Пропорции в математике это – Пропорции математика. Пропорция – это равенство двух отношений. Соотношение.

Пропорции математика. Пропорция – это равенство двух отношений. Соотношение.

Пропорция – это равенство, утверждающее, что два отношения равны. Пропорциональный — значит находящийся в определенном отношении к какой-либо величине. Четыре величины \(4, 2, 8 \) и \(4\) находятся в отношении, если \(\frac{4}{2}=\frac{8}{4}\). Произведение крайних членов пропорции равно произведению средних.

Пропорция

 

 

Пропорция всегда включает равные коэффициенты. Когда соотношение остается постоянным, это соотношение называется пропорциональным.

Если \(\frac{A}{B} = \frac{C}{D}\), то 

Пропорция состоит из двух равных отношений. Однако если \(\frac{A}{B}\) не равно \(\frac{C}{D}\), то \(A, B, C, D \) не называются пропорцией.

Три величины считаются пропорциональными, если отношение первого ко второму равно соотношению второго и третьего.

\(A, B , C\) находятся в постоянной пропорции, если \(\frac{A}{B} =\frac{C}{D}\) 

Если \(A, B ,C \) находятся в постоянном отношении, то \(B\) называется средней в пропорции.

В косвенной пропорции как одно значение увеличивается, так и другое значение уменьшается.

Задача 1. За  \(5\) дней и \(12\) человек  построили забор. Сколько дней это займет у \(6\) людей?

Решение.

  1.  \(12\) человек →  \(5\) дней
  2. \(6\) человек → \(x\) дней
  3. \(\frac{12}{6} = \frac{x}{5}\)
  4. умножаем крест на крест члены пропорции и сокращаем на \(6\):

\(12*5=6x\)

\(60=6x\)

\(x=10\)

Ответ: \(6\) людей будут работать \(10\) дней, чтобы закончить работу.

Задача 2. Найдите значение \(x\), если \(\frac{2}{5}=\frac{x}{15}\)

Решение:

  1. \(2*15=5x\)
  2. \(30 =5x\)
  3. Делим на 5 обе части равенства: \(\frac{30}{5}=x\), откуда находим 

Задача 3. Что должно быть добавлено к каждому из четырех чисел 10, 18, 22, 38, чтобы сделать их пропорцией?

Решение:\(\)

  1. \((10+x)(18+x)=(22+x)(38+x)\)
  2. \(380+48x+2x=396+40x+2x\)
  3. \(8x=16\)
  4. \(x=2\)

Задача 4. Найти четвертый член  пропорции \(6,10\) и \(12\)

Решение:

\(\frac{6}{10}=\frac{12}{x}\)

6×х = 120

x = 120/6

x = 20

Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы «Альфа». Запишитесь на пробное занятие уже сейчас!

Запишитесь на бесплатное тестирование знаний!

myalfaschool.ru

Пропорция (математика) — Википедия. Что такое Пропорция (математика)

Пропо́рция (лат. proportio — соразмерность, выравненность частей; определённое соотношение частей между собой), равенство отношений двух [и более] пар чисел a,b{\displaystyle a,b} и c,d{\displaystyle c,d}, т. е. равенство вида a:b=c:d{\displaystyle a:b=c:d}, или, в других обозначениях, равенство  ab=cd{\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} (часто читается как: «a{\displaystyle a} относится к b{\displaystyle b} так же, как c{\displaystyle c} относится к d{\displaystyle d}»). В этом случае a{\displaystyle a} и d{\displaystyle d} называют крайними, b{\displaystyle b} и c{\displaystyle c} — средними членами пропорции. Такую пропорцию ещё называют геометрической, чтобы не путать с арифметической и гармонической пропорциями.

Основные свойства пропорций

 ac=bd{\displaystyle \ {\frac {a}{c}}={\frac {b}{d}}}    (перестановка средних членов пропорции),
 db=ca{\displaystyle \ {\frac {d}{b}}={\frac {c}{a}}}    (перестановка крайних членов пропорции).
  • Увеличение и уменьшение пропорции. Если  ab=cd{\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}}, то
 a+bb=c+dd{\displaystyle \ {\dfrac {a+b}{b}}={\dfrac {c+d}{d}}}    (увеличение пропорции),
 a−bb=c−dd{\displaystyle \ {\dfrac {a-b}{b}}={\dfrac {c-d}{d}}}    (уменьшение пропорции).
  • Составление пропорции сложением и вычитанием. Если  ab=cd{\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}}, то
 a+cb+d=ab=cd{\displaystyle \ {\dfrac {a+c}{b+d}}={\frac {a}{b}}={\frac {c}{d}}}    (составление пропорции сложением),
 a−cb−d=ab=cd{\displaystyle \ {\dfrac {a-c}{b-d}}={\frac {a}{b}}={\frac {c}{d}}}    (составление пропорции вычитанием).

История

Первое известное определение равных пропорций было дано как равенство последовательных вычитаний[1], современным языком это можно выразить как равенство цепных дробей для отношений величин.[2] Позже Евдокс упростил определение, равенство пропорций a:b=c:d{\displaystyle a:b=c:d} им определялось как одновременное выполнение одной из трёх пар соотношений

для любой пары натуральных чисел m{\displaystyle m} и n{\displaystyle n}. Это определение даётся в «Началах» Евклида.

С появлением вещественных чисел отпала необходимость в специальной теории пропорций, древние математики не рассматривали пропорции длины как числа. Определение Евдокса, в несколько более абстрактном виде использовалось далее при определении вещественных чисел данное Дедекиндом через сечения.

Связанные определения

Арифметическая пропорция

Равенство двух разностей a−b=c−d{\displaystyle a-b=c-d} иногда называют арифметической пропорцией[3].

Гармоническая пропорция

Если у геометрической пропорции средние члены равны, а последний является разницей между первым и средним, такая пропорция называется гармонической: a:b=b:(a−b){\displaystyle a:b=b:(a-b)}. В этом случае, разложение a{\displaystyle a} на сумму двух слагаемых b{\displaystyle b} и a−b{\displaystyle a-b} называется гармоническим делением или золотым сечением

[4].

Задачи на тройное правило

В содержание задачи на простое тройное правило входят две величины, связанные пропорциональной зависимостью, при этом даются два значения одной величины и одно из соответствующих значений другой величины, требуется же найти её второе значение.

Задачами на сложное тройное правило называют задачи, в которых по ряду нескольких (более двух) пропорциональных величин требуется найти значение одной из них, соответствующее другому ряду данных значений величин[5][6].

Литература

  • Ван дер Варден, Б. Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. / пер. с голл. И. Н. Веселовского. — М.: ГИФМЛ, 1959.

Примечания

См. также

wiki.sc

Пропорция (математика) — это… Что такое Пропорция (математика)?

Пропо́рция (лат. proportio — соразмерность, выровненность частей), равенство двух отношений, т. е. равенство вида a : b = c : d, или, в других обозначениях, равенство (часто читается как: «a относится к b так же, как c относится к d»). Если a : b = c : d, то a и d называют крайними, а b и cсредними членами пропорции.

Основные свойства пропорций

   (перестановка средних членов пропорции),
   (перестановка крайних членов пропорции).
  • Увеличение и уменьшение пропорции. Если , то
   (увеличение пропорции),
   (уменьшение пропорции).
  • Составление пропорции сложением и вычитанием. Если , то
   (составление пропорции сложением),
   (составление пропорции вычитанием).

Литература

  • ван дер Варден, Б. Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. — пер. с голл. И. Н. Веселовского — М.: ГИФМЛ, 1959

См. также

dic.academic.ru

Пропорция (математика) — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Пропорция.

Пропо́рция (лат. proportio — соразмерность, выравненность частей; определённое соотношение частей между собой), равенство отношений двух [и более] пар чисел a,b{\displaystyle a,b} и c,d{\displaystyle c,d}, т. е. равенство вида a:b=c:d{\displaystyle a:b=c:d}, или, в других обозначениях, равенство  ab=cd{\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} (часто читается как: «a{\displaystyle a} относится к b{\displaystyle b} так же, как c{\displaystyle c} относится к d{\displaystyle d}»). В этом случае a{\displaystyle a} и d{\displaystyle d} называют

крайними, b{\displaystyle b} и c{\displaystyle c} — средними членами пропорции. Такую пропорцию ещё называют геометрической, чтобы не путать с арифметической и гармонической пропорциями.

Основные свойства пропорций

 ac=bd{\displaystyle \ {\frac {a}{c}}={\frac {b}{d}}}    (перестановка средних членов пропорции),
 db=ca{\displaystyle \ {\frac {d}{b}}={\frac {c}{a}}}    (перестановка крайних членов пропорции).
  • Увеличение и уменьшение пропорции. Если  ab=cd{\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}}, то
 a+bb=c+dd{\displaystyle \ {\dfrac {a+b}{b}}={\dfrac {c+d}{d}}}    (увеличение пропорции),
 a−bb=c−dd{\displaystyle \ {\dfrac {a-b}{b}}={\dfrac {c-d}{d}}}    (уменьшение пропорции).
  • Составление пропорции сложением и вычитанием. Если  ab=cd{\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}}, то
 a+cb+d=ab=cd{\displaystyle \ {\dfrac {a+c}{b+d}}={\frac {a}{b}}={\frac {c}{d}}}    (составление пропорции сложением),
 a−cb−d=ab=cd{\displaystyle \ {\dfrac {a-c}{b-d}}={\frac {a}{b}}={\frac {c}{d}}}    (составление пропорции вычитанием).

История

Первое известное определение равных пропорций было дано как равенство последовательных вычитаний[1], современным языком это можно выразить как равенство цепных дробей для отношений величин.[2] Позже Евдокс упростил определение, равенство пропорций a:b=c:d{\displaystyle a:b=c:d} им определялось как одновременное выполнение одной из трёх пар соотношений

для любой пары натуральных чисел m{\displaystyle m} и n{\displaystyle n}. Это определение даётся в «Началах» Евклида.

С появлением вещественных чисел отпала необходимость в специальной теории пропорций, древние математики не рассматривали пропорции длины как числа. Определение Евдокса, в несколько более абстрактном виде использовалось далее при определении вещественных чисел данное Дедекиндом через сечения.

Связанные определения

Арифметическая пропорция

Равенство двух разностей a−b=c−d{\displaystyle a-b=c-d} иногда называют арифметической пропорцией[3].

Гармоническая пропорция

Если у геометрической пропорции средние члены равны, а последний является разницей между первым и средним, такая пропорция называется гармонической: a:b=b:(a−b){\displaystyle a:b=b:(a-b)}. В этом случае, разложение a{\displaystyle a} на сумму двух слагаемых b{\displaystyle b} и a−b{\displaystyle a-b} называется гармоническим делением или золотым сечением[4].

Задачи на тройное правило

В содержание задачи на простое тройное правило входят две величины, связанные пропорциональной зависимостью, при этом даются два значения одной величины и одно из соответствующих значений другой величины, требуется же найти её второе значение.

Задачами на сложное тройное правило называют задачи, в которых по ряду нескольких (более двух) пропорциональных величин требуется найти значение одной из них, соответствующее другому ряду данных значений величин[5][6].

Литература

  • Ван дер Варден, Б. Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. / пер. с голл. И. Н. Веселовского. — М.: ГИФМЛ, 1959.

Примечания

См. также

wikipedia.green

Пропорция — это… Что такое Пропорция?

  • ПРОПОРЦИЯ — (лат., от pro для, и portio часть, порция). 1) соразмерность, согласование. 2) отношение частей между собою и к их целому. Отношение величин между собою. 3) в архитектуре: удачные размеры. Словарь иностранных слов, вошедших в состав русского… …   Словарь иностранных слов русского языка

  • ПРОПОРЦИЯ — ПРОПОРЦИЯ, пропорции, жен. (книжн.) (лат. proportio). 1. Соразмерность, определенное соотношение частей между собой. Правильные пропорции частей тела. Смешать сахар с желтком в такой пропорции: две ложки сахара на один желток. 2. Равенство двух… …   Толковый словарь Ушакова

  • пропорция — отношение, соотношение; соразмерность. Ant. диспропорция Словарь русских синонимов. пропорция см. соотношение Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова …   Словарь синонимов

  • ПРОПОРЦИЯ — жен., франц. соразмерность; величина или количество, отвечающее чему либо; | мат. равенство содержания, одинаковые отношения двойной четы цифры; арифметическая, если второе число на столько же более или менее, первого, на сколько четвертое против …   Толковый словарь Даля

  • ПРОПОРЦИЯ — (лат. proportio) в математике равенство между двумя отношениями четырех величин: a/b =c/d …   Большой Энциклопедический словарь

  • ПРОПОРЦИЯ — ПРОПОРЦИЯ, в математике равенство между двумя отношениями четырех величин: a/b=с/d. Непрерывной пропорцией называют группу из трех или более величин, каждая из которых имеет одно и то же отношение к последующей величине, как, например, в… …   Научно-технический энциклопедический словарь

  • ПРОПОРЦИЯ — ПРОПОРЦИЯ, и, жен. 1. В математике: равенство двух отношений (в 3 знач.). 2. Определённое соотношение частей между собой, соразмерность. П. в частях здания. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ПРОПОРЦИЯ — англ. proportion; нем. Proportion. 1. Соразмерность, определенное соотношение частей целого между собой. 2. Равенство двух отношений. Antinazi. Энциклопедия социологии, 2009 …   Энциклопедия социологии

  • пропорция — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ratedegreeDdegdrratio …   Справочник технического переводчика

  • ПРОПОРЦИЯ — равенство двух (см.), т.е. а: b = с: d, где а, b, с, d члены пропорции, причём а и d крайние, b и с средине. Основное свойство пропорции: произведение крайних членов пропорции равно произведению средних: ad = bс …   Большая политехническая энциклопедия

  • пропорция — и; ж. [лат. proportio] 1. Соразмерное соотношение частей между собой. Соблюсти все архитектурные пропорции. Идеальная п. частей тела. 2. Определённое количественное соотношение между чем л. Нарушить пропорцию. Смешав ягоды с песком в пропорции… …   Энциклопедический словарь

  • dic.academic.ru

    ПРОПОРЦИЯ — это… Что такое ПРОПОРЦИЯ?

  • ПРОПОРЦИЯ — (лат., от pro для, и portio часть, порция). 1) соразмерность, согласование. 2) отношение частей между собою и к их целому. Отношение величин между собою. 3) в архитектуре: удачные размеры. Словарь иностранных слов, вошедших в состав русского… …   Словарь иностранных слов русского языка

  • ПРОПОРЦИЯ — ПРОПОРЦИЯ, пропорции, жен. (книжн.) (лат. proportio). 1. Соразмерность, определенное соотношение частей между собой. Правильные пропорции частей тела. Смешать сахар с желтком в такой пропорции: две ложки сахара на один желток. 2. Равенство двух… …   Толковый словарь Ушакова

  • пропорция — отношение, соотношение; соразмерность. Ant. диспропорция Словарь русских синонимов. пропорция см. соотношение Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова …   Словарь синонимов

  • ПРОПОРЦИЯ — жен., франц. соразмерность; величина или количество, отвечающее чему либо; | мат. равенство содержания, одинаковые отношения двойной четы цифры; арифметическая, если второе число на столько же более или менее, первого, на сколько четвертое против …   Толковый словарь Даля

  • ПРОПОРЦИЯ — (лат. proportio) в математике равенство между двумя отношениями четырех величин: a/b =c/d …   Большой Энциклопедический словарь

  • ПРОПОРЦИЯ — ПРОПОРЦИЯ, и, жен. 1. В математике: равенство двух отношений (в 3 знач.). 2. Определённое соотношение частей между собой, соразмерность. П. в частях здания. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ПРОПОРЦИЯ — англ. proportion; нем. Proportion. 1. Соразмерность, определенное соотношение частей целого между собой. 2. Равенство двух отношений. Antinazi. Энциклопедия социологии, 2009 …   Энциклопедия социологии

  • пропорция — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ratedegreeDdegdrratio …   Справочник технического переводчика

  • ПРОПОРЦИЯ — равенство двух (см.), т.е. а: b = с: d, где а, b, с, d члены пропорции, причём а и d крайние, b и с средине. Основное свойство пропорции: произведение крайних членов пропорции равно произведению средних: ad = bс …   Большая политехническая энциклопедия

  • пропорция — и; ж. [лат. proportio] 1. Соразмерное соотношение частей между собой. Соблюсти все архитектурные пропорции. Идеальная п. частей тела. 2. Определённое количественное соотношение между чем л. Нарушить пропорцию. Смешав ягоды с песком в пропорции… …   Энциклопедический словарь

  • dic.academic.ru

    ПРОПОРЦИЯ — это… Что такое ПРОПОРЦИЯ?

  • ПРОПОРЦИЯ — (лат., от pro для, и portio часть, порция). 1) соразмерность, согласование. 2) отношение частей между собою и к их целому. Отношение величин между собою. 3) в архитектуре: удачные размеры. Словарь иностранных слов, вошедших в состав русского… …   Словарь иностранных слов русского языка

  • ПРОПОРЦИЯ — ПРОПОРЦИЯ, пропорции, жен. (книжн.) (лат. proportio). 1. Соразмерность, определенное соотношение частей между собой. Правильные пропорции частей тела. Смешать сахар с желтком в такой пропорции: две ложки сахара на один желток. 2. Равенство двух… …   Толковый словарь Ушакова

  • пропорция — отношение, соотношение; соразмерность. Ant. диспропорция Словарь русских синонимов. пропорция см. соотношение Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова …   Словарь синонимов

  • ПРОПОРЦИЯ — жен., франц. соразмерность; величина или количество, отвечающее чему либо; | мат. равенство содержания, одинаковые отношения двойной четы цифры; арифметическая, если второе число на столько же более или менее, первого, на сколько четвертое против …   Толковый словарь Даля

  • ПРОПОРЦИЯ — ПРОПОРЦИЯ, в математике равенство между двумя отношениями четырех величин: a/b=с/d. Непрерывной пропорцией называют группу из трех или более величин, каждая из которых имеет одно и то же отношение к последующей величине, как, например, в… …   Научно-технический энциклопедический словарь

  • ПРОПОРЦИЯ — ПРОПОРЦИЯ, и, жен. 1. В математике: равенство двух отношений (в 3 знач.). 2. Определённое соотношение частей между собой, соразмерность. П. в частях здания. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ПРОПОРЦИЯ — англ. proportion; нем. Proportion. 1. Соразмерность, определенное соотношение частей целого между собой. 2. Равенство двух отношений. Antinazi. Энциклопедия социологии, 2009 …   Энциклопедия социологии

  • пропорция — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ratedegreeDdegdrratio …   Справочник технического переводчика

  • ПРОПОРЦИЯ — равенство двух (см.), т.е. а: b = с: d, где а, b, с, d члены пропорции, причём а и d крайние, b и с средине. Основное свойство пропорции: произведение крайних членов пропорции равно произведению средних: ad = bс …   Большая политехническая энциклопедия

  • пропорция — и; ж. [лат. proportio] 1. Соразмерное соотношение частей между собой. Соблюсти все архитектурные пропорции. Идеальная п. частей тела. 2. Определённое количественное соотношение между чем л. Нарушить пропорцию. Смешав ягоды с песком в пропорции… …   Энциклопедический словарь

  • dic.academic.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *