Производная от первообразной для данной функции равна: Первообразная — Википедия – Первообразная функция и неопределенный интеграл / Блог :: Бингоскул

Первообразная и неопределенный интеграл, их свойства

Определение первообразной

Для начала, дадим определение понятиям, которые будут использоваться в данном разделе. В первую очередь это первообразная функции. Для этого введем константу C.

Определение 1

Первообразная функции f(x) на промежутке (a; b) это такая функция F(x), при которое формула F'(x)=f(x) превращается в равенство для любого x из заданного промежутка.

Следует учитывать тот факт, что производная от константы C будет равна нулю, что позволяет нам считать верным следующее равенство F(x)+C'=f(x).

Получается, что функция f(x) имеет множество первообразных F(x)+C, для произвольной константы C. Эти первообразные отличаются друг от друга на произвольную постоянную величину.

Определение неопределенного интеграла

Все множество первообразных функции f(x) можно назвать неопределенным интегралом этой функции. С учетом этого формула будет иметь вид ∫f(x)dx=F(x)+C. При этом, выражение f(x)dx является подынтегральным выражением, а f(x) – это подынтегральная функция. Подынтегральное выражение представляет собой дифференциал функции f(x).

Имея заданный дифференциал функции, мы можем найти неизвестную функцию.

Результатом неопределенного интегрирования будет не одна функция F(x), а множество ее первообразных F(x)+C.

  • Зная свойства производной, мы можем сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).

∫f(x)dx'=F(x)+C'=f(x)

  • Производная результата интегрирования равна подынтегральной функции.

∫d(F(x))=∫F'(x)dx=∫f(x)dx=F(x)+C

  • Неопределенный интеграл дифференциала функции равен сумме самой функции и произвольной константы.

∫k·f(x)dx=k·∫f(x)dx, где k – произвольная константа. Коэффициент можно выносить за знак неопределенного интеграла.

  • Неопределенный интеграл суммы/разности функций равен сумме/разности неопределенных интегралов функций.

∫f(x)±g(x))dx=∫f(x)dx±∫g(

«Как найти первообразную функции?» – Яндекс.Кью

Ох какой сложный вопрос.

Вообще, в политической науке (да пожалуй как и в любой другой общественной) самые ожесточенные дискуссии и непонятки вызывает именно анализ и синтез понятийно-категориального аппарата.

Можно конечно диссертации писать, заниматься графоманией и словоблудием, быть бесценных слов транжирой и мотом по данной тематике - никогда не иссякнет вопрос: а почему это мы не можем прийти к общему знаменателю? Да потому что абсурдно, наука ценна плюрализмом мнений и дифференцированными дефинициями.

Кто-то, как первый автор, отождествляет политический строй с формой государственного устройства, кто-то, как в комментариях, утверждает, что строй - это про институциональный дизайн. Если загуглить термин, то первая ссылка приведет нас к понятию "политический режим".

Совершенно верно дано определение политического режима - совокупность форм и методов управления в государстве. Однако, американская политология, например, подобную совокупность называет политической системой, в то время как в европейской традиции система - это совокупность вообще политических характеристик государства.

Типологии политических режимов также кто только не предлагал, один литературный обзор выйдет страниц на 30. Классическим считается деление режимов на демократические/недемократические, а далее уже кто во что горазд - это типология Голосова-Блонделя, которая есть в Википедии, типология Роберта Даля, типология Алмонда-Пауэлла, которые очень легко гуглятся и абсолютно доступны в любом скачиваемом учебнике по общей политологии.

Если коротко подвести итоги: да хрен его знает, сколько научных направлений, столько и определений и разграничений. Подобного рода смешение коней и людей в кучу создает создает изрядные затруднения в однозначном ответе на вопрос.

Что же касается политического строя, то в отечественной науке именно такого понятия просто нет, таким образом, можно назвать политическим строем что угодно - систему, режим, форму гос.устройства и прочее, хоть садовое товарищество.

Задание №7. Производная. Поведение функции. Первообразная

Необходимая теория:

Производная функции

Таблица производных

Первообразная функции

Задание 7 Профильного ЕГЭ по математике — это задачи на геометрический и физический смысл производной. Это задачи о том, как производная связана с поведением функции. И еще (правда, очень редко) в этих встречаются вопросы о первообразной.

Геометрический смысл производной 

Вспомним, что производная — это скорость изменения функции.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная также равна тангенсу угла наклона касательной.

1. На рисунке изображён график функции и касательная к нему в точке с абсциссой Найдите значение производной функции в точке

x_0 .

Производная функции в точке равна тангенсу угла наклона касательной, проведенной в точке .

Достроив до прямоугольного треугольника АВС, получим:

f

Ответ: 0,25.

2. На рисунке изображён график функции и касательная к нему в точке с абсциссой
Найдите значение производной функции в точке

Начнём с определения знака производной. Мы видим, что в точке функция убывает, следовательно, её производная отрицательна. Касательная в точке образует тупой угол с положительным направлением оси . Поэтому из прямоугольного треугольника мы найдём тангенс угла , смежного с углом .

Мы помним, что тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему: Поскольку , имеем:

Ответ: −0, 25.

Касательная к графику функции

3. Прямая является касательной к графику функции

Найдите абсциссу точки касания.

Запишем условие касания функции и прямой в точке

При значения выражений и равны.

При этом производная функции равна угловому коэффициенту касательной, то есть .

Из второго уравнения находим или Первому уравнению удовлетворяет только .

Физический смысл производной

Мы помним, что производная — это скорость изменения функции.

Мгновенная скорость — это производная от координаты по времени. Но это не единственное применение производной в физике. Например, cила тока — это производная заряда по времени, то есть скорость изменения заряда. Угловая скорость — производная от угла поворота по времени.

Множество процессов в природе, экономике и технике описывается дифференциальными уравнениями — то есть уравнениями, содержащими не только сами функции, но и их производные.

4. Материальная точка движется прямолинейно по закону , где — расстояние от точки отсчета в метрах, — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени с.

Мгновенная скорость движущегося тела является производной от его координаты по времени. Это физический смысл производной. В условии дан закон изменения координаты материальной точки, то есть расстояния от точки отсчета:

Найдем скорость материальной точки как производную от координаты по времени:

В момент времени получим:

Ответ: 3

Применение производной к исследованию функций

Каждый год в вариантах ЕГЭ встречаются задачи, в которых старшеклассники делают одни и те же ошибки.

Например, на рисунке изображен график функции — а спрашивают о производной. Кто их перепутал, тот задачу не решил.

Или наоборот. Нарисован график производной — а спрашивают о поведении функции.

И значит, надо просто внимательно читать условие. И знать, как же связана производная с поведением функции.

Если , то функция возрастает.

Если , то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

 

5. На рисунке изображен график функции , определенной на интервале Найдите количество точек, в которых производная функции равна 0.

f(x)

Производная функции в точках максимума и минимума функции Таких точек на графике 5.

f(x).

Ответ: 5.

6. На рисунке изображён график — производной функции , определённой на интервале . В какой точке отрезка функция принимает наибольшее значение?

f(x)

Не спешим. Зададим себе два вопроса: что изображено на рисунке и о чем спрашивается в этой задаче?

Изображен график производной, а спрашивают о поведении функции. График функции не нарисован. Но мы знаем, как производная связана с поведением функции.

На отрезке производная функции положительна.

f(x)

Значит, функция возрастает на этом отрезке. Большим значениям х соответствует большее значение Наибольшее значение функции достигается в правом конце отрезка, то есть в точке 3.

Ответ: 3.

7. На рисунке изображён график функции , определённой на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой

y = 1.

Прямая параллельна оси абсцисс. Найдем на графике функции точки, в которых касательная параллельна оси абсцисс, то есть горизонтальна. Таких точек на графике 7. Это точки максимума и минимума.

y = f(x)

Ответ: 7.

8. На рисунке изображен график производной функции , определенной на интервале Найдите количество точек максимума функции на отрезке

[-6; 9].

Очень внимательно читаем условие задачи. Изображен график производной, а спрашивают о точках максимума функции. В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». На отрезке такая точка всего одна! Это

Ответ: 1.

9. На рисунке изображен график производной функции , определенной на интервале Найдите точку экстремума функции на отрезке

[-5; 4].

Точками экстремума называют точки максимума и минимума функции. Если производная функции в некоторой точке равна нулю и при переходе через эту точку меняет знак, то это точка экстремума. На отрезке график производной (а именно он изображен на рисунке) пересекает ось абсцисс в точке В этой точке производная меняет знак с минуса на плюс.

Значит, является точкой экстремума.

Первообразная и формула Ньютона-Лейбница

Функция , для которой является производной, называется первообразной функции Функции вида образуют множество первообразных функции

10. На рисунке изображён график — одной из первообразных некоторой функции , определённой на интервале Пользуясь рисунком, определите количество решений уравнения на отрезке

[-4; 4] .

Функция для которой является производной, называется первообразной функции

Это значит, что на графике нужно найти такие точки, принадлежащие отрезку , в которых производная функции равна нулю. Это точки максимума и минимума функции На отрезке таких точек 4.

Ответ: 4.

Больше задач на тему «Первообразная. Площадь под графиком функции» - в этой статье

Первообразная функции. Формула Ньютона-Лейбница.

 

Mathway | Популярные задачи

1 Найти производную - d/dx квадратный корень x
2 Найти производную - d/dx натуральный логарифм x
3 Вычислить интеграл натурального логарифма x по x
4 Найти производную - d/dx e^x
5 Вычислить интеграл e^(2x) относительно x
6 Найти производную - d/dx 1/x
7 Найти производную - d/dx x^2
8 Вычислить интеграл e^(-x) относительно x
9 Найти производную - d/dx 1/(x^2)
10 Найти производную - d/dx sin(x)^2
11 Найти производную - d/dx sec(x)
12 Вычислить интеграл e^x относительно x
13 Вычислить интеграл x^2 относительно x
14 Вычислить интеграл квадратного корня x по x
15 Вычислить натуральный логарифм 1
16 Вычислить e^0
17 Вычислить sin(0)
18 Найти производную - d/dx cos(x)^2
19 Вычислить интеграл 1/x относительно x
20 Вычислить cos(0)
21 Вычислить интеграл sin(x)^2 относительно x
22 Найти производную - d/dx x^3
23 Найти производную - d/dx sec(x)^2
24 Найти производную - d/dx 1/(x^2)
25 Вычислить интеграл arcsin(x) относительно x
26 Вычислить интеграл cos(x)^2 относительно x
27 Вычислить интеграл sec(x)^2 относительно x
28 Найти производную - d/dx e^(x^2)
29 Вычислить интеграл в пределах от 0 до 1 кубического корня 1+7x по x
30 Найти производную - d/dx sin(2x)
31 Вычислить интеграл натурального логарифма x по x
32 Найти производную - d/dx tan(x)^2
33 Вычислить интеграл e^(2x) относительно x
34 Вычислить интеграл 1/(x^2) относительно x
35 Найти производную - d/dx 2^x
36 График натуральный логарифм a
37 Вычислить e^1
38 Вычислить интеграл 1/(x^2) относительно x
39 Вычислить натуральный логарифм 0
40 Найти производную - d/dx cos(2x)
41 Найти производную - d/dx xe^x
42 Вычислить интеграл 1/x относительно x
43 Вычислить интеграл 2x относительно x
44 Найти производную - d/dx ( натуральный логарифм x)^2
45 Найти производную - d/dx натуральный логарифм (x)^2
46 Найти производную - d/dx 3x^2
47 Вычислить натуральный логарифм 2
48 Вычислить интеграл xe^(2x) относительно x
49 Найти производную - d/dx 2e^x
50 Найти производную - d/dx натуральный логарифм 2x
51 Найти производную - d/dx -sin(x)
52 Вычислить tan(0)
53 Найти производную - d/dx 4x^2-x+5
54 Найти производную - d/dx y=16 корень четвертой степени 4x^4+4
55 Найти производную - d/dx 2x^2
56 Вычислить интеграл e^(3x) относительно x
57 Вычислить интеграл cos(2x) относительно x
58 Вычислить интеграл cos(x)^2 относительно x
59 Найти производную - d/dx 1/( квадратный корень x)
60 Вычислить интеграл e^(x^2) относительно x
61 Вычислить sec(0)
62 Вычислить e^infinity
63 Вычислить 2^4
64 Найти производную - d/dx x/2
65 Вычислить 4^3
66 Найти производную - d/dx -cos(x)
67 Найти производную - d/dx sin(3x)
68 Вычислить натуральный логарифм 1/e
69 Вычислить интеграл x^2 относительно x
70 Упростить 1/( кубический корень от x^4)
71 Найти производную - d/dx 1/(x^3)
72 Вычислить интеграл e^x относительно x
73 Вычислить интеграл tan(x)^2 относительно x
74 Вычислить интеграл 1 относительно x
75 Найти производную - d/dx x^x
76 Найти производную - d/dx x натуральный логарифм x
77 Вычислить интеграл sin(x)^2 относительно x
78 Найти производную - d/dx x^4
79 Вычислить предел (3x-5)/(x-3), если x стремится к 3
80 Вычислить интеграл от x^2 натуральный логарифм x по x
81 Найти производную - d/dx f(x) = square root of x
82 Найти производную - d/dx x^2sin(x)
83 Вычислить интеграл sin(2x) относительно x
84 Найти производную - d/dx 3e^x
85 Вычислить интеграл xe^x относительно x
86 Найти производную - d/dx y=x^2
87 Найти производную - d/dx квадратный корень x^2+1
88 Найти производную - d/dx sin(x^2)
89 Вычислить интеграл e^(-2x) относительно x
90 Вычислить интеграл натурального логарифма квадратного корня x по x
91 Вычислить 2^5
92 Найти производную - d/dx e^2
93 Найти производную - d/dx x^2+1
94 Вычислить интеграл sin(x) относительно x
95 Вычислить 2^3
96 Найти производную - d/dx arcsin(x)
97 Вычислить предел (sin(x))/x, если x стремится к 0
98 Вычислить e^2
99 Вычислить интеграл e^(-x) относительно x
100 Вычислить интеграл 1/x относительно x

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *