Решить матричным методом уравнение – Онлайн калькулятор. Решение систем линейных уравнений. Матричный метод. Метод обратной матрицы.

Решение уравнений методом обратной матрицы

Метод обратной матрицы используется при решении систем линейных алгебраических уравнений, если число неизвестных равно числу уравнений.

Суть метода

Пусть задана система линейных уравнений с неизвестными:

   

Эту систему можно записать в виде матричного уравнения ,

где – матрица системы,

– столбец неизвестных,

– столбец свободных коэффициентов.

Из полученного матричного уравнения необходимо выразить . Для этого умножим обе части матричного уравнения слева на , получим:

   

Так как , то или .

Далее находится обратная матрица и умножается на столбец свободных членов .

ЗАМЕЧАНИЕ Обратная матрица к матрице существует только при условии, что . Поэтому при решении системы линейных уравнений методом обратной матрицы в первую очередь вычисляется . Если , то система имеет единственное решение, которое можно найти методом обратной матрицы, если же , то методом обратной матрицы решить эту систему нельзя.

Пример решения методом обратной матрицы

ПРИМЕР 1
Задание Решить систему линейных уравнений методом обратной матрицы

   

Решение Данная система уравнений может быть записана матричным уравнением

   

где , , .

Выразив из этого уравнения , получим

   

Найдем определитель матрицы :

   

   

Так как , то система имеет единственное решение, которое можно найти методом обратной матрицы.

Найдем обратную матрицу с помощью союзной матрицы. Вычислим алгебраические дополнения к соответствующим элементам матрицы :

   

   

   

   

   

Запишем союзную матрицу , составленную из алгебраических дополнений элементов матрицы :

   

Далее запишем обратную матрицу согласно формуле . Будем иметь:

   

Умножая обратную матрицу на столбец свободных членов , получим искомое решение исходной системы:

   

Ответ
Читайте также:

Умножение матрицы на вектор

Ранг матрицы

Вычитание матриц

Перемножение матриц

Элементарные преобразования матриц

Операции над матрицами и их свойства

ru.solverbook.com

Матричный метод решения уравнений онлайн калькулятор

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Довольно часто матричный метод используют для решения систем линейных уравнений, поскольку любую такую систему можно представить в матричном виде, после чего, определив ее обратную матрицу, легко решить.

Решения таких систем основано на определенном свойстве обратной матрицы: произведение обратной матрицы (А-1) и исходной матрицы равно единичной матрице.

решить уравнение матричным способом

Так же читайте нашу статью «Решить уравнения методом простой итерации онлайн»

Допустим, нам дана следующая система:

\[ \left\{\begin{matrix} 2x_1-x_2+3x_3=1\\ -2x_2+2x_3=2\\ 3x_1+x_2+x_3=0 \end{matrix}\right.\]

Данную систему можно решить всего за три шага:

1 шаг

Составляем матрицу:

Матрица коэффициентов при неизвестных

\[A=\begin{pmatrix} 2 & -1&3\\ 0&-2&2\\ 3&1&1 \end{pmatrix}\]

Матрица неизвестных:

\[x=\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}\]

Матрица свободных членов:

\[ B=\begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix} \]

2 шаг

Все, что мы делали в 1 шаге, было сделано для того, чтобы получить обратную матрицу коэффициентов при неизвестных:

\[ A^{-1}=\frac{1}{4}\cdot \begin{pmatrix} -4&4&4\\ 6&-7&-4\\ 6&-5&-4 \end{pmatrix} \]

3 шаг

Определяем матрицу неизвестных:

\[ x=\frac{1}{4}\cdot \begin{pmatrix} -4&4&4\\ 6&-7&-4\\ 6&-5&-4 \end{pmatrix}\cdot \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}=\begin{pmatrix} 1\\ -2\\ -1 \end{pmatrix} \]

Ответ:

\[x_1=1;x_2=-2;x_3=-1\]

Поскольку математика точная наука, нужно быть уверенным в правильности решения. Для этого сделаем стандартную проверку:

\[\left\{\begin{matrix} 2\cdot1-(-2)+3\cdot (-1)=1\\ -2\cdot(-2)+2\cdot (-1)=2\\ 3\cdot 1+(-2)+(-1)=0 \end{matrix}\right.\]

Проверка подтвердила правильность решения.

Где можно решить уравнение матричным методом онлайн с решением?

Решить уравнение матричным способом онлайн вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

www.pocketteacher.ru

Решение систем дифференциальных уравнений матричным способом

Матричная запись системы обыкновенных дифференциальных уравнений (СОДУ) с постоянными коэффициентами

Линейную однородную СОДУ с постоянными коэффициентами $\left\{\begin{array}{c} {\frac{dy_{1} }{dx} =a_{11} \cdot y_{1} +a_{12} \cdot y_{2} +\ldots +a_{1n} \cdot y_{n} } \\ {\frac{dy_{2} }{dx} =a_{21} \cdot y_{1} +a_{22} \cdot y_{2} +\ldots +a_{2n} \cdot y_{n} } \\ {\ldots } \\ {\frac{dy_{n} }{dx} =a_{n1} \cdot y_{1} +a_{n2} \cdot y_{2} +\ldots +a_{nn} \cdot y_{n} } \end{array}\right. $,

где $y_{1} \left(x\right),\; y_{2} \left(x\right),\; \ldots ,\; y_{n} \left(x\right)$ — искомые функции независимой переменной $x$, коэффициенты $a_{jk} ,\; 1\le j,k\le n$ — заданные действительные числа представим в матричной записи:

  1. матрица искомых функций $Y=\left(\begin{array}{c} {y_{1} \left(x\right)} \\ {y_{2} \left(x\right)} \\ {\ldots } \\ {y_{n} \left(x\right)} \end{array}\right)$;
  2. матрица производных решений $\frac{dY}{dx} =\left(\begin{array}{c} {\frac{dy_{1} }{dx} } \\ {\frac{dy_{2} }{dx} } \\ {\ldots } \\ {\frac{dy_{n} }{dx} } \end{array}\right)$;
  3. матрица коэффициентов СОДУ $A=\left(\begin{array}{cccc} {a_{11} } & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} } & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} } \end{array}\right)$.

Теперь на основе правила умножения матриц данную СОДУ можно записать в виде матричного уравнения $\frac{dY}{dx} =A\cdot Y$.

Общий метод решения СОДУ с постоянными коэффициентами

Пусть имеется матрица некоторых чисел $\alpha =\left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)$.

Решение СОДУ отыскивается в следующем виде: $y_{1} =\alpha _{1} \cdot e^{k\cdot x} $, $y_{2} =\alpha _{2} \cdot e^{k\cdot x} $, \dots , $y_{n} =\alpha _{n} \cdot e^{k\cdot x} $. В матричной форме: $Y=\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \\ {\ldots } \\ {y_{n} } \end{array}\right)=e^{k\cdot x} \cdot \left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)$.

Отсюда получаем:

Теперь матричному уравнению данной СОДУ можно придать вид:

Полученное уравнение можно представить так:

Последнее равенство показывает, что вектор $\alpha $ с помощью матрицы $A$ преобразуется в параллельный ему вектор $k\cdot \alpha $. Это значит, что вектор $\alpha $ является собственным вектором матрицы $A$, соответствующий собственному значению $k$.

Число $k$ можно определить из уравнения$\left|\begin{array}{cccc} {a_{11} -k} & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} -k} & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} -k} \end{array}\right|=0$.

Это уравнение называется характеристическим.

Пусть все корни $k_{1} ,k_{2} ,\ldots ,k_{n} $ характеристического уравнения различны. Для каждого значения $k_{i} $ из системы $\left(\begin{array}{cccc} {a_{11} -k} & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} -k} & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} -k} \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)=0$ может быть определена матрица значений $\left(\begin{array}{c} {\alpha _{1}^{\left(i\right)} } \\ {\alpha _{2}^{\left(i\right)} } \\ {\ldots } \\ {\alpha _{n}^{\left(i\right)} } \end{array}\right)$.

Одно из значений в этой матрице выбирают произвольно.

Окончательно, решение данной системы в матричной форме записывается следующим образом:

$\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \\ {\ldots } \\ {y_{n} } \end{array}\right)=\left(\begin{array}{cccc} {\alpha _{1}^{\left(1\right)} } & {\alpha _{1}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \\ {\alpha _{2}^{\left(1\right)} } & {\alpha _{2}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {\alpha _{n}^{\left(1\right)} } & {\alpha _{2}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \end{array}\right)\cdot \left(\begin{array}{c} {C_{1} \cdot e^{k_{1} \cdot x} } \\ {C_{2} \cdot e^{k_{2} \cdot x} } \\ {\ldots } \\ {C_{n} \cdot e^{k_{n} \cdot x} } \end{array}\right)$,

где $C_{i} $ — произвольные постоянные.

Задача

Решить систему ДУ $\left\{\begin{array}{c} {\frac{dy_{1} }{dx} =5\cdot y_{1} +4y_{2} } \\ {\frac{dy_{2} }{dx} =4\cdot y_{1} +5\cdot y_{2} } \end{array}\right. $.

Записываем матрицу системы: $A=\left(\begin{array}{cc} {5} & {4} \\ {4} & {5} \end{array}\right)$.

В матричной форме данная СОДУ записывается так: $\left(\begin{array}{c} {\frac{dy_{1} }{dt} } \\ {\frac{dy_{2} }{dt} } \end{array}\right)=\left(\begin{array}{cc} {5} & {4} \\ {4} & {5} \end{array}\right)\cdot \left(\begin{array}{c} {y_{1} } \\ {y_{2} } \end{array}\right)$.

Получаем характеристическое уравнение:

$\left|\begin{array}{cc} {5-k} & {4} \\ {4} & {5-k} \end{array}\right|=0$, то есть $k^{2} -10\cdot k+9=0$.

Корни характеристического уравнения: $k_{1} =1$, $k_{2} =9$.

Составляем систему для вычисления $\left(\begin{array}{c} {\alpha _{1}^{\left(1\right)} } \\ {\alpha _{2}^{\left(1\right)} } \end{array}\right)$ при $k_{1} =1$:

\[\left(\begin{array}{cc} {5-k_{1} } & {4} \\ {4} & {5-k_{1} } \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1}^{\left(1\right)} } \\ {\alpha _{2}^{\left(1\right)} } \end{array}\right)=0,\]

то есть $\left(5-1\right)\cdot \alpha _{1}^{\left(1\right)} +4\cdot \alpha _{2}^{\left(1\right)} =0$, $4\cdot \alpha _{1}^{\left(1\right)} +\left(5-1\right)\cdot \alpha _{2}^{\left(1\right)} =0$.

Положив $\alpha _{1}^{\left(1\right)} =1$, получаем $\alpha _{2}^{\left(1\right)} =-1$.

Составляем систему для вычисления $\left(\begin{array}{c} {\alpha _{1}^{\left(2\right)} } \\ {\alpha _{2}^{\left(2\right)} } \end{array}\right)$ при $k_{2} =9$:

\[\left(\begin{array}{cc} {5-k_{2} } & {4} \\ {4} & {5-k_{2} } \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1}^{\left(2\right)} } \\ {\alpha _{2}^{\left(2\right)} } \end{array}\right)=0, \]

то есть $\left(5-9\right)\cdot \alpha _{1}^{\left(2\right)} +4\cdot \alpha _{2}^{\left(2\right)} =0$, $4\cdot \alpha _{1}^{\left(2\right)} +\left(5-9\right)\cdot \alpha _{2}^{\left(2\right)} =0$.

Положив $\alpha _{1}^{\left(2\right)} =1$, получаем $\alpha _{2}^{\left(2\right)} =1$.

Получаем решение СОДУ в матричной форме:

\[\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \end{array}\right)=\left(\begin{array}{cc} {1} & {1} \\ {-1} & {1} \end{array}\right)\cdot \left(\begin{array}{c} {C_{1} \cdot e^{1\cdot x} } \\ {C_{2} \cdot e^{9\cdot x} } \end{array}\right).\]

В обычной форме решение СОДУ имеет вид: $\left\{\begin{array}{c} {y_{1} =C_{1} \cdot e^{1\cdot x} +C_{2} \cdot e^{9\cdot x} } \\ {y_{2} =-C_{1} \cdot e^{1\cdot x} +C_{2} \cdot e^{9\cdot x} } \end{array}\right. $.

spravochnick.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *