Щёлочи — Википедия
Щёлочи (в русском языке происходит от слова «щёлок», возможно, производное от того же корня, что и др.-исл. «skola» — «стирать»[1]) — гидроксиды щелочных, щёлочноземельных металлов и некоторых других элементов, например, таллия. К щелочам относятся хорошо растворимые в воде основания. При диссоциации щёлочи образуют анионы OH− и катион металла.
К щелочам относятся гидроксиды металлов подгрупп Iа и IIа (начиная с кальция) периодической системы, например NaOH (едкий натр), KOH (едкое кали), Ba(OH)2 (едкий барий). В качестве исключения можно отнести к щелочам гидроксид одновалентного таллия TlOH, который хорошо растворим в воде и является сильным основанием. Едкие щёлочи — тривиальное название гидроксидов лития LiOH, натрия NaOH, калия КОН, рубидия RbOH и цезия CsOH. Название «едкая щёлочь» обусловлено свойством разъедать кожу и слизистые оболочки, вызывая сильные ожоги, бумагу и другие органические вещества.
Из-за очень большой химической активности щелочных металлов едкие щёлочи долгое время не удавалось разложить и они потому считались простыми веществами. Одним из первых предположение о сложном составе едких щелочей высказал Лавуазье. Основываясь на своей теории о том, что все простые вещества могут окисляться, Лавуазье решил, что едкие щёлочи — это уже окисленные сложные вещества. Однако подтвердить это удалось лишь Дэви в начале XIX века после применения им электрохимии
Гидроксиды щелочных металлов (едкие щёлочи) представляют собой твёрдые, белые, очень гигроскопичные вещества. Щёлочи — сильные основания, очень хорошо растворимые в воде, причём реакция сопровождается значительным тепловыделением. Сила основания и растворимость в воде возрастает с увеличением радиуса катиона в каждой группе периодической системы. Самые сильные щёлочи — гидроксид цезия (поскольку из-за очень малого периода полураспада гидроксид франция не получен в макроскопических количествах) в группе Ia и гидроксид радия в группе IIa. Кроме того, едкие щёлочи растворимы в этаноле и метаноле.
Щёлочи проявляют основные свойства. В твёрдом состоянии все щёлочи поглощают H2O из воздуха, а также CO2 (также и в состоянии раствора) из воздуха, постепенно превращаясь в карбонаты. Щёлочи широко применяются в промышленности.
Качественные реакции на щёлочи[править | править код]
Водные растворы щелочей изменяют окраску индикаторов.
Индикатор и номер перехода | х[3] | Интервал pH и номер перехода | Цвет щёлочной формы | |
---|---|---|---|---|
Метиловый фиолетовый | 0,13-0,5 [I] | зелёный | ||
Крезоловый красный [I] | 0,2-1,8 [I] | жёлтый | ||
Метиловый фиолетовый [II] | 1,0-1,5 [II] | синий | ||
Тимоловый синий [I] | к | 1,2-2,8 [I] | жёлтый | |
Тропеолин 00 | o | 1,3-3,2 | жёлтый | |
Метиловый фиолетовый [III] | 2,0-3,0 [III] | фиолетовый | ||
(Ди)метиловый жёлтый | o | 3,0-4,0 | жёлтый | |
Бромфеноловый синий | к | 3,0-4,6 | сине-фиолетовый | |
Конго красный | 3,0-5,2 | синий | ||
Метиловый оранжевый | o | 3,1-(4,0)4,4 | (оранжево-)жёлтый | |
Бромкрезоловый зелёный | к | 3,8-5,4 | синий | |
Бромкрезоловый синий | 3,8-5,4 | синий | ||
Лакмоид | к | 4,0-6,4 | синий | |
Метиловый красный | o | 4,2(4,4)-6,2(6,3) | жёлтый | |
Хлорфеноловый красный | к | 5,0-6,6 | красный | |
Лакмус (азолитмин) | 5,0-8,0 (4,5-8,3) | синий | ||
Бромкрезоловый пурпурный | к | 5,2-6,8(6,7) | ярко-красный | |
Бромтимоловый синий | к | 6,0-7,6 | синий | |
Нейтральный красный | o | 6,8-8,0 | янтарно-жёлтый | |
Феноловый красный | о | 6,8-(8,0)8,4 | ярко-красный | |
Крезоловый красный [II] | к | 7,0(7,2)-8,8 [II] | тёмно-красный | |
α-Нафтолфталеин | к | 7,3-8,7 | синий | |
Тимоловый синий [II] | к | 8,0-9,6 [II] | синий | |
Фенолфталеин[4] [I] | к | 8,2-10,0 [I] | малиново-красный | |
Тимолфталеин | к | 9,3(9,4)-10,5(10,6) | синий | |
Ализариновый жёлтый ЖЖ | к | 10,1-12,0 | коричнево-жёлтый | |
Нильский голубой | 10,1-11,1 | красный | ||
Диазофиолетовый | 10,1-12,0 | фиолетовый | ||
Индигокармин | 11,6-14,0 | жёлтый | ||
Epsilon Blue | 11,6-13,0 | тёмно-фиолетовый |
Взаимодействие с кислотами[править | править код]
Щёлочи, как основания, взаимодействуют с кислотами с образованием соли и воды (реакция нейтрализации). Это одно из самых важных химических свойств щелочей.
Щёлочь + Кислота → Соль + Вода
- NaOH+HCl⟶NaCl+h3O{\displaystyle {\mathsf {NaOH+HCl\longrightarrow NaCl+H_{2}O}}};
- NaOH+HNO3⟶NaNO3+h3O{\displaystyle {\mathsf {NaOH+HNO_{3}\longrightarrow NaNO_{3}+H_{2}O}}}.
Взаимодействие с кислотными оксидами[править | править код]
Щёлочи взаимодействуют с кислотными оксидами с образованием соли и воды:
Щёлочь + Кислотный оксид → Соль + Вода
- Ca(OH)2+CO2⟶CaCO3↓+h3O{\displaystyle {\mathsf {Ca(OH)_{2}+CO_{2}\longrightarrow CaCO_{3}\downarrow +H_{2}O}}};
Взаимодействие с амфотерными оксидами[править | править код]
- 2KOH+ZnO→toCK2ZnO2+h3O{\displaystyle {\mathsf {2KOH+ZnO{\xrightarrow {t^{o}C}}K_{2}ZnO_{2}+H_{2}O}}}.
Взаимодействие с переходными (амфотерными) металлами[править | править код]
Растворы щелочей взаимодействуют с металлами, которые образуют амфотерные оксиды и гидроксиды (Zn,Al{\displaystyle {\mathsf {Zn,Al}}} и др). Уравнения этих реакций в упрощённом виде могут быть записаны следующим образом:
- Zn+2NaOH⟶Na2ZnO2+h3↑{\displaystyle {\mathsf {Zn+2NaOH\longrightarrow Na_{2}ZnO_{2}+H_{2}\uparrow }}};
- 2Al+2KOH+2h3O⟶2KAlO2+3h3↑{\displaystyle {\mathsf {2Al+2KOH+2H_{2}O\longrightarrow 2KAlO_{2}+3H_{2}\uparrow }}}.
Реально в ходе этих реакций в растворах образуются гидроксокомплексы (продукты гидратации указанных выше солей):
- Zn+2NaOH+2h3O⟶Na2[Zn(OH)4]+h3↑{\displaystyle {\mathsf {Zn+2NaOH+2H_{2}O\longrightarrow Na_{2}[Zn(OH)_{4}]+H_{2}\uparrow }}};
- 2Al+2KOH+6h3O⟶2K[Al(OH)4]+3h3↑{\displaystyle {\mathsf {2Al+2KOH+6H_{2}O\longrightarrow 2K[Al(OH)_{4}]+3H_{2}\uparrow }}};
Взаимодействие с растворами солей[править | править код]
Растворы щелочей взаимодействуют с растворами солей, если образуется нерастворимое основание или нерастворимая соль:
Раствор щёлочи + Раствор соли → Новое основание + Новая соль
- 2NaOH+CuSO4⟶Cu(OH)2↓+Na2SO4{\displaystyle {\mathsf {2NaOH+CuSO_{4}\longrightarrow Cu(OH)_{2}\downarrow +Na_{2}SO_{4}}}};
- Ba(OH)2+Na2SO4⟶2NaOH+BaSO4↓{\displaystyle {\mathsf {Ba(OH)_{2}+Na_{2}SO_{4}\longrightarrow 2NaOH+BaSO_{4}\downarrow }}};
Растворимые основания получают различными способами.
Гидролиз щелочных/щёлочноземельных металлов[править | править код]
Получают путём электролиза хлоридов щелочных металлов или действием воды на оксиды щелочных металлов.
Щёлочи широко применяются в различных производствах и медицине; также для дезинфекции прудов в рыбоводстве и как удобрение, в качестве электролита для щелочных аккумуляторов.
Слабощелочная почва в почвоведении — это почва, водородный показатель которой выше 7,3. Хотя кочанная капуста предпочитает именно щелочные почвы, они могут помешать другим растениям. Большинство растений предпочитает слабокислые почвы (с pH от 6,0 до 6,8)[5].
- ↑ эх щелок // Словарь Фасмера
- ↑ А. С. Арсеньев. Анализ развивающегося понятия. М., «Наука», 1067. С. 332.
- ↑ *Столбец «х» — характер индикатора: к—кислота, о—основание.
- ↑ Фенолфталеин в сильно щелочной среде обесцвечивается. В среде концентрированной серной кислоты также он даёт красную окраску, обусловленую строением катиона фенолфталеина, хотя и не такую интенсивную. Эти малоизвестные факты могут привести к ошибкам при определении реакции среды.
- ↑ Chambers’s Encyclopaedia[en]. — 1888.
При написании этой статьи использовался материал из издания «Казахстан. Национальная энциклопедия» (1998—2007), предоставленного редакцией «Қазақ энциклопедиясы» по лицензии Creative Commons BY-SA 3.0 Unported.
Щелочные металлы — Википедия
Группа → | 1 | ||||||
---|---|---|---|---|---|---|---|
↓ Период | |||||||
2 | |||||||
3 | |||||||
4 | |||||||
5 |
| ||||||
6 | |||||||
7 |
|
Щелочны́е мета́ллы — элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы I группы)[1]: литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.
Общая характеристика щелочных металлов[править | править код]
В Периодической системе они следуют сразу за инертными газами, поэтому особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на внешнем энергетическом уровне: их электронная конфигурация ns1. Очевидно, что валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа. Поэтому для всех щелочных металлов характерны восстановительные свойства. Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия — самый низкий) и электроотрицательности (ЭО). Как следствие, в большинстве соединений щелочные металлы присутствуют в виде однозарядных катионов. Однако существуют и соединения, где щелочные металлы представлены анионами (см. Алкалиды).
Некоторые атомные и физические свойства щелочных металлов
Атомный номер | Название, символ | Число природных изотопов | Атомная масса | Энергия ионизации, кДж·моль−1 | Сродство к электрону, кДж·моль−1 | ЭО | ΔHдисс, кДж·моль−1 | Металл. радиус, нм | Ионный радиус (КЧ 6), нм | tпл, °C | tкип, °C | Плотность, г/см³ | ΔHпл, кДж·моль−1 | ΔHкип, кДж·моль−1 | ΔHобр, кДж·моль−1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | Литий Li | 2 | 6,941(2) | 520,2 | 59,8 | 0,98 | 106,5 | 0,152 | 0,076 | 180,6 | 1342 | 0,534 | 2,93 | 148 | 162 |
11 | Натрий Na | 1 | 22,989768(6) | 495,8 | 52,9 | 0,99 | 73,6 | 0,186 | 0,102 | 97,8 | 883 | 0,968 | 2,64 | 99 | 108 |
19 | Калий К | 2+1а | 39,0983(1) | 418,8 | 46,36 | 0,82 | 57,3 | 0,227 | 0,138 | 63,07 | 759 | 0,856 | 2,39 | 79 | 89,6 |
37 | Рубидий Rb | 1+1а | 85,4687(3) | 403,0 | 46,88 | 0,82 | 45,6 | 0,248 | 0,152 | 39,5 | 688 | 1,532 | 2,20 | 76 | 82 |
55 | Цезий Cs | 1 | 132,90543(5) | 375,7 | 45,5 | 0,79 | 44,77 | 0,265 | 0,167 | 28,4 | 671 | 1,90 | 2,09 | 67 | 78,2 |
87 | Франций Fr | 2а | (223) | 380 | (44,0) | 0,7 | — | — | 0,180 | 20 | 690 | 1,87 | 2 | 65 | — |
119 | Унуненний Uue |
а Радиоактивные изотопы: 40K, T1/2 = 1,277·109 лет; 87Rb, T1/2 = 4,75·1010 лет; 223Fr, T1/2 = 21,8 мин; 224Fr, T1/2 = 3,33 мин.
Все металлы этой подгруппы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень мягкие, их можно резать скальпелем. Литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней.
Многие минералы содержат в своём составе щелочные металлы. Например, ортоклаз
, или полевой шпат, состоит из алюмосиликата калия K2[Al2Si6O16], аналогичный минерал, содержащий натрий — альбит — имеет состав Na2[Al2Si6O16]. В морской воде содержится хлорид натрия NaCl, а в почве — соли калия — сильвин KCl, сильвинит NaCl·KCl, карналлит KCl·MgCl2·6H2O, полигалит K2SO4·MgSO4·CaSO4·2H2O.Химические свойства щелочных металлов[править | править код]
Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, и иногда даже и азоту (Li) их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.
Взаимодействие с водой[править | править код]
Важное свойство щелочных металлов — их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водой литий:
- 2 Li+2 h3O⟶2 LiOH+ h3↑{\displaystyle {\mathsf {2\ Li+2\ H_{2}O\longrightarrow 2\ LiOH+\ H_{2}\uparrow }}}
При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет.
Взаимодействие с кислородом[править | править код]
Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.
- Только литий сгорает на воздухе с образованием оксида стехиометрического состава:
- 4 Li+ O2⟶2 Li2O{\displaystyle {\mathsf {4\ Li+\ O_{2}\longrightarrow 2\ Li_{2}O}}}
- 2 Na+ O2⟶ Na2O2{\displaystyle {\mathsf {2\ Na+\ O_{2}\longrightarrow \ Na_{2}O_{2}}}}
- В продуктах горения калия, рубидия и цезия содержатся в основном надпероксиды:
- K+ O2⟶ KO2{\displaystyle {\mathsf {K+\ O_{2}\longrightarrow \ KO_{2}}}}
- Rb+ O2⟶ RbO2{\displaystyle {\mathsf {Rb+\ O_{2}\longrightarrow \ RbO_{2}}}}
- Cs+ O2⟶ CsO2{\displaystyle {\mathsf {Cs+\ O_{2}\longrightarrow \ CsO_{2}}}}
Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода:
- 2 Na+2 NaOH⟶2 Na2O+ h3↑{\displaystyle {\mathsf {2\ Na+2\ NaOH\longrightarrow 2\ Na_{2}O+\ H_{2}\uparrow }}}
- 2 Na+ Na2O2⟶2 Na2O{\displaystyle {\mathsf {2\ Na+\ Na_{2}O_{2}\longrightarrow 2\ Na_{2}O}}}
- 3 K+ KO2⟶2 K2O{\displaystyle {\mathsf {3\ K+\ KO_{2}\longrightarrow 2\ K_{2}O}}}
Для кислородных соединений щелочных металлов характерна следующая закономерность: по мере увеличения радиуса катиона щелочного металла возрастает устойчивость кислородных соединений, содержащих пероксид-ион О2−
2 и надпероксид-ион O−
2.
Для тяжёлых щелочных металлов характерно образование довольно устойчивых
Формула кислородного соединения | Цвет |
---|---|
Li2O | Белый |
Na2O | Белый |
K2O | Желтоватый |
Rb2O | Жёлтый |
Cs2O | Оранжевый |
Na2O2 | Светло- жёлтый |
KO2 | Оранжевый |
RbO2 | Тёмно- коричневый |
CsO2 | Жёлтый |
Оксиды щелочных металлов обладают всеми свойствами, присущими основным оксидам: они реагируют с водой, кислотными оксидами и кислотами:
- Li2O+ h3O⟶2 LiOH{\displaystyle {\mathsf {Li_{2}O+\ H_{2}O\longrightarrow 2\ LiOH}}}
- K2O+ SO3⟶ K2SO4{\displaystyle {\mathsf {K_{2}O+\ SO_{3}\longrightarrow \ K_{2}SO_{4}}}}
- Na2O+2 HNO3⟶2 NaNO3+ h3O{\displaystyle {\mathsf {Na_{2}O+2\ HNO_{3}\longrightarrow 2\ NaNO_{3}+\ H_{2}O}}}
Пероксиды и надпероксиды проявляют свойства сильных окислителей:
- Na2O2+2 NaI+2 h3SO4⟶ I2+2 Na2SO4+2 h3O{\displaystyle {\mathsf {Na_{2}O_{2}+2\ NaI+2\ H_{2}SO_{4}\longrightarrow \ I_{2}+2\ Na_{2}SO_{4}+2\ H_{2}O}}}
Пероксиды и надпероксиды интенсивно взаимодействуют с водой, образуя гидроксиды:
- Na2O2+2 h3O⟶2 NaOH+ h3O2{\displaystyle {\mathsf {Na_{2}O_{2}+2\ H_{2}O\longrightarrow 2\ NaOH+\ H_{2}O_{2}}}}
- 2 KO2+2 h3O⟶2 KOH+ h3O2+ O2↑{\displaystyle {\mathsf {2\ KO_{2}+2\ H_{2}O\longrightarrow 2\ KOH+\ H_{2}O_{2}+\ O_{2}\uparrow }}}
Взаимодействие с другими веществами[править | править код]
Щелочные металлы реагируют со многими неметаллами. При нагревании они соединяются с водородом с образованием гидридов, с галогенами, серой, азотом, фосфором, углеродом и кремнием с образованием, соответственно, галогенидов, сульфидов, нитридов, фосфидов, карбидов и силицидов:
- 2 Na+ h3⟶2 NaH{\displaystyle {\mathsf {2\ Na+\ H_{2}\longrightarrow 2\ NaH}}}
- 2 Na+ Cl2⟶2 NaCl{\displaystyle {\mathsf {2\ Na+\ Cl_{2}\longrightarrow 2\ NaCl}}}
- 2 K+ S⟶ K2S{\displaystyle {\mathsf {2\ K+\ S\longrightarrow \ K_{2}S}}}
- 6 Li+ N2⟶2 Li3N{\displaystyle {\mathsf {6\ Li+\ N_{2}\longrightarrow 2\ Li_{3}N}}}
- 2 Li+2 C⟶ Li2C2{\displaystyle {\mathsf {2\ Li+2\ C\longrightarrow \ Li_{2}C_{2}}}}
При нагревании щелочные металлы способны реагировать с другими металлами, образуя интерметаллиды. Активно (со взрывом) щелочные металлы реагируют с кислотами.
Щелочные металлы растворяются в жидком аммиаке и его производных — аминах и амидах:
- 2 Na+2 Nh4⟶2 NaNh3+ h3↑{\displaystyle {\mathsf {2\ Na+2\ NH_{3}\longrightarrow 2\ NaNH_{2}+\ H_{2}\uparrow }}}
При растворении в жидком аммиаке щелочной металл теряет электрон, который сольватируется молекулами аммиака и придаёт раствору голубой цвет. Образующиеся амиды легко разлагаются водой с образованием щёлочи и аммиака:
- KNh3+ h3O⟶ KOH+ Nh4↑{\displaystyle {\mathsf {KNH_{2}+\ H_{2}O\longrightarrow \ KOH+\ NH_{3}\uparrow }}}
Щелочные металлы взаимодействуют с органическими веществами спиртами (с образованием алкоголятов) и карбоновыми кислотами (с образованием солей):
- 2 Na+2 Ch4Ch3OH⟶2 Ch4Ch3ONa+ h3↑{\displaystyle {\mathsf {2\ Na+2\ CH_{3}CH_{2}OH\longrightarrow 2\ CH_{3}CH_{2}ONa+\ H_{2}\uparrow }}}
- 2 Na+2 Ch4COOH⟶2 Ch4COONa+ h3↑{\displaystyle {\mathsf {2\ Na+2\ CH_{3}COOH\longrightarrow 2\ CH_{3}COONa+\ H_{2}\uparrow }}}
Качественное определение щелочных металлов[править | править код]
Поскольку потенциалы ионизации щелочных металлов невелики, то при нагревании металла или его соединений в пламени атом ионизируется, окрашивая пламя в определённый цвет:
Окраска пламени щелочными металлами
и их соединениями
Щелочной металл | Цвет пламени |
---|---|
Li | Карминно-красный |
Na | Жёлтый |
K | Фиолетовый |
Rb | Буро-красный |
Cs | Фиолетово-красный |
Электролиз расплавов галогенидов[править | править код]
Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов, чаще всего — хлоридов, образующих природные минералы:
- 2 LiCl⟶2 Li+ Cl2↑{\displaystyle {\mathsf {2\ LiCl\longrightarrow 2\ Li+\ Cl_{2}\uparrow }}}
- катод: Li++e⟶Li{\displaystyle {\mathsf {Li^{+}}}+e\longrightarrow {\mathsf {Li}}}
- анод: 2Cl−−2e⟶Cl2↑{\displaystyle {\mathsf {2Cl^{-}}}-2e\longrightarrow {\mathsf {Cl_{2}}}\uparrow }
Электролиз расплавов гидроксидов[править | править код]
Иногда для получения щелочных металлов проводят электролиз расплавов их гидроксидов:
- 4 NaOH⟶4 Na+2 h3O+ O2↑{\displaystyle {\mathsf {4\ NaOH\longrightarrow 4\ Na+2\ H_{2}O+\ O_{2}\uparrow }}}
- катод: Na++e⟶Na{\displaystyle {\mathsf {Na^{+}}}+e\longrightarrow {\mathsf {Na}}}
- анод: 4OH−−4e⟶2h3O+O2↑{\displaystyle {\mathsf {4OH^{-}}}-4e\longrightarrow {\mathsf {2H_{2}O+O_{2}}}\uparrow }
Восстановление из галогенидов[править | править код]
Щелочной металл может быть восстановлен из соответствующего хлорида или бромида кальцием, магнием, кремнием и др. восстановителями при нагревании под вакуумом до 600—900 °C:
- 2 MCl+ Ca⟶2 M↑+ CaCl2{\displaystyle {\mathsf {2\ MCl+\ Ca\longrightarrow 2\ M\uparrow +\ CaCl_{2}}}}
Чтобы реакция пошла в нужную сторону, образующийся свободный щелочной металл (M) должен удаляться путём отгонки. Аналогично возможно восстановление цирконием из хромата. Известен способ получения натрия восстановлением из карбоната углём при 1000 °C в присутствии известняка.[источник не указан 3160 дней]
Поскольку щелочные металлы в электрохимическом ряду напряжений находятся левее водорода, то электролитическое получение их из водных растворов солей невозможно; в этом случае образуются соответствующие щёлочи и водород.
Гидроксиды[править | править код]
Для получения гидроксидов щелочных металлов в основном используют электролитические методы. Наиболее крупнотоннажным является производство гидроксида натрия электролизом концентрированного водного раствора поваренной соли:
- 2 NaCl+2 h3O⟶ h3↑+ Cl2↑+2 NaOH{\displaystyle {\mathsf {2\ NaCl+2\ H_{2}O\longrightarrow \ H_{2}\uparrow +\ Cl_{2}\uparrow +2\ NaOH}}}
- катод: 2 H++2 e⟶ h3↑{\displaystyle 2\ {\mathsf {H^{+}}}+2\ e\longrightarrow \ {\mathsf {H_{2}}}\uparrow }
- анод: 2 Cl−−2 e⟶ Cl2↑{\displaystyle 2\ {\mathsf {Cl^{-}}}-2\ e\longrightarrow \ {\mathsf {Cl_{2}}}\uparrow }
Прежде щёлочь получали реакцией обмена:
- Na2CO3+ Ca(OH)2⟶ CaCO3↓+2 NaOH{\displaystyle {\mathsf {Na_{2}CO_{3}+\ Ca(OH)_{2}\longrightarrow \ CaCO_{3}\downarrow +2\ NaOH}}}
Получаемая таким способом щёлочь была сильно загрязнена содой Na2CO3.
Гидроксиды щелочных металлов — белые гигроскопичные вещества, водные растворы которых являются сильными основаниями. Они участвуют во всех реакциях, характерных для оснований — реагируют с кислотами, кислотными и амфотерными оксидами, амфотерными гидроксидами:
- 2 LiOH+ h3SO4⟶ Li2SO4+2 h3O{\displaystyle {\mathsf {2\ LiOH+\ H_{2}SO_{4}\longrightarrow \ Li_{2}SO_{4}+2\ H_{2}O}}}
- 2 KOH
Химические свойства щелочных металлов.
Щелочными металлами (ЩМ) называют все элементы IA группы таблицы Менделеева, т.е. литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr.
У атомов ЩМ на внешнем электронном уровне находится только один электрон на s-подуровне, легко отрывающийся при протекании химических реакций. При этом из нейтрального атома ЩМ образуется положительно заряженная частица – катион с зарядом +1:
М0 – 1 e → М+1
Семейство ЩМ является наиболее активным среди прочих групп металлов в связи с чем в природе обнаружить их в свободной форме, т.е. в виде простых веществ невозможно.
Простые вещества щелочные металлы являются крайне сильными восстановителями.
Взаимодействие щелочных металлов с неметаллами
с кислородом
Щелочные металлы реагируют с кислородом уже при комнатной температуре, в связи с чем их требуется хранить под слоем какого-либо углеводородного растворителя, такого как, например, керосина.
Взаимодействие ЩМ с кислородом приводит к разным продуктам. С образованием оксида, с киcлородом реагирует только литий:
4Li + O2 = 2Li2O
Натрий в аналогичной ситуации образует с кислородом пероксид натрия Na2O2:
2Na + O2 = Na2O2,
а калий, рубидий и цезий – преимущественно надпероксиды (супероксиды), общей формулы MeO2:
K + O2 = KO2
Rb + O2 = RbO2
с галогенами
Щелочные металлы активно реагируют с галогенами, образуя галогениды щелочных металлов, имеющих ионное строение:
2Li + Br2 = 2LiBr бромид лития
2Na + I2 = 2NaI иодид натрия
2K + Cl2 = 2KCl хлорид калия
с азотом
Литий реагирует с азотом уже при обычной температуре, с остальными же ЩМ азот реагирует при нагревании. Во всех случаях образуются нитриды щелочных металлов:
6Li + N2 = 2Li3N нитрид лития
6K + N2 = 2K3N нитрид калия
с фосфором
Щелочные металлы реагируют с фосфором при нагревании, образуя фосфиды:
3Na + P = Na3Р фосфид натрия
3K + P = K3Р фосфид калия
с водородом
Нагревание щелочных металлов в атмосфере водорода приводит к образованию гидридов щелочных металлов, содержащих водород в редкой степени окисления – минус 1:
Н2 + 2K = 2KН-1гидрид калия
Н2 + 2Rb = 2RbН гидрид рубидия
с серой
Взаимодействие ЩМ с серой протекает при нагревании с образованием сульфидов:
S + 2K = K2S сульфид калия
S + 2Na = Na2S сульфид натрия
Взаимодействие щелочных металлов со сложными веществами
с водой
Все ЩМ активно реагируют с водой с образованием газообразного водорода и щелочи, из-за чего данные металлы и получили соответствующее название:
2HOH + 2Na = 2NaOH + H2↑
2K + 2HOH = 2KOH + H2↑
Литий реагирует с водой довольно спокойно, натрий и калий самовоспламеняются в процессе реакции, а рубидий, цезий и франций реагируют с водой с мощным взрывом.
с галогенпроизводными углеводородов (реакция Вюрца):
2Na + 2C2H5Cl → 2NaCl + C4H10
2Na + 2C6H5Br → 2NaBr + C6H5–C6H5
со спиртами и фенолами
ЩМ реагируют со спиртами и фенолами, замещая водород в гидроксильной группе органического вещества:
2CH3OH + 2К = 2CH3OК + H2↑
метилат калия
2C6H5OH + 2Na = 2C6H5ONa + H2
фенолят натрия
Щёлочи — Медицинская википедия
Щёлочи (позднелат. alkali, от араб. القالي (al-qaly) — «солянка»; в русском происходит от слова «щёлок», в свою очередь от нем. Schöllôge — «стиральный порошок») — гидроксиды щелочных, щёлочноземельных металлов. К щелочам относят хорошо растворимые в воде основания. При диссоциации щёлочи образуют анионы OH− и катион металла.
К щелочам относятся гидроксиды металлов подгрупп Iа и IIа (начиная с кальция) периодической системы, например NaOH (едкий натрий), KOH (едкий калий), Ba(OH)2 (едкий барий). В качестве исключения можно отнести к щелочам гидроксид одновалентного таллия TlOH, который хорошо растворим в воде и является сильным основанием. Едкие щёлочи — тривиальное название гидроксидов лития LiOH, натрия NaOH, калия КОН, рубидия RbOH, и цезия CsOH.
Физические свойства
Гидроксиды щелочных металлов (едкие щёлочи) представляют собой твёрдые, белые, очень гигроскопичные вещества. Щёлочи — сильные основания, очень хорошо растворимые в воде, причём реакция сопровождается значительным тепловыделением. Сила основания и растворимость в воде возрастает с увеличением радиуса катиона в каждой группе периодической системы. Самые сильные щёлочи — гидроксид цезия (поскольку из-за очень малого периода полураспада гидроксид франция не получен в макроскопических количествах) в группе Ia и гидроксид радия в группе IIa. Кроме того, едкие щёлочи растворимы в этаноле и метаноле.
Химические свойства
Щёлочи проявляют основные свойства. В твёрдом состоянии все щёлочи поглощают H2O из воздуха, а также CO2 (также и в состоянии раствора) из воздуха, постепенно превращаясь в карбонаты. Щёлочи широко применяются в промышленности.
Качественные реакции на щёлочи
Водные растворы щелочей изменяют окраску индикаторов
Индикатор и номер перехода | х | Интервал pH и номер перехода | Цвет щёлочной формы | |
---|---|---|---|---|
Метиловый фиолетовый | 0,13-0,5 [I] | зелёный | ||
Крезоловый красный [I] | 0,2-1,8 [I] | жёлтый | ||
Метиловый фиолетовый [II] | 1,0-1,5 [II] | синий | ||
Тимоловый синий [I] | к | 1,2-2,8 [I] | жёлтый | |
Тропеолин 00 | o | 1,3-3,2 | жёлтый | |
Метиловый фиолетовый [III] | 2,0-3,0 [III] | фиолетовый | ||
(Ди)метиловый жёлтый | o | 3,0-4,0 | жёлтый | |
Бромфеноловый синий | к | 3,0-4,6 | сине-фиолетовый | |
Конго красный | 3,0-5,2 | синий | ||
Метиловый оранжевый | o | 3,1-(4,0)4,4 | (оранжево-)жёлтый | |
Бромкрезоловый зелёный | к | 3,8-5,4 <td bgcolor=»#0000FF»> | синий | |
Бромкрезоловый синий | 3,8-5,4 | синий | ||
Лакмоид | к | 4,0-6,4 | синий | |
Метиловый красный | o | 4,2(4,4)-6,2(6,3) | жёлтый | |
Хлорфеноловый красный | к | 5,0-6,6 | красный | |
Лакмус (азолитмин) | 5,0-8,0 (4,5-8,3) | синий | ||
Бромкрезоловый пурпурный | к | 5,2-6,8(6,7) | ярко-красный | |
Бромтимоловый синий | к | 6,0-7,6 | синий | |
Нейтральный красный | o | 6,8-8,0 | янтарно-жёлтый | |
Феноловый красный | о | 6,8-(8,0)8,4 | ярко-красный | |
Крезоловый красный [II] | к | 7,0(7,2)-8,8 [II] | тёмно-красный | |
α-Нафтолфталеин | к | 7,3-8,7 | синий | |
Тимоловый синий [II] | к | 8,0-9,6 [II] | синий | |
Фенолфталеин [I] | к | 8,2-10,0 [I] | малиново-красный | |
Тимолфталеин | к | 9,3(9,4)-10,5(10,6) | синий | |
Ализариновый жёлтый ЖЖ | к | 10,1-12,0 | коричнево-жёлтый | |
Нильский голубой | 10,1-11,1 | красный | ||
Диазофиолетовый | 10,1-12,0 | фиолетовый | ||
Индигокармин | 11,6-14,0 | жёлтый | ||
Epsilon Blue | 11,6-13,0 | тёмно-фиолетовый |
Взаимодействие с кислотами
Щелочи, как основания, взаимодействуют с кислотами с образованием соли и воды (реакция нейтрализации). Это одно из самых важных химических свойств щелочей.
Щёлочь + Кислота → Соль + Вода
- <math>\mathsf{KOH + HCl \longrightarrow KCl + H_2O}</math>;
- <math>\mathsf{NaOH + HNO_3 \longrightarrow NaNO_3 + H_2O}</math>.
Взаимодействие с кислотными оксидами
Щёлочи взаимодействуют с кислотными оксидами с образованием соли и воды:
Щёлочь + Кислотный оксид → Соль + Вода
- <math>\mathsf{Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 \downarrow + H_2O}</math>;
Взаимодействие с амфотерными оксидами
- <math>\mathsf{2KOH + ZnO \xrightarrow{t^oC} K_2ZnO_2 + H_2O}</math>.
Взаимодействие с переходными металлами
Растворы щелочей взаимодействуют с металлами, которые образуют амфотерные оксиды и гидроксиды (<math>\mathsf {Zn, Al}</math> и др). Уравнения этих реакций в упрощённом виде могут быть записаны следующим образом:
- <math>\mathsf{Zn + 2NaOH \longrightarrow Na_2ZnO_2 + H_2 \uparrow}</math>;
- <math>\mathsf{2Al + 2KOH + 2H_2O \longrightarrow 2KAlO_2 + 3H_2 \uparrow}</math>.
Реально в ходе этих реакций в растворах образуются гидроксокомплексы (продукты гидратации указанных выше солей):
- <math>\mathsf{Zn + 2NaOH + 2H_2O \longrightarrow Na_2[Zn(OH)_4] + H_2 \uparrow}</math>;
- <math>\mathsf{2Al + 2KOH + 6H_2O \longrightarrow 2K[Al(OH)_4] + 3H_2 \uparrow}</math>;
Взаимодействие с растворами солей
Растворы щелочей взаимодействуют с растворами солей, если образуется нерастворимое основание или нерастворимая соль:
Раствор щёлочи + Раствор соли → Новое основание + Новая соль
- <math>\mathsf{2NaOH + CuSO_4 \longrightarrow Cu(OH)_2 \downarrow + Na_2SO_4}</math>;
- <math>\mathsf{Ba(OH)_2 + Na_2SO_4 \longrightarrow 2NaOH + BaSO_4 \downarrow}</math>;
Получение
Растворимые основания получают различными способами
Гидролиз щелочных\щелочноземельных металлов
Получают путём электролиза хлоридов щелочных металлов или действием воды на оксиды щелочных металлов.
Литература
- Колотов С. С.,. Щелочи // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
Щелочи в свете представлений об электролитической диссоциации. Химические свойства щелочей
Билет № 13
1. Щелочи в свете представлений об электролитической диссоциации. Химические свойства щелочей: взаимодействие с кислотами, кислотными оксидами, солями (на примере гидроксида натрия или гидроксида кальция)
Щёлочи — это растворимые основания.
С точки зрения теории электролитической диссоциации основаниями являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов, т. е. основные гидроксиды:
NaOH → Na+ + OH−
Более строгая формулировка: отщепляющие в качестве анионов (отрицательных ионов) только гидроксид-ионы.
Растворы щелочей окрашивают индикатор фенолфталеин (сокращенно ф-ф) в малиновый цвет.
Лакмус окрашивают в синий, метилоранж — в желтый, но это в школьной лаборатории видно плохо, не дает возможности отличить от нейтрального раствора.
Щёлочи реагируют с кислотами с образованием соли и воды (реакция нейтрализации):
NaOH + HCl = NaCl + H2O
Щёлочи реагируют с кислотными оксидами с образованием соли и воды:
2NaOH + CO2 = Na2CO3 + H2O
Ca(OH)2 + CO2 = CaCO3↓ + H2O (известковое тесто при неправильном хранении поглощает углекислый газ, образуется карбонат кальция)
Щелочи реагируют с растворами солей, если в результате реакции образуется осадок:
CuSO4 + 2NaOH = Na2SO4 + Cu(OH)2↓
Например, при сливании с растворимыми солями меди (II) выпадает синий осадок гидроксида меди (II).
При нагревании солей аммония со щелочами выделяется газообразный аммиак:
Ca(OH)2 + 2NH4Cl = CaCl2 + 2NH3↑ + 2H2O
2. Задача. Вычисление массы исходного вещества, если известно количество вещества одного из продуктов реакции.
Пример:
Сколько граммов соляной кислоты необходимо для получения 4 моль хлорида цинка?
Решение:
- Записываем уравнение реакции: Zn + 2HCl = ZnCl2 + H2↑
- Записываем над уравнением реакции имеющиеся данные, а под уравнением — число моль согласно уравнению (равно коэффициенту перед веществом):
x моль 4 моль
Zn + 2HCl = ZnCl2 + H2↑
2 моль 1 моль - Составляем пропорцию:
x моль — 4 моль
2 моль — 1 моль - Находим x:
x = 4 моль • 2 моль / 1 моль = 8 моль - Находим молярную массу соляной кислоты: M (HCl) = 1 + 35,5 = 36,5 (г/моль)
(молярную массу каждого элемента, численно равную относительной атомной массе, смотрим в периодической таблице под знаком элемента и округляем до целых, кроме хлора, который берется 35,5) - Находим требуемую массу соляной кислоты: m (HCl) = M • n = 36,5 г/моль • 8 моль = 292 г
Ответ: 292 г.
автор: Владимир Соколов
Свойства Щелочных мателлов | Дистанционные уроки
28-Авг-2012 | комментариев 5 | Лолита Окольнова
— Почему эти металлы называются «щелочными»?
— При растворении в воде они образуют щелочи.
— А что такое щелочи?
Пока вы не находитесь в лаборатории и не контактируете напрямую с разными веществами, то такие понятия очень абстрактны… Я сама осознала понятие «щелочь», когда на 1 курсе в лаборатории вытерла «мыльные» руки о синтетический халат и через 2 минуты обнаружила на этих местах дырки! 🙂
Щелочи – мылкие на ощупь, довольно едкие вещества. Они очень гигроскопичны (тянут на себя влагу). По воздействию на кожу они похожи на кислоты – так же разъедают и щипят (если концентрированные).
Но вернемся к металлам.
Для начала рассмотрим
строение электронных оболочек
Электронное строение внешнего слоя у всех этих элементов одинаково – на нем всего 1 неспаренный электрон на s-подуровне:
n S1
Что это означает?
- Валентности элементов = 1, т.е. каждый атом может образовывать 1 связь.
- Степень окисления элементов =+1 – металлические свойства – это способность отдавать электроны
- Сверху вниз в подгруппе радиус атома увеличивается, следовательно, этот 1 электрон все слабее притягивается к ядру атома, следовательно, сверху вниз металлические свойства увеличиваются – Fr более сильный металл, чем Li.
- Как следствие этого сверху вниз в подгруппе усиливаются восстановительные свойства.
Физические свойства щелочных металлов
Общие характеристики:
- все серебристо-белого цвета (Сs – желтоватый),
- мягкие как пластелин,
- плотность Li, Na и K меньше 1 – они плавают по поверхности воды,
- т.к. все металлы очень активно реагируют с водой (гигроскопичны) – реагируют с большим выделением тепла – по сути, горят на воздухе, искрят, то их хранят под слоем вазелина.
- Все элементы окрашивают пламя в разный цвет:
Li — в-красный
Na – в жёлтый
K – в фиолетовый
Rb – в красно-коричневый
Cs – в красно-фиолетовый
- Электро- и теплопроводны
Химические свойства щелочных металлов
Имеет смысл рассмотреть химические свойства по таблице классификации неорганических соединений.
1. Идем по синим стрелочкам
С кислородом образует оксиды, пероксиды и надпероксиды разных цветов:
В реакциях с кислотами- окислителями водород не выделяется:
8Na + 5H2SO4 = 4Na2SO4 + H2S + 4H2O
Обратите внимание на последнюю реакцию — взаимодействие металла с солью:
K + NaCl = Na + KCL
Не всякий металл может вступить в такую реакцию!
В таблице растворимости (она есть на развороте в любом учебнике по химии) внизу есть такая строчка:
Это электрохимический ряд активности металлов. Сейчас мы не будем подробно разбирать суть этого ряда, а просто примем за правило:
в этом ряду каждый предыдущий элемент может вытеснять последующий из его солей
2. Идем по зеленым стрелочкам — реакции для оксидов
3. Идем по оранжевым стрелочкам
Обратите внимание на первые две реакции — они выделены в рамке. В первой реакции используется горячая щелочь — окисление идет до степени окисления хлора +5. При использовании холодной щелочи хлор окисляется только до +1.
Реакция щелочи с кислотой называется реакцией нейтрализации. Два сильных едких вещества нейтрализуют друг друга, образуя воду.
3. Отдельно надо выделить реакцию щелочных металлов с водородом.
Как мы уже говорили, сверху вниз в подгруппе металлические свойства элементов возрастают. Водород, хоть и находится в первой группе при реакции с щелочными металлами будет проявлять отрицательную степень окисления. Получаются при этом гидриды:
Все соединения щелочных металлов хорошо растворимы в воде.
Это значит, что единственный способ их качественного определения — это цвет пламени и цвет оксидов. Никаких осадков их соединения не образуют.
style=»text-align: center;»>Получение металлов
Обычно щелочные металлы получают электролизом расплавов их солей или щелочей:
NaCl (электролиз) → Na + Cl2
Категории: |
Обсуждение: «Свойства щелочных металлов»
(Правила комментирования)Щёлочноземельные металлы — Википедия
Группа → | 2 | |
---|---|---|
↓ Период | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 |
Щёлочноземе́льные мета́ллы — химические элементы 2-й группы[1]периодической таблицы элементов: бериллий (Be), магний (Mg), кальций (Ca), стронций (Sr), барий (Ba), радий (Ra)[2][3], унбинилий (Ubn).
Раньше Be и Mg не относили к щёлочноземельным металлам, потому что их гидроксиды не являются щелочами. Be(OH)2 — амфотерный гидроксид. Mg(OH)2 — малорастворимое основание, которое дает слабощелочную реакцию и окрашивает индикатор.
Be не реагирует с водой, Mg — очень медленно (при обычных условиях) в отличие от всех остальных щёлочноземельных металлов.
Однако сегодня, согласно определению ИЮПАК, бериллий и магний относят к щёлочноземельным металлам.
К щёлочноземельным металлам часто относят только кальций, стронций, барий и радий, реже магний и бериллий. Однако согласно номенклатуре ИЮПАК щёлочноземельными металлами следует считать все элементы 2-й группы[2]. Первый элемент этой группы, бериллий, по большинству свойств гораздо ближе к алюминию, чем к высшим аналогами группы, в которую он входит (диагональное сходство). Второй элемент этой группы, магний, уже обладает некоторыми химическими свойствами, общими для щелочноземельных металлов, но в остальном заметно отличается от них, в частности, значительно меньшей активностью, и рядом свойств напоминает всё тот же алюминий.
Все щёлочноземельные металлы серые, твёрдые при комнатной температуре вещества. В отличие от щелочных металлов, они существенно более твёрдые, и ножом преимущественно не режутся (исключение — стронций). Рост плотности щёлочноземельных металлов наблюдается только начиная с кальция. Самый тяжёлый — радий, по плотности сравнимый с германием (ρ= 5,5 г/см3).
Атомный номер | Название, символ | Число изотопов (природных + искусственных) | Атомная масса | Энергия ионизации, кДж·моль−1 | Сродство к электрону, кДж·моль−1 | ЭО | Металл. радиус, нм (По Полингу) | Ионный радиус, нм (По Полингу) | tпл, °C | tкип, °C | ρ, г/см³ | ΔHпл, кДж·моль−1 | ΔHкип, кДж·моль−1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | Бериллий Be | 1+11а | 9,012182 | 898,8 | 0,19 | 1,57 | 0,169 | 0,031 | 1278 | 2970 | 1,848 | 12,21 | 309 |
12 | Магний Mg | 3+19а | 24,305 | 737,3 | 0,32 | 1,31 | 0,24513 | 0,065 | 650 | 1105 | 1,737 | 9,2 | 131,8 |
20 | Кальций Ca | 5+19а | 40,078 | 589,4 | 0,40 | 1,00 | 0,279 | 0,099 | 839 | 1484 | 1,55 | 9,20 | 153,6 |
38 | Стронций Sr | 4+35а | 87,62 | 549,0 | 1,51 | 0,95 | 0,304 | 0,113 | 769 | 1384 | 2,54 | 9,2 | 144 |
56 | Барий Ba | 7+43а | 137,327 | 502,5 | 13,95 | 0,89 | 0,251 | 0,135 | 729 | 1637 | 3,5 | 7,66 | 142 |
88 | Радий Ra | 46а | 226,0254 | 509,3 | — | 0,9 | 0,2574 | 0,143 | 700 | 1737 | 5,5 | 8,5 | 113 |
120 | Унбинилий Ubn |
а Радиоактивные изотопы
Щёлочноземельные металлы имеют электронную конфигурацию внешнего энергетического уровня ns², и являются s-элементами, наряду с щелочными металлами, водородом и гелием. Имея два валентных электрона, щёлочноземельные металлы легко их отдают, и в большинстве соединений имеют степень окисления +2 (очень редко +1).
Химическая активность щёлочноземельных металлов растёт с ростом порядкового номера. Бериллий в компактном виде не реагирует ни с кислородом, ни с галогенами даже при температуре красного каления (до 600 °C, для реакции с кислородом и другими халькогенами нужна ещё более высокая температура, фтор — исключение). Магний защищён оксидной плёнкой при комнатной температуре и более высоких (до 650 °C) температурах и не окисляется дальше. Кальций медленно окисляется и при комнатной температуре вглубь (в присутствии водяных паров), и сгорает при небольшом нагревании в кислороде, но устойчив в сухом воздухе при комнатной температуре. Стронций, барий и радий быстро окисляются на воздухе, давая смесь оксидов и нитридов, поэтому их, подобно щелочным металлам и кальцию, хранят под слоем керосина.
Озониды и надпероксиды щёлочноземельных металлов детально не изучены, они являются неустойчивыми соединениями. Они не находят широкого применения.
Оксиды и гидроксиды щёлочноземельных металлов имеют тенденцию к усилению основных свойств с ростом порядкового номера.
Простые вещества[править | править код]
Бериллий реагирует со слабыми и сильными растворами кислот с образованием солей:
- Be+2H+⟶Be2++h3↑{\displaystyle {\mathsf {Be+2H^{+}\longrightarrow Be^{2+}+H_{2}\uparrow }}}
однако пассивируется холодной концентрированной азотной кислотой.
Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:
- Be+2OH−+2h3O→[Be(OH)4]2−+h3↑{\displaystyle {\mathsf {Be+2OH^{-}+2H_{2}O\rightarrow [Be(OH)_{4}]^{2-}+H_{2}\uparrow }}}
При проведении реакции с расплавом щелочи при 400—500 °C образуются диоксобериллаты:
- Be+2OH−→BeO22−+h3↑{\displaystyle {\mathsf {Be+2OH^{-}\rightarrow BeO_{2}^{2-}+H_{2}\uparrow }}}
Магний, кальций, стронций, барий и радий реагируют с водой с образованием щелочей (магний с холодной водой реагирует очень медленно, но при внесении раскалённого порошка магния в воду, а также в горячей воде — бурно):
- Sr+2h3O⟶Sr(OH)2+h3↑{\displaystyle {\mathsf {Sr+2H_{2}O\longrightarrow Sr(OH)_{2}+H_{2}\uparrow }}}
Также кальций, стронций, барий и радий реагируют с водородом, азотом, бором, углеродом и другими неметаллами с образованием соответствующих бинарных соединений:
- Ca+h3⟶Cah3{\displaystyle {\mathsf {Ca+H_{2}\longrightarrow CaH_{2}}}}
- 3Sr+N2⟶Sr3N2{\displaystyle {\mathsf {3Sr+N_{2}\longrightarrow Sr_{3}N_{2}}}}
Оксиды[править | править код]
Оксид бериллия — амфотерный оксид, растворяется в концентрированных минеральных кислотах и щелочах с образованием солей:
- BeO+2NaOH+h3O⟶Na2[Be(OH)4]{\displaystyle {\mathsf {BeO+2NaOH+H_{2}O\longrightarrow Na_{2}[Be(OH)_{4}]}}}
- BeO+2HCl⟶BeCl2+h3O{\displaystyle {\mathsf {BeO+2HCl\longrightarrow BeCl_{2}+H_{2}O}}}
но с менее сильными кислотами и основаниями реакция уже не идет.
Оксид магния не реагирует с разбавленными и концентрированными основаниями, но легко реагирует с кислотами и водой:
- MgO+2HCl⟶MgCl2+h3O{\displaystyle {\mathsf {MgO+2HCl\longrightarrow MgCl_{2}+H_{2}O}}}
- MgO+h3O⟶Mg(OH)2{\displaystyle {\mathsf {MgO+H_{2}O\longrightarrow Mg(OH)_{2}}}}
Оксиды кальция, стронция, бария и радия — основные оксиды, реагируют с водой, сильными и слабыми растворами кислот и амфотерными оксидами и гидроксидами:
- CaO+h3O⟶Ca(OH)2{\displaystyle {\mathsf {CaO+H_{2}O\longrightarrow Ca(OH)_{2}}}}
- SrO+2HCl⟶SrCl2+h3O{\displaystyle {\mathsf {SrO+2HCl\longrightarrow SrCl_{2}+H_{2}O}}}
- BaO+Al2O3 →to Ba(AlO2)2{\displaystyle {\mathsf {BaO+Al_{2}O_{3}\ {\xrightarrow {t^{o}}}\ Ba(AlO_{2})_{2}}}}
- BaO+2Al(OH)3 →to Ba(AlO2)2+3h3O{\displaystyle {\mathsf {BaO+2Al(OH)_{3}\ {\xrightarrow {t^{o}}}\ Ba(AlO_{2})_{2}+3H_{2}O}}}
Гидроксиды[править | править код]
Гидроксид бериллия амфотерен, при реакциях с сильными основаниями образует бериллаты, с кислотами — бериллиевые соли кислот:
- Be(OH)2+2KOH⟶K2BeO2+2h3O{\displaystyle {\mathsf {Be(OH)_{2}+2KOH\longrightarrow K_{2}BeO_{2}+2H_{2}O}}}
- Be(OH)2+2HCl⟶BeCl2+2h3O{\displaystyle {\mathsf {Be(OH)_{2}+2HCl\longrightarrow BeCl_{2}+2H_{2}O}}}
Гидроксиды магния, кальция, стронция, бария и радия — основания, сила увеличивается от слабого Mg(OH)2 до очень сильного Ra(OH)2, являющегося сильнейшим коррозионным веществом, по активности превышающим гидроксид калия. Хорошо растворяются в воде (кроме гидроксидов магния и кальция). Для них характерны реакции с кислотами и кислотными оксидами и с амфотерными оксидами и гидроксидами:
- Ba(OH)2+SO3⟶BaSO4+h3O{\displaystyle {\mathsf {Ba(OH)_{2}+SO_{3}\longrightarrow BaSO_{4}+H_{2}O}}}
- 3Sr(OH)2+2h4PO4⟶Sr3(PO4)2+6h3O{\displaystyle {\mathsf {3Sr(OH)_{2}+2H_{3}PO_{4}\longrightarrow Sr_{3}(PO_{4})_{2}+6H_{2}O}}}
- Ra(OH)2+Al2O3⟶Ra(AlO2)2+h3O{\displaystyle {\mathsf {Ra(OH)_{2}+Al_{2}O_{3}\longrightarrow Ra(AlO_{2})_{2}+H_{2}O}}}
- Ba(OH)2+Zn(OH)2⟶Ba[Zn(OH)4]{\displaystyle {\mathsf {Ba(OH)_{2}+Zn(OH)_{2}\longrightarrow Ba[Zn(OH)_{4}]}}}
Все щёлочноземельные металлы имеются (в разных количествах) на Земле. Ввиду своей высокой химической активности все они в свободном состоянии не встречаются. Самым распространённым щёлочноземельным металлом является кальций, содержание которого равно относительно массы земной коры оценивается по-разному: от 2 % до 13,3 %[4]. Немногим ему уступает магний, содержание которого равно 2,35 %. Распространены в природе также барий и стронций, содержание которых соответственно равно 0,039 % и 0,0384 % от массы земной коры. Бериллий является редким элементом, количество которого составляет 2⋅10−4% от массы земной коры. Радиоактивный радий — это самый редкий из всех щёлочноземельных металлов, но он в небольшом количестве всегда содержится в урановых рудах. В частности, он может быть выделен оттуда химическим путём. Его содержание равно 1⋅10−10% (от массы земной коры)[5][неавторитетный источник?][6].
Магний содержится в тканях животных и растений (например, в хлорофилле), является кофактором многих ферментативных реакций, необходим при синтезе АТФ, участвует в передаче нервных импульсов, активно применяется в медицине (бишофитотерапия и др.). Кальций — распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть находится в скелете и зубах. В костях кальций содержится в виде гидроксиапатита. Из различных форм карбоната кальция состоят минеральные «скелеты» некоторых представителей многих групп беспозвоночных (губки, кишечнополостные, моллюски и др.). Ионы кальция участвуют в процессах свертывания крови, а также служат одним из универсальных вторичных посредников внутри клеток и регулируют самые разные внутриклеточные процессы: мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов. Стронций может замещать кальций в природных тканях[прояснить], так как схож с ним по свойствам. В организме человека масса стронция составляет около 1 % от массы кальция.
На данный момент о биологической роли бериллия, бария и радия ничего не известно. Все соединения бария (кроме сульфата ввиду его чрезвычайно малой растворимости) и бериллия ядовиты. Радий чрезвычайно радиотоксичен. В организме он ведёт себя подобно кальцию — около 80 % поступившего в организм радия накапливается в костной ткани. Большие концентрации радия вызывают остеопороз, самопроизвольные переломы костей и злокачественные опухоли костей и кроветворной ткани. Опасность представляет также радон — газообразный радиоактивный продукт распада радия.