Решите уравнение x 1 2: Решите уравнение: х-1/2 Спасибо :3

Содержание

заказ решений на аукционе за минимальную цену с максимальным качеством

Предлагаю идею сайта-аукциона по выполнению домашних заданий. Он будет включать:

  • решение задач по математике (сейчас доступен решебник Филиппова), физике, химии, экономике
  • написание лабораторных, рефератов и курсовых
  • выполнение заданий по литературе, русскому или иностранному языку.

Основное отличие от большинства сайтов, предлагающих выполнение работ на заказ – сайт рассчитан на две категории пользователей: заказчиков и решающих задания. Причем, по желанию (чтобы заработать, увеличить свой рейтинг, получить решение сложной задачи) пользователи могут играть любую из этих ролей.

Объединение сервисов в одну систему

Основой для идеи послужили несколько работающих систем, объединение которых позволит сделать сервис для решения задач на заказ. Эти системы:

  • Форум, где посетители обмениваются идеями и помогают друг другу
  • Система bugtracking, где обнаруженные проблемы проходят путь от публикации до принятия в исполнение и решения
  • Аукцион
    , где цена за товар или услугу определяется в результате торгов
  • Система рейтингов, где участники могут оценивать ответы друг друга. Причем, чем больше рейтинг пользователя, тем более значимым становится его голос

Принцип работы

Для удобства и проведения аналогий с реальной жизнью назовем заказчиков студентами, а решающих задания – репетиторами.

Итак, студенту необходимо решить несколько задач. Он заходит на сайт, выбирает раздел с соответствующей дисциплиной и создает новую тему (аналогия с форумом). Но при создании темы он также указывает стартовую (максимальную) цену, которую он готов заплатить за решение задач и крайний срок исполнения задания. Можно будет назначить и нулевую цену – если студенту нужно только бесплатное решение.

Как только тема создана, все пожелавшие подписаться на раздел репетиторы получают уведомление. Причем, условие получения уведомлений можно настроить. Например, уведомлять только о заказах со стартовой ценой более 500 р. и сроком решения не менее недели.

Заинтересовавшиеся репетиторы делают ставки. Причем студент (автор темы) видит ставки и может посмотреть информацию по каждому репетитору (его решения, рейтинг, дату начала участия в проекте).

Когда студент посчитает нужным, он может остановить аукцион и назначить задание одному из репетиторов, сделавшему ставку (не обязательно самую низкую, т.к. можно учитывать и другие факторы – см. выше).

Деньги блокируются на счете студента, и репетитор начинает решать задание. Он должен представить его к сроку, заданному изначально. Выполненное решение публикуется в свободном доступе и его может оценить как заказчик, так и другие репетиторы. На этих оценках и строится рейтинг. Если к решению нет претензий – деньги окончательно переводятся со счета студента на счет репетитора.

За счет чего будет развиваться сервис

Первое – положительная обратная связь. Чем больше условий задач и решений будет опубликовано на сайте, тем чаще его будут находить пользователи через поисковики, будет больше ссылок на готовые решения. Именно поэтому важно размещать решенные задачи в свободном доступе. Знаю это по опыту своего сайта exir.ru (ex irodov.nm.ru) – большая ссылочная база получена исключительно за счет благодарных пользователей.

Второе – удобный сервис для заказчиков и для желающих заработать на решениях.

Преимущества для заказчиков

Студентам и школьникам не нужно перебирать десятки сайтов для сравнения цен, а потом надеяться, что после оплаты они получат качественное решение (и, вообще, все не закончится перечислением денег). Заказчики создают аукцион на понижение цены и могут смотреть на рейтинги желающих решить задачи и ранее выполненные ими решения. Кроме того, деньги окончательно перечисляются исполнителю только после полного решения.

Преимущества для решающих задания

Не нужно создавать и продвигать свой сайт, размещать множество объявлений во всех доступных источниках информации. Заказчики сами придут к вам. Не нужно решать все присланные задания с целью поддержания репутации – можно выбирать те, которые будут интересны по уровню сложности, цене и срокам решения.

Преимущества для владельца сервиса

Если вы не понимаете, какую выгоду получит делающий вам какое-нибудь предложение – будьте осторожны! 🙂 У меня уже есть большой опыт работы с сайтом, предоставляющим бесплатные решения по физике.

И вариант с получением прибыли от размещения рекламы подходит и для нового сервиса. Кроме того, мне нравится помогать людям и довольно тяжело смотреть, как множество вопросов по задачам остаются на форуме без ответа. Предложенный аукцион решений сможет значительно сократить число вопросов без ответов.

В будущем возможен вариант и с получением некоторого небольшого процента от оплаты заказов. Но процент этот должен быть минимален и на начальном этапе он взиматься точно не будет.

Что необходимо для создания сервиса

  1. Самым важное сейчас – собрать команду, готовую принять участие в выполнении заданий. Если покупатели заходят в пустой магазин – они надолго забывают в него дорогу.

    Поэтому я собираю предварительные заявки от посетителей, готовых заниматься решениями. Не нужно подписания никаких договоров о намерениях. Просто сообщите, на какие темы вы готовы решать задания, какой у вас опыт подобной работы (e-mail: [email protected]). Когда сервис заработает – я пришлю приглашение на регистрацию.

  2. Выбрать платежную систему.
  3. Сделать подходящий движок для сайта. Нужно решить – создавать его с нуля или изменить какой-нибудь существующий движок (например, форумный) с открытой лицензией.
  4. Привлечь посетителей. Учитывая посещаемость exir.ru и число публикуемых на форуме вопросов, думаю, это не будет большой проблемой.

Уравнения 5 класса | Математика

Сегодня мы рассмотрим более сложные уравнения 5 класса, содержащие несколько действий.  Чтобы найти неизвестную переменную, в таких уравнениях надо применить не одно, а два правила.

1) x:7+11=21

Выражение, стоящее в левой части — сумма двух слагаемых

x:7 +   11 =  21
1сл. 2сл. сум.

Таким образом, переменная x является частью первого слагаемого. Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое:

x:7=21-11

x:7=10

Получили простое уравнение 5 класса, из которого надо найти неизвестное делимое. Чтобы найти неизвестное делимое, нужно частное умножить на делитель:

x=10∙7

x=70

Ответ: 70.

2) 65-5z=30

Правая часть уравнения представляет собой разность:

65   5z =  30
ум.    в.   р.

Переменная z является частью неизвестного вычитаемого. Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность:

5z=65-30

5z=35

Получили простое уравнение, в котором z — неизвестный множитель.

Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель:

z=35:5

z=7

Ответ: 7.

3) 120:y-23=17

В правой части уравнения — разность. Переменная y является частью неизвестного уменьшаемого.

120:y  23 =  17
   ум.   в.   р.

Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое:

120:y=17+23

120:y=40

Здесь y — неизвестный делитель. Чтобы найти неизвестный делитель, надо делимое разделить на частное:

y=120:40

y=3

Ответ: 3.

4) (48+k)∙8=400

Левая часть уравнения представляет собой произведение.

Переменная k — часть первого множителя:

(48+k) ·  8 =  400
   1мн 2мн   пр

Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель:

48+k=400:8

48+k=50

В новом уравнении k — неизвестное слагаемое:

k=50-48

k=2

Ответ: 2.

Здесь мы решали уравнения 5 класса без использования свойств сложения и вычитания.  В 6 классе правила раскрытия скобок упрощаются, и решать такие уравнения становится проще.

Как решать квадратные уравнения? Формулы и Примеры

Понятие квадратного уравнения

Уравнения — это математическое равенство, в котором неизвестна одна или несколько величин. Значения неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать выражение 3 + x = 7, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Есть три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b

2 − 4ac. А вот свойства дискриминанта:

  • если D < 0, корней нет;
  • если D = 0, есть один корень;
  • если D > 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Вникать во все тонкости математической вселенной комфортнее с внимательным наставником. Наши учителя объяснят сложную тему, ответят на неловкие вопросы и вдохновят ребенка учиться. А красочная платформа с увлекательными заданиями поможет заниматься современно и в удовольствие. Запишите ребенка на бесплатный вводный урок в онлайн-школе Skysmart и попробуйте сами!


Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент может быть любым.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x2 — 2x + 6 = 0
  • x2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x2 ), а значит уравнение называется приведенным.

  • 2x2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Запоминаем!

У преобразованного уравнения те же корни, что и у первоначального. Ну или вообще нет корней.

Пример 1. Превратим неприведенное уравнение: 8x2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято назвать неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax2 + 0x+c=0 и оно равносильно ax2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax2 + bx + 0 = 0, иначе его можно написать как ax2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax2 + c = 0, при b = 0;
  • ax2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax

2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax2 = 0.

Уравнение ax2 = 0 равносильно x2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x2 = 0 является нуль, так как 02 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x2 = 0.

Как решаем:

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

    −6x2 = 0

    x2 = 0

    x = √0

    x = 0

Ответ: 0.

Как решить уравнение ax

2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax2 + c = 0:

  • перенесем c в правую часть: ax2 = - c,
  • разделим обе части на a: x2 = - c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а < 0, то уравнение x2 = - c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а < 0 ни для какого числа p равенство р2 = - c/а не является верным.

Если — c/а > 0, то корни уравнения x2 = - c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)2 = - c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)2 = - c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax2 + c = 0 равносильно уравнению ax2 + c = 0, которое:

  • не имеет корней при — c/а < 0;
  • имеет два корня х = √- c/а и х = -√- c/а при — c/а > 0.

Пример 1. Найти решение уравнения 8x2 + 5 = 0.

Как решать:

  1. Перенесем свободный член в правую часть:

    8x2 = - 5

  2. Разделим обе части на 8:

    x2 = - 5/8

  3. В правой части осталось число со знаком минус, значит у данного уравнения нет корней.

Ответ: уравнение 8x2 + 5 = 0 не имеет корней.

Как решить уравнение ax

2 + bx = 0

Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

Неполное квадратное уравнение ax2 + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x. Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

Таким образом, неполное квадратное уравнение ax2 + bx = 0 имеет два корня:

Пример 1. Решить уравнение 0,5x2 + 0,125x = 0

Как решать:

  1. Вынести х за скобки

    х(0,5x + 0,125) = 0

  2. Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  3. Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  4. Разделить:

    х = 0,25

  5. Значит корни исходного уравнения — 0 и 0,25.

Ответ: х = 0 и х = 0,25.

Формула Виета


Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так: 

Теорема Виета

Сумма корней x2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

 

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

Обратная теорема Виета

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x2 + bx + c = 0.

Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

Пример 1. Решить при помощи теоремы Пифагора: x2 − 6x + 8 = 0.

Как решаем:

  1. Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

  2. Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

  3. Значит числа 4 и 2 — корни уравнения x2 − 6x + 8 = 0. p>

     

Дискриминант: формула корней квадратного уравнения

Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

где D = b2 − 4ac — дискриминант квадратного уравнения.

Эта запись означает:

Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

Выводим формулу корней квадратного уравнения

Продолжим изучать формулу корней квадратного уравнения.

Пусть перед нами есть задача решить квадратное уравнение ax2 + bx + c = 0. Выполним ряд равносильных преобразований:

Так, мы пришли к уравнению , которое полностью равносильно исходному ax2 + bx + c = 0.

Отсюда выводы про корни уравнения :

И еще один вывод: есть у уравнения корень или нет, зависит от знака выражения в правой части. При этом важно помнить, что знак этого выражения задается знаком числителя. Потому выражение принято называть дискриминантом квадратного уравнения и обозначается буквой D.

По значению и знаку дискриминанта можно сделать вывод, есть ли действительные корни у квадратного уравнения, и сколько.

Повторим:

Алгоритм решения квадратных уравнений по формулам корней

Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

Алгоритм решения квадратного уравнения ax2 + bx + c = 0:

  • вычислить его значение дискриминанта по формуле D = b2−4ac;
  • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
  • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = - b2/2a;
  • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

Примеры решения квадратных уравнений

Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

Пример 1. Решить уравнение −4x2 + 28x — 49 = 0.

Как решаем:

  1. Найдем дискриминант: D = 282 — 4(-4)(-49) = 784 — 784 = 0
  2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
  3. Найдем корень

    х = - 28/2(-4)

    х = 3,5

Ответ: единственный корень 3,5.

Пример 2. Решить уравнение 54 — 6x2 = 0.

Как решаем:

  1. Произведем равносильные преобразования. Умножим обе части на −1

    54 — 6x2 = 0 | *(-1)

    6x2 — 54 = 0

  2. Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    6x2 = 54

    х2 = 9

    х = ±√9

    х1 = 3, х2 = - 3

Ответ: два корня 3 и — 3.

Пример 3. Решить уравнение x2— х = 0.

Как решаем:

  1. Преобразуем уравнение так, чтобы появились множители

    х(х — 1) = 0

    х₁ = 0, х₂ = 1

Ответ: два корня 0 и 1.

Пример 4. Решить уравнение x2— 10 = 39.

Как решаем:

  1. Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    x2— 10 = 39

    x2= 39 + 10

    x2= 49

    х = ±√49

    х₁ = 7, х₂ = −7

Ответ: два корня 7 и −7.

Пример 5. Решить уравнение 3x2— 4x+94 = 0.

Как решаем:

  1. Найдем дискриминант по формуле

    D = (-4)2 — 4 * 3 * 94 = 16 — 1128 = −1112

  2. Дискриминант отрицательный, поэтому корней нет.

Ответ: корней нет.

В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

Приходите решать примеры на бытовых ситуациях, с красочными героями и в интерактивном формате.

Запишите вашего ребенка на бесплатный пробный урок в онлайн-школу Skysmart: познакомимся, покажем, как все устроено на платформе и наметим вдохновляющую программу обучения.

Формула корней для четных вторых коэффициентов

Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

Например, нам нужно решить квадратное уравнение ax2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n)2- 4ac = 4n2 — 4ac = 4(n2- ac) и подставим в формулу корней:

Для удобства вычислений обозначим выражение n2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

где D1 = n2- ac.

Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

  • вычислить D1= n2- ac;
  • если D1< 0, значит действительных корней нет;
  • если D1= 0, значит можно вычислить единственный корень уравнения по формуле;
  • если же D1> 0, значит можно найти два действительных корня по формуле

Упрощаем вид квадратных уравнений

Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x2 — 4 x — 6 = 0, чем 1100x2 — 400x — 600 = 0.

Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x2 — 400x — 600 = 0, просто разделив обе части на 100.

Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

Покажем, как это работает на примере 12x2- 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x2 — 7x + 8 = 0. Вот так просто.

А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x2 + 4x — 18 = 0.

Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x2- 3x + 7 = 0 перейти к решению 2x2 + 3x — 7 = 0.

Связь между корнями и коэффициентами

Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

Например, можно применить формулы из теоремы Виета:

  • x₁ + x₂ = - b/a,
  • x₁* x₂ = c/a.

Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x2- 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

А еще найти корни квадратного уравнения можно с помощью онлайн-калькулятора. 2-2x-3=0\)

Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета

\(x_1=3\)       \(x_2=-1\)

Сверяем корни с ОДЗ и исключаем неподходящие.

\(↑\) не подходит под ОДЗ

Запишем ответ.

Ответ: \(-1 \).

Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ

Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.

a) \(x+5=2x-3\)
    \(x-2x+5=-3\)

b) \(x^2+3x+\sqrt{x}=\sqrt{x}+4\)
   \(x^2+3x-4=0\)

c) \(\frac{-x-1}{x^2-1}=0\)
\(-x-1=0\)

d) \(x^3=27\)
\(x=3\)

e) \(\frac{1}{2}x^2+1=x^3-x\)
\(x^2+2=2x^3-2x\)

f) \( 2^{x+2}=2\)
\(x+2=1\)


Решение:

В пункте a) применялось равносильное преобразование 1. {g(x)}\) к виду \(f(x) =g(x)\), что тоже является равносильным преобразованием.

Смотри также:
Равносильное преобразование неравенств


Скачать статью

3.Уравнения-следствия и равносильные преобразования уравнений

Объяснение и обоснование

1.  Понятие уравнения и его корней. Уравнение в математике чаще всего по­нимают как аналитическую запись задачи о нахождении значений аргумен­та, при которых значения двух данных функций равны. Поэтому в общем виде уравнения с одной переменной x записывают так: f (x) = g (x).

Часто уравнения определяют короче — как равенство с переменной.

Напомним, что корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни (и обосновать, что других корней нет) или доказать, что корней нет.

Например, уравнение 2x = —1 имеет единственный корень x = -1, а урав­нение | x | = —1 не имеет корней, поскольку значение | x | не может быть от­рицательным числом.

2.  Область допустимых значений (ОДЗ) уравнения. Если задано уравнение f (x) = g (x), то общая область определения для функций f (x) и g (x) назы­вается областью допустимых значений этого уравнения. (Иногда исполь­зуются также термины «область определения уравнения» или «множество допустимых значений уравнения».) Например, для уравнения х2 = х обла­стью допустимых значений являются все действительные числа. Это можно записать, например, так. ОДЗ: R, поскольку функции f (x) = x2 и g (x) = x имеют области определения R.

Понятно, что каждый корень данного уравнения принадлежит как об­ласти определения функции f (x), так и области определения функции g (x) (иначе мы не сможем получить верное числовое равенство). Поэтому каж­дый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.

Например, в уравнении л/x - 2 + \/1 - x = x функция g (x) = x определена при всех действительных значениях x, а функция f (x) = л/x - 2 + VT - x ко при условии, что под знаком квадратного корня будут стоять неотрица­тельные выражения. Следовательно, ОДЗ этого уравнения задается систе-

lx - 210,                                                                             lx 12,

мой -!                        из которой получаем систему -!                        не имеющую решений.

[1 - x 10,                                                                          [x < 1,

Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и по­этому это уравнение не имеет корней.

Нахождение ОДЗ данного уравнения может быть полезным для его ре­шения, но не всегда является обязательным элементом решения уравнения.

3.  Методы решения уравнений. Для решения уравнений используют методы точного и приближенного решений. А именно, для точного решения урав­нений в курсе математики 5—6 классов использовались зависимости меж­ду компонентами и результатами действий и свойства числовых равенств;

ГДЗ. Математика 5 класс Тарасенкова. Уравнения.

Категория: -->> Математика 5 класс Тарасенкова.
Задание:  -->>      553 - 569  570 - 586 



наверх
  • Задание 553
  • Задание 554
  • Задание 555
  • Задание 556
  • Задание 557
  • Задание 558
  • Задание 559
  • Задание 560
  • Задание 561
  • Задание 562
  • Задание 563
  • Задание 564
  • Задание 565
  • Задание 566
  • Задание 567
  • Задание 568
  • Задание 569

Задание 553.

Какое из чисел 4. 5, 8 и 10 является корнем уравнения:


Решение:
1) 5; 2) 10; 3) 4.

Задание 554.

Решите уравнение устно:


Решение:
1) 15 + x: = 55,  x = 40; 3) 60 - y = 45,  y = 15; 5) 88 : x = 8,  x = 11;
2) х - 22 = 42,  x = 64; 4) у * 12 = 12,  y = 1; 6) у : 10 = 40,  y = 400.

Задание 555.

Можно ли решить уравнение:

1) 8x = 0; 2) 0 : y = 25; 3) 5х = 5 4) 12 : y = 0?


Решение:
1) x = 0; 2) Не имеет решений; 3) x = 1; 4) Не имеет решений;




Задание 556.

Решите уравнение:


Решение:
1)28 + (45 + х) = 100;
  • 45 + x = 100 - 28;
  • 45 + x = 72;
  • x = 72 - 45;
  • x = 27;
2) (у - 25) + 18 = 40;
  • y - 25 = 40 - 18;
  • y - 25 = 22;
  • y = 22 + 25;
  • y = 47;
3) (70 - х) - 35 = 12;
  • 70 - x = 35 + 12;
  • 70 - x = 47;
  • x = 70 - 47;
  • x = 23;
4) 60 -(y + 34) = 5;
  • y + 34 = 60 - 5;
  • y + 34 = 55;
  • y = 55 - 34;
  • y = 21;
5) 52 - (19 + х) = 17;
  • 19 + x = 52 - 17;
  • 19 + x = 35;
  • x = 35 - 19;
  • x = 16;
6) 9y - 18 = 72;
  • 9y = 72 + 18;
  • 9y = 90;
  • y = 90 : 9;
  • y = 10;
7) 20 + 5х = 100;
  • 5x = 100 - 20;
  • 5x = 80;
  • x = 80 : 5;
  • x = 16;
8) 90 - y * 12 = 78;
  • y * 12 = 90 - 78;
  • y * 12 = 12;
  • y = 12 : 12;
  • y = 1;
9) 10х - 44 = 56;
  • 10x = 56 + 44;
  • 10x = 100;
  • x = 100 : 10;
  • x = 10;
10) 84 - 7у = 28;
  • 7y = 84 - 28;
  • 7y = 56;
  • y = 56 : 7;
  • y = 8;
11) 121 : (х - 45) = 11;
  • x - 45 = 121 : 11;
  • x - 45 = 11;
  • x = 45 + 11;
  • x = 56;
12) 77 : (у + 10) = 7;
  • y + 10 = 77 : 7;
  • y + 10 = 11;
  • y = 11 - 10;
  • y = 1;
13) (х - 12) : 10 = 4;
  • x - 12 = 10 * 4;
  • x - 12 = 40;
  • x = 40 + 12;
  • x = 52;
14) 55 - y * 10 = 15;
  • y * 10 = 55 - 15;
  • y * 10 = 40;
  • y = 40 : 10;
  • y = 4;
15) х : 12 + 48 = 91;
  • x : 12 = 91 - 48;
  • x : 12 = 43;
  • x = 43 * 12;
  • x = 516;
16) 5y + 4y = 99;
  • 9y = 99;
  • y = 99 : 9;
  • y = 11;
17) 54х - 27х = 81;
  • 27x = 81;
  • x = 81 : 27;
  • x = 3;
18) 36y - 16y + 5y = 0;
  • 25y = 0;
  • y = 0 : 25;
  • y = 0;
19) 14х + х - 9х + 2 = 56;
  • 6x + 2 = 56;
  • 6x = 56 - 2;
  • 6x = 54;
  • x = 54 : 6;
  • x = 9;
20) 20y - 14у + 7у - 13 = 13.
  • 13y - 13 = 13;
  • 13y = 13 + 13;
  • 13y = 26;
  • y = 26 : 13;
  • y = 2;

Задание 557.

Решите уравнение:


Решение:
1) 65 + (х + 23) = 105;
  • x + 23 = 105 - 65;
  • x + 23 = 40;
  • x = 40 - 23;
  • x = 17;
2) (у - 34) - 10 = 32;
  • y - 34 = 32 + 10;
  • y - 34 = 42;
  • y = 42 + 34;
  • y = 76;
3) (48 - х) + 35 = 82;
  • 48 - x = 82 - 35;
  • 48 - x = 47;
  • x = 48 - 47;
  • x = 1;
4) 77 - (28 + y) = 27;
  • 28 + y = 77 - 27;
  • 28 - y = 50;
  • y = 50 - 28;
  • y = 22;
5) 90 + y * 8 = 154;
6) 9х + 50 = 86;
  • 9x = 86 - 50;
  • 9x = 36;
  • x = 36 : 9;
  • x = 4;
7) 120 : (х - 19) = 6;
  • x - 19 = 120 : 6;
  • x - 19 = 20;
  • x = 19 + 20;
  • x = 39;
8)(y + 50) : 14 = 4;
  • y + 50 = 14 * 4;
  • y + 50 = 56;
  • y = 56 - 50;
  • y = 6;
9) 48 + у : 6 = 95;
  • y : 6 = 95 - 48;
  • y : 6 = 47;
  • y = 6 * 47;
  • y = 282;
10) 8х + 7х - х = 42.
  • 14x = 42;
  • x = 42 : 14;
  • x = 3;

Задание 558.

Составьте уравнение, корнем которого является число:

а) 8; б) 14.

Решение:
а) 2y = 16; б) x + 7 = 21.

Задание 559.

Составьте уравнение, корнем которого является число.

а) 5; б) 9.

Решение:
а) 25 : x = 5; б) 5x = 45.

Задание 560.

Некоторое число увеличили на 67 и получили число 109. Найдите это число.


Решение:
  • Некоторое число - x.
  • x + 67 = 109;
  • x = 109 - 67;
  • x = 42.
  • Ответ: число 42.

Задание 561.

К некоторому числу прибавили 38 и получили число 245. Найдите это число.


Решение:
  • x + 38 = 245;
  • x = 245 - 38;
  • x = 207.
  • Ответ: 207.

Задание 562.

Некоторое число увеличили в 24 раза и получили число 1968. Найдите это число.


Решение:
  • 24x = 1968;
  • x = 1968 : 24;
  • x = 82.
  • Ответ: 82.

Задание 563.

Некоторое число уменьшили в 18 раз и получили число 378. Найдите это число.


Решение:
  • x : 18 = 378;
  • x = 378 * 18;
  • x = 6804.
  • Ответ: 6408.

Задание 564.

Некоторое число уменьшили на 22 и получили число 105. Найдите это число.


Решение:
  • x - 22 = 105;
  • x = 105 + 22;
  • x = 127.
  • Ответ: 127.

Задание 565.

Из числа 128 вычли некоторое число и получили 79. Найдите это число.


Решение:
  • 128 - x = 79;
  • x = 128 - 79;
  • x = 49.
  • Ответ: 49.

Задание 566.

Составьте и решите уравнение:

  • 1) сумма удвоенного числа х и числа 39 равна 81;
  • 2) разность чисел 32 и y в 2 раза меньше числа 64;
  • 3) частное суммы чисел х и 12 и числа 2 равно 40;
  • 4) сумма чисел х и 12 в 3 раза больше числа 15;
  • 5) частное разности чисел у и 12 и числа 6 равно 18;
  • 6) утроенная разность чисел у и 17 равна 63.

Решение:
  • 1) 2x + 39 = 81
    • 2x = 81 - 39;
    • 2x = 42;
    • x = 42 : 2;
    • x = 21;
  • 2) (32 - y) * 2 = 64
    • 32 - y = 64 : 2;
    • 32 - y = 32;
    • y = 32 - 32;
    • y = 0;
  • 3) (x + 12) : 2 = 40
    • x + 12 = 40 * 2;
    • x + 12 = 80;
    • x = 80 - 12;
    • x = 68;
  • 4) (x + 12) : 3 = 15
    • x + 12 = 15 * 3;
    • x + 12 = 45;
    • x = 45 - 12;
    • x = 33;
  • 5) (y - 12) : 6 = 18
    • y - 12 = 18 * 6;
    • y - 12 = 108;
    • y = 108 + 12;
    • y = 120;
  • 6) (y - 17) * 3 = 63
    • y - 17 = 63 : 3;
    • y - 17 = 21;
    • y = 21 + 17;
    • y = 38;

Задание 567.

Составьте и решите уравнение:

  • 1) разность утроенного числа у и числа 41 равна 64;
  • 2) сумма чисел 9 и х в 5 раз меньше числа 80;
  • 3) частное суммы чисел у и 10 и числа 4 равно 16;
  • 4) разность утроенного числа х и числа 17 равна 10.

Решение:
  • 1) 3y - 41 = 64
    • 3y = 64 + 41;
    • 3y = 105;
    • y = 105 : 3;
    • y = 15;
  • 2) (9 + x) * 5 = 80
    • 9 + x = 80 : 5;
    • 9 + x = 16;
    • x = 16 - 9;
    • x = 7;
  • 3) (y + 10) : 4 = 16
    • y + 10 = 16 * 4;
    • y + 10 = 64;
    • y = 64 - 10;
    • y = 54;
  • 4) 3x - 17 = 10
    • 3x = 10 + 17;
    • 3x = 27;
    • x = 27 : 3;
    • x = 9;

Задание 568.

Некоторое число увеличили на 5 и полученное число удвоили. В результате получили число 22. Найдите неизвестное число.


Решение:
  • (x + 5) * 2 = 22;
  • x + 5 = 22 : 2;
  • x + 5 = 11;
  • x = 11 - 5;
  • x = 6;

Задание 569.

Некоторое число увеличили в 7 раз и полученное число уменьшили на 54. В результате получили число 100. Найдите неизвестное число.


Решение:
  • 7x - 54 = 100;
  • 7x = 100 + 54;
  • 7x = 154;
  • x = 154 : 7;
  • x = 22;



Задание:  -->>      553 - 569  570 - 586 

Теорема Виета

Предварительные навыки

Что называют теоремой?

Если человек обнаружил в математике какую-нибудь закономерность, позволяющую быстро решить ту или иную задачу, то ему не следует говорить о том, что он сделал открытие. Потому что может случиться так, что эта закономерность работает только для определённых случаев, а для других не работает или вовсе решает задачу неправильно.

Чтобы поделиться своим открытием с другими людьми, найденную закономерность следует сформулировать в виде утверждения, а затем доказать это утверждение, приводя неоспоримые факты.

Сформулированное утверждение называют теоремой. А доказательство теоремы состоит из фактов, логических рассуждений и вычислений, которые не оспариваются.

Например, теоремой можно назвать следующее утверждение:

«Если числитель и знаменатель обыкновенной дроби умнóжить на какое-нибудь число, то значение данной дроби не измéнится».

А затем привести такое доказательство:

Пусть, имеется дробь . Умнóжим числитель и знаменатель этой дроби на число с. Тогда полýчится дробь . Докáжем, что дроби  и равны. То есть докажем, что равенство является верным.

Для доказательства этого равенства воспользуемся основным свойством пропорции:

От перестановки мест сомножителей произведение не меняется. Поэтому в получившемся равенстве можно упорядочить правую часть по алфавиту:

Поскольку равенство является пропорцией, а пропорция это равенство двух отношений, то дроби и равны. Теорема доказана.


Теорема Виета

Французский математик Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:

Сумма корней приведённого квадратного уравнения xbx = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.

То есть, если имеется приведённое квадратное уравнение xbx = 0, а его корнями являются числа x1 и x2, то справедливы следующие два равенства:

Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.

Покажем теорему Виета на примере приведённого квадратного уравнения x+ 4+ 3 = 0.

Мы пока не знаем какие корни имеет уравнение x+ 4+ 3 = 0. Но по теореме Виета можно записать, что сумма этих корней равна второму коэффициенту 4, взятому с противоположным знáком. Если коэффициент 4 взять с противоположным знáком, то получим −4. Тогда:

А произведение корней по теореме Виета будет равно свободному члену. В уравнении x+ 4+ 3 = 0 свободным членом является 3. Тогда:

Теперь проверим действительно ли сумма корней равна −4, и равно ли произведение 3. Для этого найдём корни уравнения x+ 4+ 3 = 0. А для удобства воспользуемся формулами для чётного второго коэффициента:

Корнями уравнения являются числа −1 и −3. По теореме Виета их сумма должна была равняться второму коэффициенту уравнения x+ 4+ 3 = 0, взятому с противоположным знаком. Действительно, так оно и есть. Вторым коэффициентов в уравнении x+ 4+ 3 = 0 является 4. Если взять его с противоположным знаком и приравнять сумму корней xx2 к этому коэффициенту, то получается верное равенство:

А произведение корней −1 и −3 по теореме Виета должно было равняться свободному члену уравнения x+ 4+ 3 = 0, то есть числу 3. Видим, что это условие тоже выполняется:

Значит выражение  является справедливым.


Рассмотрим квадратное уравнение x− 8+ 15 = 0. По теореме Виета сумма корней этого уравнения равна второму коэффициенту, взятому с противоположным знаком. Второй коэффициент равен −8. Если взять его с противоположным знаком, то получим 8. Тогда:

А произведение корней равно свободному члену. В уравнении x− 8+ 15 = 0 свободным членом является 15. Тогда:

Теперь проверим действительно ли сумма корней равна 8, и равно ли произведение 15. Для этого найдём корни данного уравнения. А для удобства воспользуемся формулами для чётного второго коэффициента. В этот раз пропустим нéкоторые подробные записи:

Видим, что корнями уравнения x− 8+ 15 = 0 являются числа 5 и 3. Их сумма равна 8. То есть сумма корней равна второму коэффициенту уравнения x− 8+ 15 = 0, взятому с противоположным знаком.

А произведение чисел 5 и 3 равно 15. То есть равно свободному члену уравнения x− 8+ 15 = 0.

Значит выражение является справедливым.

Замечание. Чтобы теорема Виета выполнялась, квадратное уравнение обязательно должно быть приведённым и иметь корни.

Например, рассмотрим квадратное уравнение x− 2+ 4 = 0. Напишем сумму и произведение корней этого уравнения:

Но уравнение x− 2+ 4 = 0 не имеет корней, сумма которых равна 2, а произведение которых равно 4. Убедиться в этом можно, вычислив дискриминант:

D1 = k− ac = (−1)− 1 × 4 = −3

А значит записывать выражение не имеет смысла.

Теорема Виета полезна тем, что позволяет до начала решения узнать знаки корней уравнения.

Например, запишем для уравнения x− 5+ 6 = 0 сумму и произведение его корней. Сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Посмотрев на эти два равенства можно сразу понять, что оба корня должны быть положительными. Потому что произведение x× x= 6 будет выполняться только в двух случаях: если значения x1 и x2 положительны либо они оба отрицательны. Если эти значения будут отрицательными, то не будет выполняться равенство xx= 5, поскольку его правая часть равна положительному числу. А значения x1 и x2 должны удовлетворять как равенству xx= 5, так и равенству x× x= 6.

Ещё одна польза от теоремы Виета в том, что корни можно найти методом подбора. В данном примере корни должны быть такими, чтобы они удовлетворяли как равенству xx= 5 так и равенству x× x= 6. Очевидно, что таковыми являются корни 3 и 2

Значит, x= 3, x= 2


Доказательство теоремы Виета

Пусть дано приведённое квадратное уравнение xbx = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Докажем, что равенства xx= −b и x× xc имеют место быть.

Вспомним формулы корней квадратного уравнения:

Найдём сумму корней x1 и x2. Для этого подставим в выражение xx2 вместо x1 и x2 соответствующие выражения из правой части формул корней квадратного уравнения. Не забываем, что в приведённом квадратном уравнении xbx = 0 старший коэффициент a равен единице. Тогда в процессе подстановки знаменатель станет равен просто 2

Запишем правую часть в виде дроби с одним знаменателем:

Раскроем скобки в числителе и приведём подобные члены:

Сократим дробь на 2, тогда получим −b

Значит xx2 действительно равно −b

xx= −b

Теперь аналогично докажем, что произведение x× x2 равно свободному члену c.

Подставим вместо x1 и x2 соответствующие выражения из формул корней квадратного уравнения. Не забываем, что коэффициент a всё ещё равен единице:

Чтобы перемнóжить дроби, нужно перемнóжить их числители и знаменатели:

В числителе теперь содержится произведение суммы двух выражений и разности этих же выражений. Воспользуемся тождеством (a + b)(a − b) = a− b2. Тогда в числителе полýчится А знаменатель будет равен 4

Теперь в числителе выражение (−b)2 станет равно b2, а выражение станет равно просто D

Но D равно b− 4ac. Подстáвим это выражение вместо D, не забывая что = 1. То есть вместо b− 4ac надо подставить b− 4c

В получившемся выражении раскроем скобки в числителе и приведём подобные члены:

Сократим получившуюся дробь на 4

Значит x× x2 действительно равно c.

x× xc

Таким образом, сумма корней приведённого квадратного уравнения xbx = 0 равна второму коэффициенту, взятому с противоположным знáком (xx= −b), а произведение корней равно свободному члену (x× xc). Теорема доказана.


Теорема, обратная теореме Виета

Когда записана сумма и произведение корней приведённого квадратного уравнения, обычно начинается подбор подходящих корней к этому уравнению. В этот момент в работу включается так называемая теорема, обратная теореме Виета. Она формулируется так:

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения xbx = 0, взятому с противоположным знáком, а произведение чисел x1 и x2 равно свободному члену уравнения xbx = 0, то числа x1 и x2 являются корнями уравнения xbx = 0.

Обратные теоремы бывают поставлены так, что их утверждением является заключение первой теоремы.

Так, доказывая теорему Виета мы пришли к заключению, что сумма x1 и x2 равна −b, а произведение x1 и x2 равно c. В обратной же теореме это заключение служит утверждением.

Ранее мы решили уравнение x− 5+ 6 = 0 и написали для него такую сумму и произведение корней:

А затем подобрали корни 3 и 2. По сути мы применили теорему, обратную теореме Виета. Числа 3 и 2 таковы, что их сумма равна второму коэффициенту уравнения x− 5+ 6 = 0, взятому с противоположным знаком (числу 5), а произведение чисел 3 и 2 равно свободному члену (числу 6). Значит числа 3 и 2 являются корнями уравнения x− 5+ 6 = 0.


Пример 2. Решить квадратное уравнение x− 6+ 8 = 0 по теореме, обратной теореме Виета.

В данном уравнении = 1. Значит квадратное уравнение является приведённым. Его можно решить по теореме, обратной теореме Виета.

Сначала запишем сумму и произведение корней уравнения. Сумма корней будет равна 6, поскольку второй коэффициент исходного уравнения равен −6. А произведение корней будет равно 8

Теперь имея эти два равенства можно подобрать подходящие корни. Они должны удовлетворять как равенству xx= 6, так и равенству x× x= 8

Подбор корней удобнее выполнять с помощью их произведения. Используя равенство x× x= 8 нужно найти такие x1 и x2, произведение которых равно 8.

Число 8 можно получить если перемножить числа 4 и 2 либо 1 и 8.

4 × 2 = 8
1 × 8 = 8

Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли не только равенству x× x= 8, но и равенству xx= 6.

Сразу делаем вывод, что значения 1 и 8 не годятся, поскольку они хоть и удовлетворяют равенству x× x= 8, но не удовлетворяют равенству xx= 6.

Зато значения 4 и 2 подходят как равенству x× x= 8, так и равенству xx= 6, поскольку эти значения удовлетворяют обоим равенствам:

Значит корнями уравнения x− 6+ 8 = 0 являются числа 4 и 2.

Обратная теорема, как и любая теорема нуждается в доказательстве. Докажем теорему, обратную теореме Виета. Для удобства корни x1 и x2 обозначим как m и n. Тогда утверждение теоремы, обратной теореме Виета примет следующий вид:

Если числа m и n таковы, что их сумма равна второму коэффициенту уравнения xbx = 0, взятому с противоположным знáком, а произведение чисел m и n равно свободному члену уравнения xbx = 0, то числа m и n являются корнями уравнения xbx = 0

Для начала запишем, что сумма m и n равна −b, а произведение mn равно c

Чтобы доказать, что числа m и n являются корнями уравнения xbx = 0, нужно поочередно подстáвить буквы m и n в это уравнение вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями уравнения xbx = 0.

Помимо букв m и n нам нужно знать чему равен параметр b. Выразим его из равенства m + n = −b. Легче всего это сделать, умножив обе части этого равенства на −1

Теперь всё готово для подстановок. Подстáвим m в уравнение xbx = 0 вместо x, а выражение −m − n подставим вместо b

Видим, что при x = m получается верное равенство. Значит число m является корнем уравнения xbx = 0.

Аналогично докажем, что число n является корнем уравнения xbx = 0. Подставим вместо x букву n, а вместо c подставим mn, поскольку c = mn.

Видим, что при x = n тоже получается верное равенство. Значит число n является корнем уравнения.

Следовательно, числа m и n являются корнями уравнения xbx = 0.


Примеры решения уравнений по теореме, обратной теореме Виета

Пример 1. Решить квадратное уравнение x− 4+ 4 = 0 по теореме, обратной теореме Виета.

Запишем сумму корней x1 и x2 и приравняем её к второму коэффициенту, взятому с противоположным знаком. Также запишем произведение корней x1 и x2 и приравняем его к свободному члену:

В данном примере очевидно, что корнями являются числа 2 и 2. Потому что их сумма равна 4 и произведение равно 4

Значение x1 совпадает с x2. Это тот случай, когда квадратное уравнение имеет только один корень. Если мы попробуем решить данное уравнение с помощью формул корней квадратного уравнения, то обнаружим что дискриминант равен нулю, и корень вычисляется по формуле

Данный пример показывает, что теорема обратная теореме Виета, работает и для уравнений, имеющих только один корень. Признаком того, что квадратное уравнение имеет только один корень является то, что значения x1 и x2 совпадают.


Пример 2. Решить уравнение x+ 3+ 2 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Теперь подберём значения x1 и x2. Здесь начинается самое интересное. Произведение корней равно 2. Число 2 можно получить перемножив 1 и 2. Но сумма корней xx2 равна отрицательному числу −3. Значит значения 1 и 2 не подходят.

Сумма бывает отрицательной если оба слагаемых отрицательны либо отрицательным является одно слагаемое, модуль которого больше.

Если подберём корни с разными знаками, то не будет выполняться равенство x× x= 2.

Если подберем положительные корни, то будет выполняться равенство x× x= 2, но не будет выполняться равенство xx= −3.

Очевидно, что корнями являются два отрицательных числа. Произведение отрицательных чисел есть положительное число. А сумма отрицательных чисел есть отрицательное число.

Тогда равенствам будут удовлетворять числа −1 и −2.

Итак, корнями являются числа −1 и −2


Пример 3. Решить уравнение x+ 16+ 15 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Как и в прошлом примере сумма корней равна отрицательному числу, а произведение корней — положительному числу.

Произведение бывает положительным если оба сомножителя положительны либо оба сомножителя отрицательны. Первый вариант отпадает сразу, поскольку сумма корней равна отрицательному числу. Тогда получается, что оба корня будут отрицательными. Попробуем подобрать их.

Число 15 можно получить, если перемножить числа −1 и −15 или (−3) и (−5). В данном случае подходит первый вариант, поскольку сумма чисел −1 и −15 равна −16, а их произведение равно 15. Значит корнями уравнения x+ 16+ 15 = 0 являются числа −1 и −15


Пример 4. Решить уравнение x− 10− 39 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Произведение корней равно отрицательному числу. Значит один из корней является отрицательным. Число −39 можно получить если перемножить числа −3 и 13 либо −13 и 3. Из этих комбинаций больше годится комбинация −3 и 13, поскольку при перемножении этих чисел получается −39, а при сложении 10

Значит корнями уравнения x− 10− 39 = 0 являются числа −3 и 13


Пример 5. Первый корень уравнения xbx + 45 = 0 равен 15. Найти второй корень этого уравнения, а также значение коэффициента b.

По теореме Виета произведение корней приведённого квадратного уравнения равно свободному члену. В данном случае это произведение равно 45

x1 × x2 = 45

При этом один из корней уже известен — это корень 15.

15 × x2 = 45

Тогда второй корень будет равен 3, потому что число 45 получается, если 15 умножить на 3

15 × 3 = 45

Значит x2 = 3

Этот второй корень также можно было бы получить, выразив из равенства 15 × x2 = 45 переменную x2

Теперь определим значение коэффициента b. Для этого напишем сумму корней уравнения:

15 + 3 = 18

По теореме Виета сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней равна 18, а 18 это положительное число, то в самóм уравнении этот коэффициент будет отрицательным:

x2 − 18+ 45 = 0

Значит = −18.

Обычно решение к такой задаче записывают так. Сначала записывают основную теорему Виета в виде суммы и произведения корней:

Затем в это выражение подставляют имеющиеся известные значения. В нашем случае известно, что первый корень равен 15, а свободный член уравнения xbx + 45 = 0 равен 45

Из этой системы следует найти x2 и b. Выразим эти параметры:

Из этой системы мы видим, что x2 равно 3. Подставим его в первое равенство:

Теперь из первого равенства мы видим, что −b равно 18

Но нас интересует b, а не −b. Следует помнить, что −b это −1b. Чтобы найти b нужно 18 разделить на −1. Тогда b станет равно −18

Этот же результат можно получить если в выражении умножить первое равенство на −1

Теперь возвращаемся к исходному уравнению xbx + 45 = 0 и подставляем найденное значение b

Выполним умножение −18 на x. Получим −18x

Раскроем скобки:


Пример 6. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа 2 и 8.

В этом задании корни уже известны. То есть x= 2, x= 8. По ним надо составить квадратное уравнение вида xbx = 0.

Запишем сумму и произведение корней:

По теореме Виета сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней 2 и 8 равна 10, то в самóм уравнении число 10 должно быть с противоположным знаком. Значит = −10.

Произведение корней по теореме Виета равно свободному члену. У нас это произведение равно 16.

Значит = −10, = 16. Отсюда:

x2 − 10+ 16 = 0


Пример 7. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа и .

Запишем сумму и произведение корней:

Сумма корней равна 2. Тогда в уравнении второй коэффициент будет равен −2. А произведение корней равно −1. Значит свободный член будет равен −1. Тогда:

x2 − 2x − 1 = 0


Когда квадратное уравнение неприведённое

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым.

Если квадратное уравнение не является приведённым, но всё равно возникла необходимость применить теорему Виета, то обе части неприведённого квадратного уравнения следует разделить на коэффициент, который располагается перед x2.

Если к примеру в квадратном уравнении axbx = 0 коэффициент a не равен единице, то данное уравнение является неприведённым. Чтобы сделать его приведённым, надо разделить обе его части на коэффициент, который располагается перед x2, то есть на a

Получилось уравнение , которое является приведённым. В нём второй коэффициент равен , а свободный член равен . Тогда сумма и произведение корней будут выглядеть так:

Например, решим квадратное уравнение 4x+ 5+ 1 = 0. Это уравнение не является приведённым. Приведённым оно станет, если разделить обе его части на коэффициент, который располагается перед x2, то есть на 4

Получили приведённое квадратное уравнение. В нём второй коэффициент равен , а свободный член . Тогда по теореме Виета имеем:

Отсюда методом подбора находим корни −1 и

Возможно этот метод вы редко будете использовать при решении квадратных уравнений. Но знать о нём не помешает.


 

Пример 2. Решить квадратное уравнение 3x− 7+ 2 = 0

Данное уравнение не является приведённым, а значит его пока нельзя решить по теореме, обратной теореме Виета.

Сделаем данное уравнение приведенным. Разделим обе части на коэффициент, который располагается перед x2

Получили уравнение . Запишем сумму и произведение корней этого уравнения:

Отсюда методом подбора находим корни 2 и


Пример 3. Решить квадратное уравнение 2x− 3− 2 = 0

Это неприведённое квадратное уравнение. Чтобы сделать его приведённым, нужно разделить обе его части на 2. Сделать это можно в уме. Если 2x2 разделить на 2, то полýчится x2

Далее если −3x разделить на 2, то полýчится . Чтобы видеть где коэффициент, а где переменная, такое выражение записывают в виде

Далее если −2 разделить на 2, то полýчится −1

Прирáвниваем получившееся выражение к нулю:

Теперь применяем теорему Виета. Сумма корней будет равна второму коэффициенту, взятому с противоположным знáком, а произведение корней свободному члену:

Отсюда методом подбора находим корни 2 и


Задания для самостоятельного решения

Задание 1. Написать сумму и произведение корней для квадратного уравнения:

Решение:

Задание 2. Написать сумму и произведение корней для квадратного уравнения:

Решение:

Задание 3. Написать сумму и произведение корней для квадратного уравнения:

Решение:

Задание 4. Решить квадратное уравнение по теореме, обратной теореме Виета:

Решение:

Задание 5. Решить квадратное уравнение по теореме, обратной теореме Виета:

Решение:

Задание 6. Решить квадратное уравнение по теореме, обратной теореме Виета:

Решение:

Задание 7. Решить квадратное уравнение по теореме, обратной теореме Виета:

Решение:

Задание 8. Решить квадратное уравнение по теореме, обратной теореме Виета:

Решение:

Задание 9. Решить квадратное уравнение по теореме, обратной теореме Виета:

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

4 + 4x-1 = 0 $? - Обмен стеками математики
Сеть обмена стеков

Сеть Stack Exchange состоит из 177 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Mathematics Stack Exchange - это сайт вопросов и ответов для людей, изучающих математику на любом уровне, и профессионалов в смежных областях.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 4к раз

$ \ begingroup $

Я знаю, что могу легко решить эту проблему с помощью уравнения 4-й степени, но разве нет более разумного способа? Это задача олимпиады, поэтому формула должна быть не формулой, а найти формулу.2 $$ и разложить на множители.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2015-2019 © Игровая комната «Волшебный лес», Челябинск
тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск