, c).

Виды треугольников:

(по величине углов)

Остроугольный треугольник — это треугольник, в котором все три угла острые, т.е. меньше 90°.

Прямоугольный треугольник — это треугольник, содержащий прямой угол.

Две стороны, образующие прямой угол, называются катетами (АС и АВ), а сторона, противолежащая прямому углу, называется гипотенузой (ВС).

Тупоугольный треугольник — это треугольник, содержащий тупой угол, т.е. один из его углов лежит в пределах между 90° и 180°.

(по числу равных сторон)

(по соотношению сторон)

Равносторонний (правильный) треугольник — это треугольник, у которого все стороны и все углы равны (каждый угол равен 60°).

dpva.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *