Радиация в: Основные сведения о радиации для медицинской диагностики и лечения

Содержание

Основные сведения о радиации для медицинской диагностики и лечения

Радиоактивность присутствует не только в космосе и окружающей нас среде. Даже элементы, из которых состоят наши тела, существуют в природе в различных вариантах – изотопах – часть из которых радиоактивны, например, радиоизотопы калия, цезия и радия.

Как и видимый свет, радиация имеет электромагнитную природу. Когда она достаточно сильна, чтобы разорвать молекулярные связи, таким образом ионизируя материю (процесс, при котором нейтральный атом или молекула теряет или получает электроны, образуя ионы), это называется «ионизирующее излучение». Молекулярные связи могут присутствовать во всех материалах, даже в структурных элементах жизни – ДНК.

Имеются свидетельства того, что изменения в молекулах ДНК, вызванные ионизирующим излучением, могут привести к мутации биологических клеток. Подавляющее большинство этих мутаций не опасно для здоровья человека, но имеется небольшая вероятность того, что некоторые мутации могут вызвать рак.

Поэтому критически важно понять, как радиация взаимодействует с биологической материей.

Ионизирующее излучение может глубоко проникать в твердые тела. Эта характеристика является основой для рентгенодиагностики и лучевой терапии. Рентгеновские лучи, одна из форм ионизирующего излучения, испускаются из излучающего устройства, находящегося с одной стороны объекта. Излучение, проходящее через объект, детектируется соответствующими датчиками с другой стороны объекта. Этот процесс можно использовать для получения изображений, показывающих внутренние структуры облученного объекта без вскрытия объекта. Когда этот процесс применяется в медицине, в ее специализированной области, называемой диагностической рентгенологией, то получают изображения внутренних структур организма человека при минимальном уровне вмешательства.

В ядерной медицине врачи вводят пациентам радиоактивное вещество, накапливающееся в той части организма человека, которая является мишенью. На выходе из тела человека радиация регистрируется, позволяя врачам сделать выводы о физиологических функциях органа или ткани.

При лучевой терапии радиация прицельно проникает в тело человека для разрушения опухоли.

Приблизительно 80 процентов среднегодовых доз, которые получают люди во всем мире, составляют дозы от природных источников. Самым большим искусственным источником воздействия для людей является медицинская радиация. Ее вклад в суммарную среднегодовую дозу составляет приблизительно 20 процентов. Это равно приблизительно половине вклада самой большой естественной составляющей среднегодовой дозы – поступления радона через органы дыхания человека в зданиях.

Поэтому важно минимизировать неоправданное медицинское облучение при использовании ионизирующего излучения. Это достигается путем совершенствования процессов обоснования и оптимизации облучения. С точки зрения обоснования требуется, чтобы человек мог быть подвергнут воздействию излучения лишь в тех случаях, когда это приносит ему явную чистую пользу. С другой стороны, благодаря процессам оптимизации минимизируют дозу радиации, используемую для достижения определенного диагностического или терапевтического результата при минимально достижимом и обоснованном уровне дозы.

Радиация бывает разной. Откуда она берется и нужно ли пить алкоголь после флюорографии?

Радиация бывает разная

Радиацией ученые называют разные вещи, среди которых та самая, рукотворная и смертоносная, не столь уж заметна. В широком смысле радиация — это любое излучение, включая почти безобидный солнечный свет. Например, метеорологи употребляют термин «солнечная радиация» для оценки количества тепла, которое получает поверхность нашей планеты.

Часто радиацию отождествляют с ионизирующим излучением, то есть лучами или частицами, способными оторвать от атомов и молекул электроны. Именно ионизирующее излучение повреждает живые клетки, вызывает поломки ДНК. Это

та самая радиация, но она далеко не всегда рукотворна.

Если излучение не ионизирующее, оно все равно может быть вредным. Как гласит поговорка астрономов, посмотреть на Солнце в телескоп без фильтра можно всего два раза: правым и левым глазом. Тепловое излучение вызывает ожоги, а пагубный эффект СВЧ известен всем, кто неправильно рассчитывал время пребывания еды в микроволновке.

Ионизирующее излучение — тоже

Ионизирующее излучение бывает разных видов. Это гамма- и рентгеновские лучи (электромагнитные волны), бета-частицы (электроны и их античастицы, позитроны), альфа-частицы (ядра атомов гелия), нейтроны и просто осколки ядер, летящие с огромной скоростью, достаточной для ионизации вещества.

Некоторые виды радиации (далее в тексте она будет синонимом «ионизирующего излучения») — альфа-частицы, к примеру — задерживает фольга или даже бумага. Другие, нейтроны, поглощаются веществами, богатыми атомами водорода: водой или парафином. А для защиты от гамма-лучей и рентгена оптимален свинец. Поэтому ядерные реакторы защищают многослойной оболочкой, которая рассчитана на разные виды излучения.

Источников радиации много

Большая часть ионизирующего излучения возникает при распаде ядер нестабильных (радиоактивных) атомов. Второй источник — реакции уже не распада, а слияния атомов, термоядерные. Они идут в недрах звезд, включая Солнце. За пределами атмосферы Земли и ее магнитного поля солнечное излучение включает в себя не только свет и тепло, но также рентгеновские лучи, жесткий ультрафиолет и разогнанные до внушительной скорости протоны.

На эту тему

Протоны наиболее опасны для оказавшихся в дальнем космосе. В год повышенной солнечной активности попадание под пучок протонов даст смертельную дозу облучения за считаные минуты. Это примерно соответствует фону вблизи разрушенного реактора Чернобыльской АЭС.

Рентгеновские лучи возникают при движении электронов с ускорением, поэтому их, в отличие от всего остального, можно включить и выключить, направив пучок электронов на металлическую пластинку или заставив тот же пучок колебаться в электромагнитном поле.

Земля и даже бананы радиоактивны

Наша планета тоже радиоактивна. Горные породы, включая гранит и уголь, содержат уран, торий и испускают газ радон (если дом построен на скальных породах и плохо проветривается, то из-за радона у жителей повышается риск заболеть раком легких). Часть вреда от курения связана с полонием-210 в табачном дыме, крайне активным и потому опасным изотопом. Да что там табак — если съесть обычный банан, то каждую секунду в организме будет проходить 15 реакций распада калия-40.

Впрочем, есть бананы не опасно, а уран в граните, радон в воздухе, калий и радиоуглерод в еде, космические лучи — все это составляющие естественного радиационного фона. Природа нашла, как в нем существовать, и та же ДНК имеет мощнейшие механизмы починки.  

Народные средства не помогают от радиации

Известны народные средства, которые якобы помогают «вывести радиацию из организма»: йод и алкоголь. На самом деле йод применяют только в одном случае: когда произошел выброс йода-131, короткоживущего изотопа, который вырабатывается в ядерных реакторах. Препараты с обычным йодом замедляют усвоение радиоактивного. А людям с неправильно работающей щитовидной железой избыток йода может навредить.

Что же касается алкоголя, то достаточно сказать, что в найденных нами протоколах профилактики лучевых поражений он не упоминается вовсе. Да, если послушать армейские байки, спирт работает как лекарство вообще от всего, но в армейских байках иногда и крокодилы летают. Не стоит смешивать фольклористику с биохимией и радиобиологией. Препараты, которые способствуют выводу радионуклидов, существуют, но у них столько побочных эффектов и ограничений, что мы про них специально не будем говорить.

На источник излучения изредка можно наткнуться

Возможно, эти мифы живучи потому, что облучиться можно не только рядом со сломавшимся ядерным реактором или в кабинете врача. Источники излучения иногда забывали в списанных приборах для поиска скрытых дефектов, были зафиксированы случаи потери медицинских источников, а несколько лет назад школьник из Москвы купил на радиорынке рентгеновскую трубку, подключил ее дома и заработал лучевой ожог руки. В Южной Америке случилась еще более вопиющая история. В больнице был потерян светящийся радиоактивный порошок, который местные дети нашли и использовали в качестве грима. Вечеринка закончилась грустно.

Чтобы такого избежать, нужно просто не тащить в дом неизвестные предметы и не разбирать их на части. В конце концов, что такого необходимого для хозяйства можно найти в подвале больницы? А если вы считаете себя опытным исследователем заброшенных пространств, то наверняка слышали, что приличный сталкер оставляет после себя объект в том же виде, в котором застал.

Микроволновки и смартфоны не вредят

Микроволновые печи и смартфоны — источники не той радиации. Энергии микроволн недостаточно для того, чтобы оторвать электроны от ядер атомов. Медики и биологи спорят о том, как СВЧ-излучение в малых дозах может влиять на человеческий организм, но пока результаты скорее обнадеживающие: сопоставление целого ряда разных масштабных исследований указывает на то, что связи между телефонами и злокачественными опухолями нет.

На эту тему

Еще осталось поверье о старых мониторах с электронно-лучевыми трубками (не плоских, как сейчас, а выпуклых). Такие мониторы действительно испускали рентгеновские лучи, но стекло блокировало их достаточно, чтобы человек оставался в безопасности.

Другое поверье гласило, что от радиации защищает кактус. Но даже если допустить, что экран и вправду испускает ионизирующее излучение, как кактус, который даже не закрывает дисплей целиком, способен помочь?

Гипотетически пострадать мог кот, улегшись сверху: излучение выходило преимущественно сзади, а не через экран. Если вы не кот и у вас не было привычки греться на мониторе, то лучами от компьютерного дисплея можно было пренебречь. Кстати, считается, что животные могут чувствовать радиацию. Это не совсем так. Ионизирующее излучение при достаточной мощности расщепляет молекулы кислорода в воздухе. В результате появляется специфический запах озона. Некоторые животные с очень чувствительным обонянием могут уловить этот запах, но не саму радиацию.

Радиация ломает технику

Радиация вредна не только для людей и животных. Микросхемы на аппаратах в межпланетном пространстве, где много космических лучей, приходится специально адаптировать для работы в условиях повышенного радиационного фона.

Именно из-за этого производительность процессора, скажем, на марсоходе или юпитерианском зонде Juno весьма скромна по земным меркам: за устойчивость к облучению конструкторы расплачиваются габаритами и скоростью работы.

Алексей Тимошенко

Радиация — Что такое Радиация?

Радиация — совокупность разновидностей ионизирующих излучений, т. е. микрочастиц и физических полей, способных ионизировать вещество.

По сочетанию таких свойств, как состав, энергия и проникающая способность, выделяют следующие виды ионизирующего излучения:

  • излучение альфа-частиц – обладает сильной ионизацией – это достаточно тяжелые ядра гелия с положительным зарядом;
  • излучение бета-частиц – это поток заряженных электронов, по проникающей способности значительно превосходит альфа-частицы;
  • гамма-излучение – похоже на видимый световой поток, а по своей природе – это короткие волны электромагнитного излучения, способные проникать в окружающие предметы;
  • рентгеновское излучение – электромагнитные волны с меньшей энергией, чем гамма-излучение. Солнце – естественный и не менее мощный источник рентгеновских лучей, но слои атмосферы обеспечивают защиту от солнечного излучения;
  • нейтроны – электрически нейтральные частицы, которые возникают около работающих атомных реакторов. Доступ на такую территорию всегда ограничен.
В качестве мощного источника излучения, опасного для здоровья и жизни человека, может выступать совершенно любой радиоактивный предмет или вещество.
И в сравнении со многими другими возможными опасностями радиацию невозможно почувствовать и увидеть.
Определить ее уровень можно только специальными приборами.

Влияние радиационного излучения на здоровье человека зависит от его конкретного вида, периода времени и частоты воздействия.
Гамма-излучение для человека считается самым опасным.
Альфа-излучение, хотя и обладает малой проникающей способностью, опасно в случае попадания альфа-частиц непосредственно в организм человека (в легкие или пищеварительную систему).
При излучении бета-частиц необходимо защитить кожные покровы человека и не допустить их попадания внутрь.
При работе с рентгеновским оборудованием необходимо соблюдать меры защиты, поскольку излучение от него является мутагенным фактором, что приводит к мутации генов – изменению генетического материала клетки.

Все перечисленные виды радиационного излучения могут вызывать у человека:

  • серьезные заболевания – лейкоз, рак (легких, щитовидной железы),
  • инфекционные осложнения, нарушение обмена веществ, катаракту,
  • генетические нарушения (мутации), врожденные пороки,
  • выкидыши и бесплодие.

В Челябинске проверят информацию о повышенной радиации в центре города

https://ria.ru/20211122/radiatsiya-1760186244.html

В Челябинске проверят информацию о повышенной радиации в центре города

В Челябинске проверят информацию о повышенной радиации в центре города — РИА Новости, 22. 11.2021

В Челябинске проверят информацию о повышенной радиации в центре города

Специалисты в понедельник в центре Челябинска проверяют информацию об обнаружении источника повышенного радиоактивного излучения, сообщили РИА Новости в… РИА Новости, 22.11.2021

2021-11-22T15:19

2021-11-22T15:19

2021-11-22T15:19

происшествия

радиация

челябинск

мчс россии (министерство рф по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий)

федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека (роспотребнадзор)

facebook

россия

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdnn21.img.ria.ru/images/98577/68/985776859_0:180:3456:2124_1920x0_80_0_0_0df11b5db6638e923fecb95026d06277.jpg

ЧЕЛЯБИНСК, 22 ноя – РИА Новости. Специалисты в понедельник в центре Челябинска проверяют информацию об обнаружении источника повышенного радиоактивного излучения, сообщили РИА Новости в министерстве общественной безопасности региона, в ГУМЧС уточнили, что угрозы людям нет. Инженер-физик Андрей Ожаровский ранее разместил в Facebook видео, снятое на улице Труда, у дома 22 в Челябинске в понедельник. С помощью приборов он зафиксировал высокое излучение вблизи спиленного столба рекламной конструкции, указав, что полученные данные — «это очень много». Он выдвинул версию, что столб был сделан из металлической трубы, которая ранее могла использоваться в качестве фрагмента нефтепровода, в нефти же содержатся природные радионуклиды.»Министерство общественной безопасности в курсе сложившейся ситуации. На место, где обнаружен источник радиации, прибыли все спецслужбы. Также на месте работают сотрудники лаборатории, которые заберут на исследование предмет, источающий радиоактивный фон. Далее уже проверку будут проводить специалисты Роспотребнадзора», — говорится в сообщении.Как уточняется, подозрительный предмет упакуют в специальный контейнер в целях последующей утилизации в соответствии с действующим законодательством, также через систему учёта и контроля радиоактивных веществ будет устанавливаться его владелец. Кроме того, в пресс-центре ГУМЧС России по региону РИА Новости добавили, что сотрудники МЧС выезжали на место, угрозы населению в связи с данной ситуацией нет. Будут проводиться все необходимые замеры, уточнили в пресс-центре.

https://ria.ru/20211116/podderzhka-1759303412.html

челябинск

россия

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2021

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdnn21.img.ria.ru/images/98577/68/985776859_192:0:3264:2304_1920x0_80_0_0_0dcde318e973ee3e7c4337608ff28bd2. jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

происшествия, радиация, челябинск, мчс россии (министерство рф по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий), федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека (роспотребнадзор), facebook, россия

В Челябинске проверят информацию о повышенной радиации в центре города

Измерение радиации в квартире — МУП КРППО

Нормы для человека

Радиационный фон

Существующий естественный фон, который в нашей стране составляет 4–15 мкР в час, складывается из нескольких составляющих. Это:

  • Природный, до 83%. Остаточная радиация от природных источников — газов, минералов.
  • Космическое излучение — 14%. Мощнейшим источником излучения является солнце.
  • Техногенное – от 3 до 13%. С первого атомного взрыва прошло 75 лет. За время испытаний атомного оружия в атмосферу было выброшено огромное количество радиоактивных веществ.
  • Норма радиационного фона является значение до 0,20 мкЗв/час или 20 мкР/час. Допустимый фон считается уровень до 60 мкР/час или 0,6 мЗв. Для каждой страны он устанавливается свой, например, в Бразилии безопасный радиоактивный фон составляет 100 мкР в час.

Безопасная доза

  • Безопасной дозой радиации для человека является уровень, при котором можно жить и работать без последствий для организма. Этот уровень определён до 30 мкР/ч (0,3 мкЗв/час).

Допустимая доза

  • Допустимая доза радиации несколько больше безопасной и показывает уровень, при котором на организм оказывается воздействие радиации, но без негативных последствий для здоровья.
  • Допустимый уровень в год предполагает до 1 мЗв. Если это значение поделить на часы, то получим 0,57 мкЗв/ч.
  • При полётах на высоте выше 10 км уровень излучения будет до 3 мкЗв/ч, что превышает норму в 10 раз. Получается, что за 4 часа можно получить максимальную, суммарную дозу до 12 мкЗв.

Смертельный уровень облучения

Опасной дозой можно принять уровень в 0,75 Зв. При таком значении происходит изменение в крови человека и хоть не бывает смертельных исходов сразу, но в будущем вероятность раковых заболеваний довольно высока.

Как уже было замечено выше органы (печень, лёгкие, желудок, кожа) неравномерно воспринимают излучение. Лучевая болезнь начинается с дозы в 1–2 Зиверт и для некоторых это уже смертельная доза. Другие с лёгкостью перенесут заражение и выздоровеют.

Если исходить из статистики, то смертельной будет доза выше 7 Зиверт или 700 рентген.

Измерение радиации в квартире

Уровень радиации в помещении не должен превышать 0,25 мкЗв/час. Безопасным считаются помещение, в которых содержание радона не более 100 Бк на кубометр. При этом в производственных помещениях он может составлять до 300 Бк и 0,6 микроЗиверт.

Если нормы превышены, то принимаются меры к их снижению. При невозможности это сделать жильцы должны быть переселены, а помещение перепрофилировано в нежилое или идти под снос.

В СанПиН указано содержание тория, урана и калия-40 используемых на строительстве для возведения жилья. Общая доза от стеновых и отделочных материалов не должна быть выше 370 Бк/кг.

Служба эколгического контроля МУП КРППО всегда поможет в измерении уровня радиации в квартире. Звоните и заказывайте услугу с выездом специалиста на дом.

Влияние радиации на здоровье человека

Влияние радиации на здоровье человека

То, что радиация оказывает пагубное влияние на здоровье человека, уже ни для кого не секрет. Когда радиоактивное излучение проходит через тело человека или же когда в организм попадают зараженные вещества, то энергия волн и частиц передается нашим тканям, а от них клеткам. В результате атомы и молекулы, составляющие организм, приходят в возбуждение, что ведёт к нарушению их деятельности и даже гибели. Все зависит от полученной дозы радиации, состояния здоровья человека и длительности воздействия.

Для ионизирующего излучения нет барьеров в организме, поэтому любая молекула может подвергнуться радиоактивному воздействию, последствия которого могут быть самыми разнообразными. Влияние радиации на здоровье человека, это серьезная проблема, в которой сроит разобраться: Возбуждение отдельных атомов может привести к перерождению одних веществ в другие, вызвать биохимические сдвиги, генетические нарушения и т.п. Пораженными могут оказаться белки или жиры, жизненно необходимые для нормальной клеточной деятельности. Таким образом, радиация воздействует на организм на микроуровне, вызывая повреждения, которые заметны не сразу, а проявляют себя через долгие годы. Поражение отдельных групп белков, находящихся в клетке, можетвызвать рак, а также генетические мутации, передающиеся через несколько поколений. Воздействие(влияние радиации) малых доз облучения обнаружить очень сложно,но все это наносит не згладимый след на здоровье человека, ведь эффект от этого проявляется через десятки лет.


Воздействие радиации на ткани и органы человека, восприимчивость к ионизирующему излучению.

Доза облучения и ее воздействие на организм человека:

Значение поглощенной дозы, рад

Степень воздействия на человека


10000 рад (100 Гр.)

Летальная доза, смерть наступает через несколько часов или дней от повреждения центральной нервной системы.

1000 — 5000 рад (10-50 Гр.)

Летальная доза, смерть наступает через одну-две недели от внутренних кровотечений (истончаются клеточные мембраны), в основном в желудочно-кишечном тракте.

300-500 рад (3-5 Гр.)

Летальная доза, половина облученных умирают в течение одного-двух месяцев от поражения клеток костного мозга.

150-200 рад (1,5-2 Гр.)

Первичная лучевая болезнь (склеротические процесс, изменения в половой системе, катаракта, иммунные болезни, рак). Тяжесть и симптомы зависят от дозы излучения и его типа.

100 рад (1 Гр)

Кратковременная стерилизация: потеря способности иметь потомство.

30 рад

Облучение при рентгене желудка (местное).

25 рад (0,25 Гр.)

Доза оправданного риска в чрезвычайных обстоятельствах.

10 рад (0,1 Гр.)

Вероятность мутации увеличивается в 2 раза.

3 рад

Облучение при рентгене зубов.

2 рад (0,02 Гр) в год

Доза облучения, получаемая персоналом, работающим с источником ионизирующего излучения.

0,2 рад (0,002 Гр. или
200 миллирад) в год

Доза облучения, которую получают сотрудники промышленных предприятий, объектов радиационно-ядерных технологий.

0,1 рад (0,001 Гр.) в год

Доза облучения, получаемая средним россиянином.

0,1-0,2 рад в год

Естественный радиационный фон Земли.

84 микрорад/час

Полёт на самолёте на высоте 8 км.

1 микрорад

Просмотр одного хоккейного матча по телевизору.

Вред радиоактивных элементов и воздействие радиации на человеческий организм активно изучается учёными всего мира. Доказано, что в ежедневных выбросах из АЭС содержится радионуклид «Цезий-137», который при попадании в организм человека вызывает саркому (разновидность рака), «Стронций-90» замещает кальций в костях и грудном молоке, что приводит к лейкемии (раку крови), раку кости и груди. А даже малые дозы облучения «Криптоном-85» значительно повышают вероятность развития рака кожи.

Сотрудники www.fela-control.ru отмечают, что наибольшему воздействию радиоактивного воздействия подвергаются люди, проживающие в крупных городах, ведь помимо естественного радиационного фона на них ещё воздействуют стройматериалы, продукты питания, воздух, зараженные предметы. Постоянное превышение над естественным радиационным фоном приводит к раннему старению, ослаблению зрения и иммунной системы, чрезмерной психологической возбудимости, гипертонии и развитию аномалий у детей.


Радиоактивные вещества вызывают необратимые изменения в структуре ДНК.

Даже самые малые дозы облучения вызывают необратимые генетические изменения, которые передаются из поколения в поколение, приводят к развитию синдрома Дауна, эпилепсии, появлению других дефектов умственного и физического развития. Особо страшно то, что радиационному заражению подвергаются и продукты питания, и предметы быта. В последнее время участились случаи изъятия контрафактной и низкокачественной продукции, являющейся мощным источником ионизирующего излучения. Радиоактивными делают даже детские игрушки! О каком здоровье нации может идти речь?!

Единственный способ хоть как-то обезопасить себя и своих близких от смертельного воздействия — купить дозиметр радиации. С ним Вы сможете за считанные секунды проверить безопасность детских игрушек, продуктов питания, ювелирных украшений и всего того, что приносите в дом, с чем играют ваши дети. Доказано, что последствия облучения крайне тяжело лечить, зато постараться максимально защитить себя и свою семью от этого в ваших силах.

МАГАТЭ: Уровень радиации в Европе мог повыситься из-за реактора | Новости из Германии о Европе | DW

Причиной легкого повышения уровня радиации в Северной Европе близ границы с Россией в конце июня предположительно является атомная электростанция. Источником радиации мог быть ядерный реактор — либо активный, либо находящийся на ремонте, заявило Международное агентство по атомной энергии (МАГАТЭ) в пятницу, 3 июля, в Вене. В агентстве подчеркнули, что угрозы для окружающей среды и людей нет.

МАГАТЭ пока не удалось установить местоположение этого атомного реактора. 40 государств, в том числе Россия и Латвия, не сообщали агентству о каких-либо происшествиях в атомной сфере.

Повышение уровня радиации

Организация Договора о всеобъемлющем запрещении ядерных испытаний (CTBTO) на прошлой неделе сообщила, что в некоторых регионах Швеции, Финляндии, Эстонии, Латвии, а также в северо-западной части России зафиксировано незначительное повышение уровня радиации.

Один из институтов в Нидерландах предположил, что источник утечки находится в западной части России. По другой версии, радиационный фон мог повыситься в результате сгорания древесины, все еще зараженной в результате аварии на Чернобыльской АЭС.

Компания-оператор российских АЭС «Росэнергоатом», однако, заявила, что никаких инцидентов на ее объектах не было, а одна из французских неправительственных организаций исключила Латвию как источник радиации по результатам исследования изотопов.

Смотрите также:

  • Чернобыльская зона через 30 лет после трагедии

    Зона отчуждения

    После аварии на ЧАЭС возникла необходимость контроля на территориях, которые подверглись наибольшему радиоактивному загрязнению — это города Чернобыль и Припять. 30-километровая зона вокруг станции была закрыта для свободного доступа. Сегодня в Чернобыле расположено предприятие по управлению зоной отчуждения, там также живут до 2800 человек персонала предприятий, строящих арку для саркофага.

  • Чернобыльская зона через 30 лет после трагедии

    Чернобыльская АЭС

    В 1970-х годах в Чернобыльском районе началось строительство первой атомной электростанции на Украине. ЧАЭС расположена в 3 км от города Припять и в 18 км от города Чернобыль. Она производила десятую долю электроэнергии в УССР. Полностью ЧАЭС была остановлена только в конце 2000 года. Сейчас продолжаются работы по строительству нового изолирующего сооружения над четвертым энергоблоком.

  • Чернобыльская зона через 30 лет после трагедии

    Чернобыль — административный центр зоны отчуждения

    До аварии в Чернобыле проживали 12,5 тыс человек, все они были эвакуированы через несколько дней после трагедии. На данный момент город входит в 30-километровую зону отчуждения, являясь ее административным центром. Персонал находящихся здесь предприятий проживает в заброшенных многоквартирных домах. При пересечении границ зоны отчуждения все обязаны проходить дозиметрический контроль.

  • Чернобыльская зона через 30 лет после трагедии

    Арка — новое укрытие для саркофага

    В ликвидации аварии на ЧАЭС участвовали более 600 тысяч человек. Главной их задачей было строительство бетонного саркофага для 4-го энергоблока. Под действием внешних факторов и радиации старое укрытие начало разрушаться, что несет опасность — там до сих пор хранятся около 200 т радиоактивных веществ. Новое арочное сооружение должно накрыть саркофаг и позволить начать его частичный демонтаж.

  • Чернобыльская зона через 30 лет после трагедии

    «Самоселы» в зоне отчуждения

    До сих пор концентрация радионуклидов в зоне отчуждения высока, что не позволяет снять ограничения на проживание там. Однако вскоре после аварии и эвакуации местные жители под разными предлогами начали возвращаться в родные дома. Этих людей прозвали «самоселами». На сегодняшний день их в зоне около 180 человек: 80 — в Чернобыле и еще около 100 — в селах, расположенных в 30-километровой зоне.

  • Чернобыльская зона через 30 лет после трагедии

    Автолавка с продуктами два раза в месяц

    В основном «самоселы» — это пожилые люди. Они проживают сейчас в четырех деревнях 30-километровой зоны отчуждения. «Самоселы» выращивают овощи и фрукты, собирают грибы в лесу и пьют воду из колодцев. Из благ цивилизации у них только электричество. Продуктовая автолавка с хлебом и крупами приезжает два раза в месяц, а раз в месяц почтальон развозит пенсии.

  • Чернобыльская зона через 30 лет после трагедии

    Припять — город-призрак

    Город Припять расположен на берегу одноименной реки в 3 км от ЧАЭС. Именно он подвергся наибольшему радиоактивному загрязнению. Население города Припять составляло 47,5 тыс человек, на следующий день после аварии все они были эвакуированы. Даже после проведения работ по дезактивации уровень радиации слишком высок, поэтому город непригоден для проживания.

  • Чернобыльская зона через 30 лет после трагедии

    Секретный объект «Дуга-1»

    Секретный объект «Дуга-1» — радиолокационная станция советских времен, предназначенная для обнаружения пусков межконтинентальных баллистических ракет. «Дуга-1» так никогда и не заступила целиком на боевое дежурство. Размеры сооружения из множества антенн — 700 м в длину и 150 м в высоту. После аварии на ЧАЭС объект законсервировали, позже основные его элементы демонтировали и вывезли.

  • Чернобыльская зона через 30 лет после трагедии

    «Ковш смерти»

    Так называемый «ковш смерти» — одна из нынешних достопримечательностей города Припять. Ковш использовался при ликвидации последствий аварии непосредственно на 4-м энергоблоке ЧАЭС. Излучение от ковша (даже в нескольких метрах от него) превышает норму в десять тысяч раз. Прикасаться к нему запрещено.

  • Чернобыльская зона через 30 лет после трагедии

    Образцовый город советской эпохи

    Город Припять строился как образцово-показательный, при его возведении использовались инновационные для тех лет архитектурные решения. На момент эвакуации в 1986 г. в Припяти было 15 детских садов, 5 школ, бассейны, столовые, спорткомплексы, поликлиники, кинотеатр и дворец культуры. Сейчас от города почти ничего не осталось: дороги заросли, во многих зданиях обвалились внутренние перегородки.

  • Чернобыльская зона через 30 лет после трагедии

    Мертвая земля

    Припять должен был стать самым красивым, образцовым городом советской Украины. Но в историю он вошел как город-памятник самой страшной ядерной катастрофы в мире. На данный момент в Припяти действует только спецпрачечная, станция фторирования и обезжелезивания воды и гараж спецтехники ЧАЭС. В городе не проживает ни один человек.

  • Чернобыльская зона через 30 лет после трагедии

    Зона экстремального туризма

    Ежегодно зону отчуждения посещает несколько тысяч туристов-экстремалов. До начала конфликта на востоке Украины среди туристов-иностранцев лидировали граждане России. Сегодня больше всего гостей из Польши, Чехии и США.

    Автор: Анастасия Магазова


Радиационное воздействие: MedlinePlus

Что такое радиация?

Радиация – это энергия. Он распространяется в виде энергетических волн или высокоскоростных частиц. Радиация может быть естественной или искусственной. Существует два типа:

  • Неионизирующее излучение, включает радиоволны, сотовые телефоны, микроволны, инфракрасное излучение и видимый свет
  • Ионизирующее излучение, которое включает ультрафиолетовое излучение, радон, рентгеновские лучи и гамма-лучи

Каковы источники радиационного облучения?

Фоновое излучение постоянно окружает нас.Большая часть его образуется естественным образом из минералов. Эти радиоактивные минералы находятся в земле, почве, воде и даже в наших телах. Фоновое излучение также может исходить из космоса и Солнца. Другие источники искусственного происхождения, такие как рентгеновские лучи, лучевая терапия для лечения рака и линии электропередач.

Каковы последствия радиационного облучения для здоровья?

Радиация сопровождала нас на протяжении всей эволюции. Таким образом, наши тела созданы для того, чтобы справляться с низкими уровнями, которым мы подвергаемся каждый день.Но слишком много радиации может повредить ткани, изменив структуру клеток и повредив ДНК. Это может вызвать серьезные проблемы со здоровьем, включая рак.

Величина ущерба, который может вызвать воздействие радиации, зависит от нескольких факторов, в том числе:

  • Тип радиации
  • Доза (количество) радиации
  • Как вы подверглись воздействию, например, при контакте с кожей, проглатывании или вдыхании, или при прохождении лучей через ваше тело
  • Где в организме концентрируется излучение и как долго оно там остается
  • Насколько чувствителен ваш организм к радиации.Наиболее уязвим плод к воздействию радиации. Младенцы, дети, пожилые люди, беременные женщины и люди с ослабленной иммунной системой более уязвимы для последствий для здоровья, чем здоровые взрослые.

Воздействие большого количества радиации в течение короткого периода времени, например, в результате радиационной аварийной ситуации, может вызвать ожоги кожи. Это также может привести к острому лучевому синдрому (ОЛБ, или «лучевой болезни»). Симптомы ОЛБ включают головную боль и диарею. Обычно они начинаются в течение нескольких часов.Эти симптомы исчезнут, и человек на некоторое время будет казаться здоровым. Но потом снова заболеют. Как скоро они снова заболевают, какие у них симптомы и насколько сильно они заболевают, зависит от дозы облучения, которую они получили. В некоторых случаях ОЛБ вызывает смерть в последующие дни или недели.

Воздействие низких уровней радиации в окружающей среде не вызывает немедленных последствий для здоровья. Но это может немного увеличить общий риск развития рака.

Какие существуют методы лечения острой лучевой болезни?

Прежде чем приступить к лечению, медицинские работники должны выяснить, сколько радиации поглотил ваш организм.Они спросят о ваших симптомах, сделают анализы крови и могут использовать устройство, измеряющее радиацию. Они также пытаются получить больше информации о воздействии, например, какой это был тип излучения, как далеко вы находились от источника излучения и как долго вы подвергались воздействию.

Лечение направлено на уменьшение и лечение инфекций, предотвращение обезвоживания и лечение травм и ожогов. Некоторым людям может потребоваться лечение, которое помогает костному мозгу восстановить свою функцию. Если вы подверглись воздействию определенных видов радиации, ваш врач может назначить вам лечение, которое ограничивает или удаляет загрязнение, находящееся внутри вашего тела.Вы также можете получить лечение своих симптомов.

Как можно предотвратить облучение?

Существуют шаги, которые вы можете предпринять, чтобы предотвратить или уменьшить радиационное облучение:

  • Если ваш поставщик медицинских услуг рекомендует тест с использованием радиации, спросите о его рисках и преимуществах. В некоторых случаях вы можете пройти другой тест, в котором не используется радиация. Но если вам нужен тест, в котором используется радиация, изучите местные центры визуализации. Найдите ту, которая отслеживает и использует методы для снижения доз, которые они дают пациентам.
  • Уменьшите воздействие электромагнитного излучения от вашего мобильного телефона. В настоящее время научные данные не обнаружили связи между использованием мобильных телефонов и проблемами со здоровьем у людей. Чтобы быть уверенным, необходимы дополнительные исследования. Но если у вас все еще есть проблемы, вы можете сократить время, которое вы тратите на телефон. Вы также можете использовать режим динамика или гарнитуру, чтобы увеличить расстояние между головой и мобильным телефоном.
  • Если вы живете в частном доме, проверьте уровень радона и, если необходимо, приобретите систему снижения содержания радона.
  • Во время радиационной опасности проберитесь внутрь здания, чтобы укрыться. Оставайтесь внутри, закройте все окна и двери. Оставайтесь с нами и следуйте советам экстренных служб и официальных лиц.

Агентство по охране окружающей среды

Радиация в повседневной жизни | МАГАТЭ

» Виды радиации | Доза радиации | Радиационная защита | На каком уровне радиация вредна? | Риски и преимущества

Радиоактивность – это часть нашей земли, она существовала всегда. Природные радиоактивные материалы присутствуют в его корке, полах и стенах наших домов, школ или офисов, а также в пище, которую мы едим и пьем. В воздухе, которым мы дышим, есть радиоактивные газы. Наши собственные тела — мышцы, кости и ткани — содержат встречающиеся в природе радиоактивные элементы.

Человек всегда подвергался воздействию естественного излучения, исходящего как от земли, так и извне. Излучение, которое мы получаем из космоса, называется космическим излучением или космическими лучами.

Мы также подвергаемся воздействию искусственного излучения, такого как рентгеновские лучи, излучение, используемое для диагностики заболеваний и для лечения рака. Выпадения радиоактивных осадков при испытаниях ядерных взрывчатых веществ и небольшие количества радиоактивных материалов, выбрасываемых в окружающую среду угольными и атомными электростанциями, также являются источниками радиационного облучения человека.

Радиоактивность — это термин, используемый для описания распада атомов. Атом можно охарактеризовать количеством протонов в ядре. Некоторые природные элементы неустойчивы.Поэтому их ядра распадаются или распадаются, высвобождая энергию в виде излучения. Это физическое явление называется радиоактивностью, а радиоактивные атомы называются ядрами. Радиоактивный распад выражается в единицах, называемых беккерелями. Один беккерель равен одному распаду в секунду.

Радионуклиды распадаются с характерной скоростью, которая остается постоянной независимо от внешних воздействий, таких как температура или давление. Время, за которое распадается или распадается половина радионуклидов, называется периодом полураспада.Это отличается для каждого радиоэлемента, в пределах от долей секунды до миллиардов лет. Например, период полураспада йода-131 составляет восемь дней, а урана-238, который присутствует в различных количествах по всему миру, составляет 4,5 миллиарда лет. Калий-40, основной источник радиоактивности в нашем организме, имеет период полураспада 1,42 миллиарда лет.

Виды излучения

Термин «излучение» очень широк и включает в себя такие вещи, как свет и радиоволны. В нашем контексте это относится к «ионизирующему» излучению, что означает, что, поскольку такое излучение проходит через вещество, оно может вызвать его электрический заряд или ионизацию.В живых тканях электрические ионы, образующиеся при излучении, могут влиять на нормальные биологические процессы.

Существуют различные типы излучения, каждый из которых имеет разные характеристики. Обычные ионизирующие излучения, о которых обычно говорят:

  • Альфа-излучение состоит из тяжелых положительно заряженных частиц, испускаемых атомами таких элементов, как уран и радий. Альфа-излучение можно полностью остановить листом бумаги или тонким поверхностным слоем нашей кожи (эпидермисом).Однако, если альфа-излучающие материалы попадают в организм при дыхании, еде или питье, они могут напрямую подвергать воздействию внутренние ткани и, следовательно, вызывать биологические повреждения.
  • Бета-излучение состоит из электронов. Они обладают большей проникающей способностью, чем альфа-частицы, и могут проходить через 1-2 сантиметра воды. Обычно лист алюминия толщиной в несколько миллиметров останавливает бета-излучение.
  • Гамма-лучи — это электромагнитное излучение, подобное рентгеновским лучам, свету и радиоволнам.Гамма-лучи, в зависимости от их энергии, могут проходить прямо через тело человека, но могут быть остановлены толстыми стенами из бетона или свинца.
  • Нейтроны являются незаряженными частицами и не вызывают ионизации напрямую. Но их взаимодействие с атомами материи может привести к альфа-, бета-, гамма- или рентгеновским лучам, которые затем вызывают ионизацию. Нейтроны проникают и могут быть остановлены только толстыми массами бетона, воды или парафина.

Хотя мы не можем видеть или чувствовать присутствие радиации, ее можно обнаружить и измерить в мельчайших количествах с помощью довольно простых приборов для измерения радиации.

Доза облучения

Солнечный свет кажется теплым, потому что наше тело поглощает содержащиеся в нем инфракрасные лучи. Но инфракрасные лучи не вызывают ионизации в тканях тела. Напротив, ионизирующее излучение может нарушить нормальное функционирование клеток или даже убить их. Количество энергии, необходимое для того, чтобы вызвать значительные биологические эффекты посредством ионизации, настолько мало, что наши тела не могут ощущать эту энергию, как в случае инфракрасных лучей, выделяющих тепло.

Биологические эффекты ионизирующего излучения различаются в зависимости от типа и энергии.Мерой риска биологического вреда является доза радиации, которую получают ткани. Единицей поглощенной дозы излучения является зиверт (Зв). Поскольку один зиверт является большой величиной, обычно встречающиеся дозы облучения выражаются в миллизивертах (мЗв) или микрозивертах (мкЗв), что составляет одну тысячную или одну миллионную часть зиверта. Например, один рентген грудной клетки дает около 0,2 мЗв дозы облучения.

В среднем наше облучение от всех природных источников составляет около 2.4 мЗв в год — правда, эта цифра может варьироваться в зависимости от географического положения на несколько сотен процентов. В домах и зданиях в воздухе присутствуют радиоактивные элементы. Этими радиоактивными элементами являются радон (радон-222), торон (радон-220) и побочные продукты распада радия (радий-226) и тория, присутствующие во многих видах горных пород, других строительных материалах и в почве. Безусловно, самый крупный источник естественного радиационного облучения исходит от различного количества урана и тория в почве по всему миру.

Радиационное воздействие космических лучей сильно зависит от высоты и немного от широты: люди, путешествующие по воздуху, тем самым увеличивают свое облучение.

Мы подвергаемся воздействию ионизирующего излучения от естественных источников двумя способами:

  • Мы окружены природными радиоактивными элементами в почве и камнях и омываемся космическими лучами, поступающими в атмосферу Земли из космоса.
  • Мы получаем внутреннее облучение от радиоактивных элементов, которые попадают в наш организм через пищу, воду и воздух, которым мы дышим.Кроме того, в нашей крови или костях есть радиоактивные элементы (калий 40, углерод 14, радий 226).

Кроме того, мы подвергаемся различным дозам радиации от таких источников, как стоматологические и другие медицинские рентгеновские лучи, промышленное использование ядерных технологий и другие потребительские товары, такие как люминесцентные наручные часы, ионизационные детекторы дыма и т. д. Мы также подвергаемся воздействию излучение радиоактивных элементов, содержащихся в радиоактивных осадках при испытаниях ядерных взрывчатых веществ, и обычные обычные выбросы атомных и угольных электростанций.

Радиационная защита

Давно известно, что большие дозы ионизирующего излучения могут повреждать ткани человека. С годами, по мере того, как узнавалось все больше, ученые все больше беспокоились о потенциально разрушительных последствиях воздействия больших доз радиации. Необходимость регулирования воздействия радиации побудила сформировать ряд экспертных органов для рассмотрения того, что необходимо сделать. В 1928 году был создан независимый неправительственный орган экспертов в этой области — Международный комитет по защите от рентгеновских лучей и радия.Позже она была переименована в Международную комиссию по радиологической защите (МКРЗ). Его цель состоит в том, чтобы установить основные принципы и выдать рекомендации по радиационной защите.

Эти принципы и рекомендации составляют основу национальных нормативных актов, регулирующих облучение работников и населения. Они также были включены Международным агентством по атомной энергии (МАГАТЭ) в его Основные нормы безопасности для радиационной защиты, опубликованные совместно со Всемирной организацией здравоохранения (ВОЗ), Международной организацией труда (МОТ) и Агентством по ядерной энергии ОЭСР (АЯЭ).Эти стандарты используются во всем мире для обеспечения безопасности и радиационной защиты работников, работающих с радиацией, и населения в целом.

Межправительственный орган был образован в 1955 году Генеральной Ассамблеей Организации Объединенных Наций как Научный комитет ООН по действию атомной радиации (НКДАР ООН). НКДАР ООН направлен на сбор, изучение и распространение информации о наблюдаемых уровнях ионизирующего излучения и радиоактивности (природной и техногенной) в окружающей среде, а также о воздействии такого излучения на человека и окружающую среду.

Основные подходы к радиационной защите едины во всем мире. МКРЗ рекомендует, чтобы любое облучение, превышающее естественный радиационный фон, поддерживалось на разумно достижимом низком уровне, но ниже пределов индивидуальной дозы. Индивидуальный предел дозы для радиационных работников, усредненный за 5 лет, составляет 100 мЗв, а для населения – 1 мЗв в год. Эти пределы дозы были установлены на основе осторожного подхода, предполагая, что не существует пороговой дозы, ниже которой не будет никакого эффекта.Это означает, что любая дополнительная доза вызовет пропорциональное увеличение вероятности воздействия на здоровье. Эта взаимосвязь еще не установлена ​​в диапазоне низких доз, где установлены предельные дозы.

В мире есть много районов с высоким естественным радиационным фоном, где годовая доза облучения, полученная населением, в несколько раз превышает предел дозы МКРЗ для радиационных работников. Количество людей, подвергшихся воздействию, слишком мало, чтобы можно было ожидать эпидемиологического обнаружения какого-либо усиления воздействия на здоровье.Тем не менее тот факт, что до сих пор нет доказательств какого-либо увеличения, не означает, что риск полностью игнорируется.

МКРЗ и МАГАТЭ рекомендуют поддерживать индивидуальную дозу на разумно достижимом низком уровне, а также учитывать наличие других источников, которые могут вызвать одновременное облучение одной и той же группы населения. Кроме того, необходимо учитывать допуск на будущие источники или практику, чтобы общая доза, полученная отдельным лицом из населения, не превышала предельной дозы.

В целом установлено, что средняя годовая доза, полученная радиационными работниками, значительно ниже пределов индивидуальной дозы. Таким образом, надлежащая практика радиационной защиты может привести к низкому радиационному облучению рабочих.

На каком уровне радиация вредна?

Воздействие радиации при высоких дозах и мощностях доз достаточно хорошо задокументировано. Очень большая доза, доставленная во все тело за короткое время, приведет к смерти пострадавшего в течение нескольких дней.Многое удалось узнать, изучив медицинские записи выживших после бомбардировок Хиросимы и Нагасаки. Из них мы знаем, что некоторые последствия облучения для здоровья не проявляются до тех пор, пока не будет поглощена определенная довольно большая доза. Тем не менее, многие другие эффекты, особенно рак, легко обнаруживаются и чаще возникают у тех, кто принимает умеренные дозы. При более низких дозах и мощностях доз происходит восстановление в клетках и тканях.

Однако при низких дозах радиации все еще существует значительная неопределенность в отношении общих эффектов.Предполагается, что радиационное облучение даже на уровне естественного фона может быть сопряжено с некоторым дополнительным риском развития рака. Однако это еще предстоит установить. Чтобы точно определить риск при низких дозах с помощью эпидемиологии, нужно было бы наблюдать за миллионами людей при более высоких и более низких уровнях доз. Такой анализ будет осложнен отсутствием контрольной группы, которая не подвергалась никакому облучению. Кроме того, в нашей повседневной жизни есть тысячи веществ, помимо радиации, которые также могут вызывать рак, включая табачный дым, ультрафиолетовое излучение, асбест, некоторые химические красители, грибковые токсины в продуктах питания, вирусы и даже тепло.Только в исключительных случаях удается окончательно установить причину того или иного рака.

Существуют также экспериментальные данные исследований на животных о том, что воздействие радиации может вызывать генетические эффекты. Однако исследования выживших в Хиросиме и Нагасаки не дают никаких указаний на это для людей. Опять же, если и существовали какие-либо наследственные эффекты облучения низким уровнем радиации, то их можно было обнаружить только путем тщательного анализа большого объема статистических данных. Кроме того, их следует отличать от ряда других агентов, которые также могут вызывать генетические нарушения, но эффект которых может быть не распознан до тех пор, пока не будет нанесен ущерб (талидомид, когда-то назначаемый беременным женщинам в качестве транквилизатора, является одним из пример).Вполне вероятно, что разрешение научных дебатов придет не через эпидемиологию, а через понимание механизмов через молекулярную биологию.

Со всеми накопленными к настоящему времени знаниями о воздействии радиации до сих пор нет определенного вывода о том, несет ли облучение из-за естественного фона риск для здоровья, даже несмотря на то, что это было продемонстрировано для облучения на уровне в несколько раз выше.

Риски и преимущества

Мы все сталкиваемся с рисками в повседневной жизни.Устранить их все невозможно, но можно уменьшить. Использование угля, нефти и ядерной энергии для производства электроэнергии, например, связано с некоторым риском для здоровья, пусть и небольшим. В целом общество принимает на себя связанный с этим риск, чтобы получить соответствующие выгоды. Любой человек, подвергшийся воздействию канцерогенных загрязнителей, подвергается риску заболеть раком. В ядерной отрасли предпринимаются напряженные попытки снизить такие риски до разумно достижимого низкого уровня.

Радиационная защита служит примером для других дисциплин безопасности в двух уникальных аспектах:

  • Во-первых, предполагается, что любой повышенный уровень радиации выше естественного фона будет нести некоторый риск причинения вреда здоровью.
  • Во-вторых, он направлен на защиту будущих поколений от деятельности, проводимой сегодня.

Применение радиационных и ядерных методов в медицине, промышленности, сельском хозяйстве, энергетике и других областях науки и техники принесло обществу огромную пользу.Выгоды в медицине для диагностики и лечения с точки зрения спасенных человеческих жизней огромны. Лучевая терапия является ключевым инструментом в лечении некоторых видов рака. Трое из каждых четырех пациентов, госпитализированных в промышленно развитых странах, получают пользу от той или иной формы ядерной медицины. Благотворное воздействие в других областях аналогично.

Никакая человеческая деятельность или практика не могут быть полностью лишены сопутствующих рисков. Радиацию следует рассматривать с точки зрения того, что польза от нее для человечества менее вредна, чем от многих других агентов.

Влияние радиации на здоровье | Агентство по охране окружающей среды США

Ионизирующее излучение Ионизирующее излучение Излучение с такой большой энергией, что оно может выбивать электроны из атомов. Ионизирующее излучение может воздействовать на атомы живых существ, поэтому оно представляет опасность для здоровья, повреждая ткани и ДНК в генах. имеет достаточную энергию, чтобы воздействовать на атомы в живых клетках и тем самым повреждать их генетический материал (ДНК). К счастью, клетки нашего тела чрезвычайно эффективно восстанавливают эти повреждения. Однако, если повреждение не восстанавливается должным образом, клетка может погибнуть или в конечном итоге стать раковой. Соответствующая информация на испанском языке (Información relacionada en español).

Воздействие очень высоких уровней радиации, например, вблизи атомного взрыва, может вызвать острые последствия для здоровья, такие как ожоги кожи и острый лучевой синдром («лучевая болезнь»). Это также может привести к долгосрочным последствиям для здоровья, таким как как рак и сердечно-сосудистые заболевания.Воздействие низких уровней радиации, встречающихся в окружающей среде, не вызывает немедленных последствий для здоровья, но вносит незначительный вклад в наш общий риск рака.

Посетите Центры США по контролю и профилактике заболеваний (CDC) для получения дополнительной информации о возможных последствиях радиационного облучения и загрязнения для здоровья.

На этой странице:


Острый радиационный синдром в результате сильного облучения

Очень высокий уровень радиационного облучения в течение короткого периода времени может вызывать такие симптомы, как тошнота и рвота, в течение нескольких часов и иногда может привести к смерти в течение следующих нескольких часов. дней или недель. Это известно как острый лучевой синдром, широко известный как «лучевая болезнь».

Для возникновения острого лучевого синдрома требуется очень высокое радиационное воздействие — более 0,75 грея грея Грей — это международная единица, используемая для измерения поглощенной дозы (количества радиации, поглощенной объектом или человеком). Единицей измерения поглощенной дозы в США является рад. Один грей равен 100 рад. (75 рад) рад) Единица измерения в США, используемая для измерения поглощенной дозы облучения (количество радиации, поглощенной объектом или человеком). Международный эквивалент — Грей (Гр).Сто рад равны 1 грей. в короткий промежуток времени (от минут до часов). Этот уровень радиации подобен получению радиации от 18 000 рентгеновских снимков грудной клетки, распределенных по всему телу за этот короткий период. Острый лучевой синдром встречается редко и возникает в результате экстремальных событий, таких как ядерный взрыв или случайное обращение или разрушение высокорадиоактивного источника.

См. информационный бюллетень CDC: Острый лучевой синдром (ОЛС).

Узнайте, как защитить себя от радиации.

Узнайте об источниках радиации и дозах.

Радиационное воздействие и риск рака

Воздействие низких уровней радиации не вызывает немедленных последствий для здоровья, но может вызвать небольшое увеличение риска риск Вероятность травмы, заболевания или смерти в результате воздействия опасности. Радиационный риск может относиться ко всем избыточным случаям рака, вызванным радиационным облучением (риск заболеваемости), или только к избыточным смертельным случаям рака (риск смертности). Риск может быть выражен в процентах, дробях или десятичных числах.Например, избыточный риск заболеваемости раком на 1% соответствует риску 1 из 100 (1/100) или риску 0,01. рака в течение жизни. Существуют исследования, в которых отслеживаются группы людей, подвергшихся воздействию радиации, в том числе выжившие после атомной бомбардировки и работники радиационной промышленности. Эти исследования показывают, что радиационное облучение увеличивает шанс заболеть раком, а риск увеличивается с увеличением дозы: чем выше доза, тем выше риск. И наоборот, риск развития рака в результате радиационного облучения снижается по мере снижения дозы: чем ниже доза, тем ниже риск.

Дозы облучения обычно выражаются в миллизивертах (международных единицах) или бэрах бэр Американская единица измерения эффективной дозы. Международная единица – зиверт (Зв). (единицы США). Дозу можно определить по однократному облучению или по накопленному облучению с течением времени. Около 99 процентов людей не заболеют раком в результате однократного равномерного облучения всего тела в 100 миллизивертов (10 бэр) или ниже. 1 При такой дозе было бы чрезвычайно трудно выявить избыточное количество раковых заболеваний, вызванных радиацией, когда около 40 процентов мужчин и женщин в США.У С. в какой-то момент жизни будет диагностирован рак.

Риски, которые являются низкими для отдельного человека, могут со временем привести к неприемлемому количеству дополнительных случаев рака в большой популяции. Например, в популяции в один миллион человек увеличение риска рака в течение жизни в среднем на один процент может привести к 10 000 дополнительных случаев рака. EPA устанавливает нормативные ограничения и рекомендует рекомендации по реагированию на чрезвычайные ситуации значительно ниже 100 миллизивертов (10 бэр) для защиты U.S. населения, включая чувствительные группы, такие как дети, от повышенного риска развития рака из-за накопленной дозы облучения в течение жизни.

Рассчитайте дозу облучения.

Узнайте об источниках радиации и дозах.

Узнайте больше о риске рака в США в Национальном институте рака.

Узнайте больше о том, как Агентство по охране окружающей среды оценивает риск развития рака, в «Модели и прогнозы риска радиогенного рака для населения США» , также известном как «Синяя книга».

Ограничение риска рака от радиации в окружающей среде

Агентство по охране окружающей среды основывает свои нормативные ограничения и ненормативные рекомендации по воздействию ионизирующего излучения низкого уровня на людей на линейной беспороговой модели (LNT). Модель LNT предполагает, что риск развития рака из-за воздействия низких доз пропорционален дозе без порога. Другими словами, сокращение дозы наполовину снижает риск наполовину.

Использование модели LNT в целях радиационной защиты неоднократно рекомендовалось авторитетными научно-консультативными органами, в том числе Национальной академией наук и Национальным советом по радиационной защите и измерениям .Есть доказательства в поддержку LNT из лабораторных данных и исследований рака у людей, подвергшихся облучению. 2,3,4,5

Пути облучения

Понимание типа полученного излучения, способа облучения человека (внешнее или внутреннее) и продолжительности облучения – все это важно для оценки воздействия на здоровье .

Риск от воздействия определенного радионуклида радионуклид Радиоактивные формы элементов называются радионуклидами.Радий-226, цезий-137 и стронций-90 являются примерами радионуклидов. зависит от:

  • Энергии испускаемого им излучения.
  • Тип излучения (альфа, бета, гамма, рентгеновское излучение).
  • Его активность (как часто он излучает радиацию).
  • Независимо от того, является ли воздействие внешним или внутренним:
    • Внешнее облучение — это когда радиоактивный источник находится вне вашего тела. Рентгеновские и гамма-лучи могут проходить через ваше тело, выделяя при этом энергию.
    • Внутреннее облучение — это попадание радиоактивного материала внутрь организма при приеме пищи, питье, вдыхании или инъекции (при определенных медицинских процедурах).Радионуклиды могут представлять серьезную угрозу для здоровья при вдыхании или проглатывании значительных количеств.
  • Скорость, с которой организм метаболизирует и выводит радионуклид после приема внутрь или вдыхания.
  • Где в организме концентрируется радионуклид и как долго он там остается.

Узнайте больше об альфа-частицах, бета-частицах, гамма-лучах и рентгеновских лучах.

Чувствительные группы населения

Дети и эмбрионы особенно чувствительны к радиационному облучению. Клетки у детей и плодов делятся быстро, что дает больше возможностей радиации нарушить процесс и вызвать повреждение клеток. Агентство по охране окружающей среды учитывает различия в чувствительности в зависимости от возраста и пола при пересмотре стандартов радиационной защиты.


1 Национальный исследовательский совет, 2006 г. . Риски для здоровья в результате воздействия низких уровней ионизирующего излучения: BEIR VII, фаза 2 . Вашингтон, округ Колумбия: Издательство национальных академий (стр. 7).
2 Бреннер, Дэвид Дж.и др., 2003 г. «Раковые риски, связанные с низкими дозами ионизирующего излучения: оценка того, что мы действительно знаем». Труды Национальной академии наук 100, вып. 24, (стр. 13761-13766).
3 Национальный совет по радиационной защите и измерениям, 2018 г. Последствия недавних эпидемиологических исследований для линейной беспороговой модели и радиационной защиты, Комментарий NCRP 27. Бетесда, Мэриленд: Национальный совет по радиационной защите и измерениям.
Шор, Р.Э. и др., 2018. «Последствия недавних эпидемиологических исследований для линейной беспороговой модели и радиационной защиты». Журнал радиационной защиты, № 38, (стр. 1217-1233)
5 Агентство по охране окружающей среды США, 2011 г. «Модели и прогнозы риска радиогенного рака Агентства по охране окружающей среды для населения США». Отчет EPA 402-R-11-001.

Как лучевая терапия используется для лечения рака

Лучевая терапия является одним из наиболее распространенных методов лечения рака.Другие названия лучевой терапии: лучевая терапия , лучевая терапия , облучение и рентгенотерапия .

Что такое лучевая терапия?

Лучевая терапия использует высокоэнергетические частицы или волны, такие как рентгеновские лучи, гамма-лучи, электронные пучки или протоны, для разрушения или повреждения раковых клеток.

Ваши клетки обычно растут и делятся, образуя новые клетки. Но раковые клетки растут и делятся быстрее, чем большинство нормальных клеток. Радиация создает небольшие разрывы в ДНК внутри клеток. Эти разрывы препятствуют росту и делению раковых клеток и вызывают их гибель. Близлежащие нормальные клетки также могут быть поражены радиацией, но большинство из них восстанавливаются и возвращаются к нормальной работе.

В то время как химиотерапия и другие виды лечения, принимаемые перорально или инъекционно, обычно подвергают весь организм воздействию противораковых препаратов, лучевая терапия обычно является местным лечением. Это означает, что он обычно направлен и влияет только на ту часть тела, которая нуждается в лечении.Лучевое лечение планируется таким образом, чтобы оно повреждало раковые клетки с наименьшим вредом для соседних здоровых клеток.

В некоторых видах лучевой терапии (системная лучевая терапия) используются радиоактивные вещества, которые вводятся внутривенно или перорально. Несмотря на то, что этот тип излучения распространяется по всему телу, радиоактивное вещество в основном накапливается в области опухоли, поэтому воздействие на остальные части тела все еще незначительно.

Кто получает лучевую терапию?

Более половины больных раком получают лучевую терапию.Иногда лучевая терапия является единственным необходимым лечением рака, а иногда она используется с другими видами лечения. Решение о применении лучевой терапии зависит от типа и стадии рака, а также от других проблем со здоровьем, которые могут возникнуть у пациента.

Каковы цели лучевой терапии?

Большинство видов лучевой терапии не достигают всех частей тела, а это означает, что они бесполезны при лечении рака, который распространился на многие участки тела. Тем не менее, лучевая терапия может использоваться для лечения многих видов рака как отдельно, так и в сочетании с другими методами лечения.Хотя важно помнить, что каждый рак и каждый человек индивидуален, облучение часто является предпочтительным методом лечения для следующих целей.

Для лечения или уменьшения рака на ранней стадии

Некоторые виды рака очень чувствительны к радиации. Радиация может быть использована сама по себе в этих случаях, чтобы уменьшить рак или полностью исчезнуть. В некоторых случаях сначала может быть назначена химиотерапия или другие противораковые препараты. При других видах рака облучение может быть использовано перед операцией для уменьшения размера опухоли (это называется предоперационной терапией или неоадъювантной терапией ) или после операции, чтобы предотвратить рецидив рака (так называемая адъювантная терапия ).

Для некоторых видов рака, которые можно вылечить с помощью облучения или хирургического вмешательства, облучение может быть предпочтительным методом лечения. Это связано с тем, что радиация может нанести меньший ущерб, и пораженная часть тела с большей вероятностью будет работать так, как должна после лечения.

При некоторых видах рака лучевая терапия и химиотерапия или другие типы противораковых препаратов могут использоваться вместе. Некоторые лекарства (называемые радиосенсибилизаторами ) улучшают действие радиации, делая раковые клетки более чувствительными к радиации.Исследования показали, что, когда противораковые препараты и лучевая терапия назначаются вместе при определенных типах рака, они могут помочь друг другу работать даже лучше, чем если бы их давали по отдельности. Один недостаток, однако, заключается в том, что побочные эффекты часто усиливаются, когда их принимают вместе.

Чтобы рак не возвращался (повторялся) в другом месте

Рак может распространяться от того места, где он начался, на другие части тела. Врачи часто предполагают, что несколько раковых клеток, возможно, уже распространились, даже если их нельзя увидеть на изображениях, таких как компьютерная томография или магнитно-резонансная томография.В некоторых случаях область, в которую чаще всего распространяется рак, может быть обработана радиацией, чтобы убить любые раковые клетки, прежде чем они перерастут в опухоли. Например, люди с определенными видами рака легких могут получить лучевую терапию в голову, даже если не известно, что там есть рак, потому что их тип рака легких часто распространяется на головной мозг. Это делается для того, чтобы предотвратить распространение рака на голову еще до того, как это произойдет. Иногда облучение для предотвращения рака в будущем может проводиться одновременно с облучением для лечения существующего рака, особенно если область, на которую может распространиться рак, находится близко к самой опухоли.

Для лечения симптомов, вызванных прогрессирующим раком

Иногда рак настолько распространился, что его невозможно вылечить. Но некоторые из этих опухолей все же можно лечить, чтобы уменьшить их размеры и улучшить самочувствие человека. Облучение может помочь облегчить такие проблемы, как боль, проблемы с глотанием или дыханием, а также непроходимость кишечника, которые могут быть вызваны прогрессирующим раком. Это называется паллиативным облучением .

Для лечения рецидивирующего рака

Если у человека рак вернулся (повторно), радиация может быть использована для лечения рака или для лечения симптомов, вызванных прогрессирующим раком.Будет ли использоваться облучение после рецидива, зависит от многих факторов. Например, если рак вернулся в часть тела, которая уже подвергалась лучевой терапии, возможно, невозможно будет провести дополнительное облучение в том же месте. Это зависит от количества излучения, которое использовалось ранее. В других случаях облучение может применяться в той же области тела или в другой области. Некоторые опухоли не так хорошо реагируют на облучение, поэтому облучение можно не использовать, даже если они рецидивируют.

Как проводится лучевая терапия?

Лучевую терапию можно проводить тремя способами:

  • Внешнее облучение (или внешнее лучевое облучение) : использует аппарат, который направляет высокоэнергетические лучи извне в опухоль. Это делается во время амбулаторных посещений больницы или лечебного центра. Обычно его назначают в течение многих недель, а иногда два раза в день в течение нескольких недель. Человек, получающий внешнее облучение, не является радиоактивным и не должен соблюдать дома специальные меры безопасности.
  • Внутреннее облучение: Внутреннее облучение также называется брахитерапией . Радиоактивный источник помещают внутрь тела в опухоль или рядом с ней. При некоторых видах брахитерапии излучение может быть помещено в тело и оставлено для работы. Иногда его помещают в тело на некоторое время, а затем удаляют. Это решается в зависимости от типа рака. Для этого типа излучения в течение определенного периода времени необходимы специальные меры предосторожности. Но важно знать, если внутреннее излучение осталось в организме, через некоторое время оно в конечном итоге перестанет быть радиоактивным.
  • Системное облучение: Радиоактивные препараты, принимаемые внутрь или вводимые внутривенно, используются для лечения некоторых видов рака. Затем эти препараты распространяются по всему телу. Возможно, вам придется соблюдать особые меры предосторожности дома в течение некоторого времени после приема этих препаратов.

Тип облучения, который вы можете получить, зависит от вида вашего рака и его локализации. В некоторых случаях используется более одного типа. Ваша команда по лечению рака может ответить на конкретные вопросы о типе облучения, назначенном вам, о том, как оно влияет на ваш организм, и о любых мерах предосторожности, которые могут потребоваться.

Кто проводит лучевую терапию?

Во время лучевой терапии о вас позаботится команда высококвалифицированных медицинских специалистов. В вашу команду могут входить эти люди:

  • Онколог-радиолог: Этот врач специально обучен лечению рака с помощью радиации. Этот человек наблюдает за вашим планом лучевой терапии.
  • Физик-радиолог: Это человек, который следит за тем, чтобы радиационное оборудование работало должным образом и чтобы оно давало вам точную дозу, назначенную вашим онкологом-радиологом.
  • Дозиметрист: Этот человек помогает онкологу-радиологу планировать лечение.
  • Лучевой терапевт или технолог лучевой терапии: Этот человек управляет радиационным оборудованием и позиционирует вас для каждого лечения.
  • Медсестра отделения лучевой терапии: Эта медсестра имеет специальную подготовку по лечению рака и может предоставить вам информацию о лучевой терапии и лечении побочных эффектов.

Вам также могут понадобиться услуги диетолога, физиотерапевта, социального работника, стоматолога или стоматолога-онколога, фармацевта или других поставщиков медицинских услуг.

Вызывает ли лучевая терапия рак?

Давно известно, что лучевая терапия может немного повысить риск возникновения другого вида рака. Это один из возможных побочных эффектов лечения, о котором врачи должны думать, когда взвешивают преимущества и риски каждого вида лечения. По большей части риск повторного рака от этих методов лечения невелик и перевешивается пользой от лечения рака, но риск не равен нулю. Это одна из многих причин, по которой каждый случай индивидуален, и каждый человек должен принимать участие в принятии решения о том, какое лечение ему подходит.Риск различается в зависимости от того, где в организме будет проходить лучевая терапия.

Если ваша команда по лечению рака рекомендует лучевую терапию, это потому, что они считают, что польза, которую вы получите от нее, перевесит возможные побочные эффекты. Тем не менее, это ваше решение. Знание как можно большего о возможных преимуществах и рисках может помочь вам быть уверенным, что лучевая терапия лучше всего подходит для вас.

Влияет ли лучевая терапия на беременность или фертильность?

Женщины: Важно не забеременеть во время облучения – это может нанести вред растущему ребенку.Если есть вероятность, что вы можете забеременеть, обязательно поговорите со своим врачом о вариантах контроля над рождаемостью.

Если вы беременны или можете быть беременны, немедленно сообщите об этом своему врачу.

Если область вашего тела, подвергающаяся облучению, включает яичники, возможно, что доза радиации может привести к тому, что яичники перестанут работать (бесплодие), и вы не сможете иметь детей. важно знать риск этой возможности до получения лучевой терапии.Если вы думаете о лучевой терапии, которая повлияет на яичники, поговорите со своим врачом о том, как это может повлиять на рождение детей в будущем.

Мужчины: Мало что известно о влиянии радиации на детей, зачатых мужчинами во время лучевой терапии. Из-за этого врачи часто советуют мужчинам не беременеть женщиной во время и в течение нескольких недель после лечения. Поговорите со своим врачом, чтобы узнать больше об этом.

Если область облучения включает яички, возможно, доза радиации может привести к тому, что яички перестанут работать (бесплодие), и вы не сможете иметь детей.Важно знать риск этой возможности до получения лучевой терапии. Нет четких исследований о том, как сперма, подвергшаяся воздействию радиации, влияет на будущих детей, родившихся из этой спермы. Если вы думаете о лучевой терапии, которая повлияет на яички, поговорите со своим врачом о том, как это может повлиять на рождение детей в будущем.

Узнайте больше в статье «Как рак и лечение рака могут повлиять на фертильность».

Вопросы о лучевой терапии

Перед лечением вас попросят подписать форму согласия, в которой будет указано, что ваш врач объяснил, как лучевая терапия может помочь, возможные риски, тип излучения, который будет использоваться, и другие варианты лечения.Прежде чем подписывать форму согласия, убедитесь, что у вас была возможность получить ответы на все свои вопросы. Вот некоторые вопросы, о которых вы, возможно, захотите спросить:

  • Какова цель лучевой терапии моего типа рака? Разрушить или уменьшить опухоль? Чтобы предотвратить или остановить распространение рака? Чтобы снизить вероятность того, что рак вернется?
  • Какова вероятность того, что рак распространится или вернется, если я пройду или не пройду лучевую терапию?
  • Какой тип лучевой терапии я получу?
  • Существуют ли другие варианты лечения?
  • Что я могу сделать, чтобы быть готовым к лечению?
  • Могу ли я есть перед лечением или мне нужно избегать определенных продуктов перед лечением?
  • Нужно ли мне соблюдать определенную диету во время лечения?
  • На что будет похоже лучевое лечение?
  • Как часто это дается? Сколько времени займет каждое лечение? Как долго я буду на радиации?
  • Что мне делать, если я не могу попасть на лечение из-за проблем с поездкой или погоды?
  • Как излучение повлияет на область рядом с раком?
  • Как я буду себя чувствовать во время лечения? Смогу ли я работать? Идти в школу? Позаботиться о моей семье?
  • Какие побочные эффекты у меня могут возникнуть, когда они начнутся и как долго будут продолжаться?
  • Будут ли какие-либо из этих побочных эффектов влиять на мои действия, такие как прием пищи или напитков, физические упражнения, работа и т.  д.?
  • Изменит ли мой внешний вид лечение и/или побочные эффекты?
  • Какие долгосрочные побочные эффекты у меня могут быть?
  • Буду ли я подвергаться повышенному риску каких-либо других проблем со здоровьем в будущем?
  • Буду ли я радиоактивным во время или после лечения?
  • Нужны ли какие-либо особые меры предосторожности во время или после моего лечения?

Радиочастотное (РЧ) излучение

Излучение – это испускание (выброс) энергии из любого источника.Рентгеновские лучи являются примером радиации, но таковы же свет, исходящий от солнца, и тепло, которое постоянно исходит от наших тел.

Говоря о радиации и раке, многие люди думают об определенных видах радиации, таких как рентгеновские лучи или излучение ядерных реакторов. Но есть и другие виды излучения, которые действуют иначе.

Излучение существует в диапазоне от очень низкоэнергетического (низкочастотного) излучения до очень высокоэнергетического (высокочастотного) излучения. Иногда его называют электромагнитным спектром .

На приведенном ниже рисунке электромагнитного спектра показаны все возможные частоты электромагнитной энергии. Он варьируется от очень низких частот (например, от линий электропередач) до чрезвычайно высоких частот (рентгеновские лучи и гамма-лучи) и включает как неионизирующее, так и ионизирующее излучение.

Примеры высокоэнергетического излучения включают рентгеновское и гамма-излучение. Эти лучи, а также некоторое УФ-излучение с более высокой энергией являются формами ионизирующего излучения , что означает, что они обладают достаточной энергией, чтобы удалить электрон из (ионизировать) атом.Это может повредить ДНК (гены) внутри клеток, что иногда может привести к раку.

Изображение предоставлено: Национальный институт рака

Что такое радиочастотное (РЧ) излучение?

Радиочастотное (РЧ) излучение, которое включает радиоволны и микроволны, находится в низкоэнергетической части электромагнитного спектра. Это тип неионизирующего излучения .Неионизирующее излучение не имеет достаточно энергии, чтобы удалить электроны из атома. Видимый свет — это еще один тип неионизирующего излучения. Радиочастотное излучение имеет меньшую энергию, чем некоторые другие типы неионизирующего излучения, такие как видимый свет и инфракрасное излучение, но оно имеет более высокую энергию, чем излучение крайне низкой частоты (ELF).

Если радиочастотное излучение поглощается телом в достаточно больших количествах, оно может выделять тепло. Это может привести к ожогам и повреждению тканей тела. Хотя считается, что РЧ-излучение не вызывает рак, повреждая ДНК в клетках, как ионизирующее излучение, существуют опасения, что в некоторых обстоятельствах некоторые формы неионизирующего излучения могут по-прежнему оказывать другие эффекты на клетки, которые каким-то образом могут привести к раку. .

Как люди подвергаются воздействию радиочастотного излучения?

Люди могут подвергаться радиочастотному излучению как естественных, так и искусственных источников.

Природные источники включают:

  • Космос и солнце
  • Небо – включая удары молнии
  • Сама земля — большая часть излучения Земли является инфракрасным, но небольшая его часть приходится на радиочастотное излучение
  • .

Техногенные источники радиочастотного излучения включают:

  • Передача радио- и телевизионных сигналов
  • Передача сигналов от беспроводных телефонов, сотовых телефонов и вышек сотовой связи, спутниковых телефонов и двусторонних радиостанций
  • Радар
  • WiFi, Bluetooth ® устройства и интеллектуальные счетчики
  • Нагревание тканей тела для их разрушения при медицинских процедурах
  • «Сварка» деталей из поливинилхлорида (ПВХ) с использованием определенных машин
  • Сканеры миллиметрового диапазона (тип сканера всего тела, используемый для проверки безопасности)

Некоторые люди могут подвергаться значительному радиочастотному облучению на работе. Сюда входят люди, которые обслуживают антенные вышки, передающие сигналы связи, и люди, которые используют или обслуживают радиолокационное оборудование.

Большинство людей ежедневно подвергается гораздо более низким уровням техногенного радиочастотного излучения из-за присутствия радиочастотных сигналов вокруг нас. Они исходят от радио- и телевизионных передач, устройств Wi-Fi и Bluetooth, мобильных телефонов (и вышек сотовой связи) и других источников.

Некоторые распространенные способы использования радиочастотного излучения

Микроволновые печи

Микроволновые печи работают за счет использования очень высоких уровней радиочастотного излучения определенной частоты (в микроволновом спектре) для разогрева пищи.Когда пища поглощает микроволны, это заставляет молекулы воды в пище вибрировать, что приводит к выделению тепла. Микроволны не используют рентгеновские или гамма-лучи и не делают пищу радиоактивной.

Микроволновые печи

сконструированы таким образом, что микроволны находятся внутри самой печи. Духовка излучает микроволны только тогда, когда дверца закрыта, а духовка включена. Когда микроволновые печи используются в соответствии с инструкциями, нет никаких доказательств того, что они представляют опасность для здоровья людей. В США федеральные стандарты ограничивают количество радиочастотного излучения, которое может просачиваться из микроволновой печи, до уровня, намного ниже того, который может причинить вред людям.Однако печи, которые повреждены или модифицированы, могут привести к утечке микроволн и, таким образом, могут представлять опасность для находящихся поблизости людей, потенциально вызывая ожоги.

Сканеры безопасности всего тела

Во многих аэропортах США Управление транспортной безопасности (TSA) использует сканеры всего тела для досмотра пассажиров. Сканеры, используемые в настоящее время TSA, используют изображения миллиметровых волн . Эти сканеры посылают небольшое количество излучения миллиметрового диапазона (разновидность радиочастотного излучения) в сторону человека, находящегося в сканере. Радиочастотное излучение проходит через одежду и отражается от кожи человека, а также любых предметов под одеждой. Приемники воспринимают излучение и создают изображение контура человека.

Сканеры миллиметрового диапазона не используют рентгеновские лучи (или любой другой вид высокоэнергетического излучения), а количество используемого радиочастотного излучения очень мало. По данным Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA), эти сканеры не имеют известных последствий для здоровья. Тем не менее, TSA часто позволяет проводить досмотр людей другим способом, если они возражают против досмотра с помощью этих сканеров.

Сотовые телефоны и вышки сотовой связи

Сотовые телефоны и вышки сотовой связи (базовые станции) используют радиочастотное излучение для передачи и приема сигналов. Были высказаны некоторые опасения, что эти сигналы могут увеличить риск развития рака, и исследования в этой области продолжаются. Для получения дополнительной информации см. Сотовые телефоны и вышки сотовой связи.

Вызывает ли радиочастотное излучение рак?

Исследователи используют 2 основных типа исследований, чтобы попытаться определить, может ли что-то вызвать рак:

  • Лабораторные исследования
  • Исследования групп людей

Часто ни один из типов исследований не дает достаточных доказательств сам по себе, поэтому исследователи обычно рассматривают как лабораторные, так и человеческие исследования, пытаясь выяснить, вызывает ли что-то рак.

Ниже приводится краткий обзор некоторых крупных исследований, посвященных этому вопросу на сегодняшний день. Однако это не исчерпывающий обзор всех проведенных исследований.

Исследования, проведенные в лаборатории

У

радиочастотных волн недостаточно энергии, чтобы напрямую повредить ДНК. Из-за этого неясно, как радиочастотное излучение может вызывать рак. В некоторых исследованиях было обнаружено возможное увеличение частоты определенных типов опухолей у лабораторных животных, подвергшихся воздействию радиочастотного излучения, но в целом результаты этих типов исследований до сих пор не дали четких ответов.

В нескольких исследованиях сообщалось о биологических эффектах, которые могут быть связаны с раком, но это все еще область исследований.

В крупных исследованиях, опубликованных в 2018 году Национальной токсикологической программой США (NTP) и Институтом Рамаззини в Италии, исследователи подвергали группы лабораторных крыс (а также мышей в случае исследования NTP) воздействию радиочастотных волн на все их тела в течение многих часов в день, начиная с рождения и продолжая, по крайней мере, большую часть их естественной жизни.Оба исследования выявили повышенный риск возникновения необычных опухолей сердца, называемых злокачественными шванномами, у самцов крыс, но не у самок (ни у самцов, ни у самок мышей в исследовании NTP). В исследовании NTP также сообщалось о возможном повышенном риске некоторых видов опухолей головного мозга и надпочечников.

Хотя у обоих этих исследований были сильные стороны, у них также были ограничения, из-за которых трудно понять, как они могут применяться к людям, подвергающимся воздействию радиочастотного излучения. Обзор этих двух исследований, проведенный Международной комиссией по защите от неионизирующего излучения (ICNIRP) в 2019 году, показал, что ограничения исследований не позволяют делать выводы относительно способности радиочастотной энергии вызывать рак.

Тем не менее, результаты этих исследований не исключают возможности того, что радиочастотное излучение каким-то образом может повлиять на здоровье человека.

Исследования на людях

Исследования людей, которые могли подвергаться воздействию радиочастотного излучения на работе (например, люди, работающие рядом или с радиолокационным оборудованием, те, кто обслуживает антенны связи, и радисты), не обнаружили явного увеличения риска развития рака.

Ряд исследований искал возможную связь между сотовыми телефонами и раком.Хотя некоторые исследования показали возможную связь, многие другие этого не сделали. По многим причинам трудно изучить, существует ли связь между сотовыми телефонами и раком, включая относительно короткое время, в течение которого сотовые телефоны широко использовались, изменения в технологиях с течением времени и трудности в оценке воздействия на каждого человека. Тема сотовых телефонов и риска рака подробно обсуждается в разделе Сотовые (сотовые) телефоны.

Что говорят экспертные агентства?

Американское онкологическое общество (ACS) не имеет официальной позиции или заявления о том, является ли радиочастотное излучение сотовых телефонов, вышек сотовой связи или других источников причиной рака. ACS обычно обращается к другим экспертным организациям, чтобы определить, вызывает ли что-то рак (то есть, является ли это канцерогеном), в том числе:

  • Международное агентство по изучению рака (IARC) , которое является частью Всемирной организации здравоохранения (ВОЗ)
  • Национальная токсикологическая программа США (NTP) , которая сформирована из частей нескольких различных государственных учреждений, включая Национальные институты здравоохранения (NIH), Центры по контролю и профилактике заболеваний (CDC) и Управление по санитарному надзору за качеством пищевых продуктов и медикаментов. (Управление по санитарному надзору за качеством пищевых продуктов и медикаментов)

Другие крупные организации также могут прокомментировать способность определенных воздействий вызывать рак.

На основании обзора исследований, опубликованных до 2011 года, Международное агентство по изучению рака (IARC) классифицировало РЧ-излучение как «возможно канцерогенное для человека» на основании ограниченных данных о возможном увеличении риска развития опухолей головного мозга среди пользователей сотовых телефонов и неадекватные доказательства других видов рака. (Дополнительную информацию о системе классификации IARC см. в разделе Известные и вероятные канцерогены для человека.) 

Совсем недавно Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) выпустило технический отчет, основанный на результатах исследований, опубликованных в период с 2008 по 2018 год, а также на национальных тенденциях заболеваемости раком. В отчете сделан вывод: «На основании исследований, подробно описанных в этом отчете, недостаточно доказательств, подтверждающих причинно-следственную связь между воздействием радиочастотного излучения (РЧР) и [образованием опухоли]».

До сих пор Национальная токсикологическая программа (NTP) не включала радиочастотное излучение в свой отчет о канцерогенах , в котором перечислены воздействия, которые, как известно, являются канцерогенами для человека или разумно предполагаются, что они являются канцерогенами для человека. (Для получения дополнительной информации об этом отчете см. Известные и вероятные канцерогены для человека.)

Согласно Федеральной комиссии по связи США (FCC) :

«В настоящее время нет научных данных, подтверждающих причинно-следственную связь между использованием беспроводных устройств и раком или другими заболеваниями. Те, кто оценивает потенциальные риски, связанные с использованием беспроводных устройств, согласны с тем, что дополнительные и более долгосрочные исследования должны изучить, существует ли лучшая основа для стандартов радиочастотной безопасности, чем та, которая используется в настоящее время».

Как избежать воздействия радиочастотного излучения?

Поскольку источники радиочастотного излучения настолько распространены в современном мире, невозможно полностью избежать его воздействия.Есть несколько способов снизить воздействие радиочастотного излучения, например:

.
  • Избегание работ с повышенным радиочастотным воздействием
  • Ограничение времени, которое вы проводите рядом с приборами, оборудованием и другими устройствами (например, маршрутизаторами Wi-Fi), испускающими радиочастотное излучение
  • Ограничение времени, которое вы проводите с сотовым (мобильным) телефоном, поднесенным к уху (или близко к другой части тела)

Тем не менее, неясно, будет ли это полезно с точки зрения риска для здоровья.

Что такое радиация?

Излучение — это энергия, исходящая от источника и распространяющаяся в пространстве и способная проникать в различные материалы. Свет, радио и микроволны — это виды излучения, которые называются неионизирующими. Вид излучения, обсуждаемый в этом документе, называется ионизирующим излучением , поскольку оно может производить заряженные частицы (ионы) в веществе.

Ионизирующее излучение производится нестабильными атомами. Нестабильные атомы отличаются от стабильных атомов тем, что нестабильные атомы имеют избыток энергии или массы, или того и другого.Излучение также может быть вызвано высоковольтными устройствами (например, рентгеновскими аппаратами).

Атомы с нестабильными ядрами называются радиоактивными . Чтобы достичь стабильности, эти атомы испускают или излучают избыточную энергию или массу. Эти выбросы называются излучением . Виды излучения бывают электромагнитными (например, свет) и частицами (т. е. масса, испускаемая с энергией движения). Гамма-излучение и рентгеновские лучи являются примерами электромагнитного излучения.Гамма-излучение возникает в ядре, а рентгеновское излучение исходит из электронной части атома. Бета- и альфа-излучение являются примерами излучения частиц.

Интересно, что в нашей окружающей среде повсюду (повсеместно) присутствует « фон » естественного излучения. Повсеместное фоновое излучение исходит из космоса (т. е. космические лучи) и от встречающихся в природе радиоактивных материалов, содержащихся в земле и живых существах.

Радиационное воздействие от различных источников

Источник Экспозиция (У.S. Среднее)
Внешнее фоновое излучение 0,54 мЗв г -1
Природный K-40 и другая радиоактивность в теле 0,29 мЗв г -1
Авиаперелет туда и обратно (Нью-Йорк-Лос-Анджелес) 0,05 мЗв
Эффективная доза при рентгенографии органов грудной клетки 0,10 мЗв на пленку
Радон в доме 2. 28 мЗв г -1
Искусственные (медицинские рентгеновские лучи и т. д.) 3,14 мЗв г -1

Информация, размещенная на этой веб-странице, предназначена только в качестве общей справочной информации. Конкретные факты и обстоятельства могут повлиять на применимость описанных здесь концепций, материалов и информации. Предоставленная информация не заменяет профессиональную консультацию, и на нее нельзя полагаться в отсутствие такой профессиональной консультации.Насколько нам известно, ответы верны на момент публикации. Имейте в виду, что со временем требования могут измениться, новые данные могут стать доступными, а интернет-ссылки могут измениться, что повлияет на правильность ответов. Ответы – это профессиональные мнения эксперта, отвечающего на каждый вопрос; они не обязательно отражают позицию Общества физики здоровья.

Радиация | Что такое радиация?

При измерении радиации необходимо учитывать два отдельных аспекта: радиационная активность и радиационное воздействие. Активность относится к тому, сколько излучения (в форме частиц или фотонов) испускается источником, а экспозиция измеряет влияние этого излучения на все, что его поглощает.

Радиационная активность измеряется в международной единице, называемой Беккерель (Бк) , где 1 Бк соответствует одной частице или фотону излучения, испускаемому в секунду.

Радиационное воздействие можно измерить тремя способами:

  • Поглощенная доза , которая представляет собой энергию, которую источник излучения выделяет на один килограмм вещества.Поглощенная доза измеряется в международной единице, называемой Грей (Гр) , где 1 Гр соответствует одному джоулю энергии на килограмм.
  • Эквивалентная доза , которая связывает поглощенную дозу в тканях человека с эффективным биологическим повреждением, вызываемым излучением. Эквивалентная доза учитывает тот факт, что разные формы радиации оказывают разное биологическое действие, даже если величина поглощенной дозы одинакова — одни формы радиации наносят больше вреда, чем другие. Эквивалентная доза получается путем умножения поглощенной дозы на весовой коэффициент излучения, соответствующий типу поглощенного излучения. Он измеряется в единицах, называемых зивертов (Зв) .
  • Эффективная доза , которая учитывает, что разные части тела по-разному реагируют на радиационное воздействие — некоторые органы более чувствительны к радиации, чем другие. Эффективная доза получается путем умножения эквивалентной дозы на весовой коэффициент ткани, который соответствует типу ткани, подвергшейся облучению.Если облучению подвергается более одного органа, то все эффективные дозы для всех облучаемых органов суммируются, чтобы получить общую эффективную дозу. Эффективная доза также измеряется с использованием зивертов (Зв) .

Зиверт — довольно крупная единица измерения радиации — доза в 1 Зв за короткое время вызовет острую лучевую болезнь. Для описания нормального уровня облучения и защиты обычно используются меньшие единицы, такие как  микрозивертов (мкЗв) или миллионные доли зиверта, где 1 000 000 мкЗв = 1 Зв .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *