Сила вес тела – Презентация к уроку по физике (7 класс): Ф-7 «Вес тела. Единицы силы. Связь между силой тяжести и массой тела»

12. Гравитационные силы. Сила тяжести. Вес тела.

Силы тяготения (гравитационные силы): всякое тело, имеющее массу, является источником гравитационного поля – поля тяготения. Через гравитационное поле осуществляет гравитационное взаимодействие. Гравитационные силы (силы тяготения) могут быть только силами притяжения.

Закон всемирного тяготения: тела притягиваются друг к другу с силой, модуль которой прямо пропорционален произведению их масс, обратно пропорционален квадрату расстояния между ними и направлен вдоль линии, соединяющей центры этих тел.

(И.Ньютон, 1687 г.) гдеи

— массы взаимодействующих тел,R-расстояние между ними, G— гравитационная постоянная. В системе СИ она равна

Сила тяжести: Сила притяжения тел к Земле; сила тяжести – это сила тяготения; гравитационная сила приложенная к телу.

Ускорение свободного падения – ускорение сообщаемое телу силой тяжести.1)g не зависит от массы тела 2) g зависит от массы Земли МЗ 3)g зависит от радиуса Земли

Вес тела: Сила, с которой тело, вследствие его притяжения к Земле, действует на опору или растягивает подвес.

Невесомость Р=0 исчезновение веса тела, вызванное ускоренным движением опоры вниз с ускорением свободного падения .

Вес равен силе тяжести P=mg, если опора (или подвес) неподвижны или движутся равномерно и прямолинейно относительно Земли.

13. Силы трения и упругие силы.

Если различные тела соприкасаются между собой, между ними существует взаимодействие, препятствующее их перемещению друг относительно друга. Такое взаимодействие называется трением. Возникающая при этом сила трения Направлена вдоль поверхности соприкосновения тел. гдеN – сила реакции опоры, — коэффициент трения.

Силы упругости возникают в телах при их деформации. Силы упругости имеют электромагнитную природу и, по сути, являются результирующими огромного количества сил, возникающих между соседними атомами тела при отклонении межатомных расстояний от своих равновесных значений.

Сила упругости, возникающая в теле при его упругой деформации, пропорциональна вектору деформации и противоположна ему по направлению: гдеk – коэффициент упругости, или жесткость тела. Этот коэффициент зависит от свойств материала, формы и размеров деформируемого тела и характеризует его упругие свойства. Единица жесткости в СИ:

14. Центр масс системы материальных точек.

Центр масс двух материальных точек А и В массами m

1 и m2, называется точка С, лежащая на отрезке, соединяющем А и В, на расстоянии l1 и l2 , обратно пропорциональных массам точек.

Умножим наm1, а второе уравнение на m2 и складываем:

, где R радиус-вектор центра массы 2-х тел., гдеМ – полная масса системы.

15. Закон сохранения импульса.

Система тел, на которые не действуют внешние силы или сумма всех внешних сил равна нулю, называется замкнутой.

Тогда из векторная сумма внешних сил, действующих на рассматриваемую систему тел, следуетзакон сохранения импульса: в замкнутой системе тел импульс системы сохраняется. Этот вывод является следствием второго и третьего законов Ньютона. Действительно, если , тоПоскольку импульс — величина векторная, то равенствоэквивалентно постоянству проекций импульса на координатные оси:

К незамкнутым системам тел закон сохранения импульса не применим; однако постоянными остаются проекции импульса на координатные оси, в направлении которых сумма проекций приложенных внешних сил равна нулю. В неинерциальных системах отсчета при отсутствии взаимодействия тел скорость движения тел изменяется со временем. Поэтому импульс любого тела при отсутствии взаимодействия с другими телами не остается постоянным, если выбрана неинерциальная система отсчета. Следовательно, необходимым условием применимости закона сохранения импульса к замкнутой системе взаимодействующих тел является выбор инерциальной системы отсчета. В неинерциальных системах отсчета закон сохранения импульса несправедлив.

ФИЗИКА: Задачи на силу тяжести и вес тела

Задачи на силу тяжести
и вес тела с решениями

Формулы, используемые на уроке «Задачи на силу тяжести и вес тела»

Название величины

Обозначение

Единицы измерения

Формула

Масса

m

кг

m = F / g

Вес тела

P

H

 P = m *g

Сила тяжести

Fтяж

H

 Fтяж = mg

Постоянная (сила тяжести, действующая на тело массой 1 кг)

g = 10 H/кг

H/кг

 

 




ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.  Определите силу тяжести, действующую: а) на человека массой m = 100 кг; б) на автомобиль массой М = 1,5 т; в) на монет массой m = 5 г.

задача 7


Задача № 2.  Какова масса свинцового шара, если он весит 600 Н?

задача 8


Задача № 3.  Масса футбольного мяча 400 г. Вычислите вес мяча и силу тяжести, действующую на него.

задача 9


Задача № 4.

Чему равна сила тяжести тела, масса которого 4 кг?

задача 9


Задача № 5. Какой вес имеет вода объемом 3 дм3?

задача 9


Задача № 6.   Подвешенная к потолку люстра действует на потолок с силой 49 Н. Какова масса люстры?

задача 9


Задача № 7.   Изобразите графически силу тяжести и вес гири массой 1 кг.

задача 9


Задача № 8.  Изобразите графически силы, действующие на шар, висящий на нити.

Решение. На шар, висящий на нити, действуют несколько сил: сила тяжести, приложенная к шару, сила упругости нити, приложенная к нити, и вес тела, приложенный к подвесу. Шар неподвижен, поэтому численно эти силы равны, следовательно, длина стрелок, изображающих силы, будет одинакова.

задача 9


Задача № 9 (повышенной сложности).  Как изменяются сила тяжести, действующая на космонавта, и его вес, когда он перемещается с Земли на орбитальную станцию?

ОТВЕТ: сила тяжести — незначительно, а вес будет равен нулю.

РЕШЕНИЕ: Сила тяжести уменьшается незначительно (менее чем на 10% при высоте орбиты 300 км), так как она зависит только от массы тела и расстояния до центра Земли, которое при перемещении на орбитальную станцию изменяется всего на несколько процентов. Если бы не сила притяжения к Земле, орбитальная станция покинула бы околоземную орбиту и улетела далеко в космическое пространство. А вот

вес космонавта в орбитальной станции равен нулю, поскольку космонавт вместе со станцией находится в состоянии свободного падения на Землю.



Краткая теория к задачам на силу тяжести и вес тела

сила тяжести и вес тела


Конспект урока «Задачи на силу тяжести и вес тела с решениями».

Следующая тема: «Задачи на давление твердых тел».

 

Вес тела

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Данная презентация предназначена в помощь учащимся 9-10 классов при подготовке темы «Вес тела».

Цели презентации:

  1. Повторить и углубить понятия: «сила тяжести»; «вес тела»; «невесомость».
  2. Акцентировать внимание учащихся на то, что сила тяжести и вес тела – разные силы.
  3. Научить учащихся определять вес тела, движущегося по вертикали.

В повседневной жизни массу тела определяют взвешиванием. Из курса физики 7 класса известно, что сила тяжести прямо пропорциональна массе тела. Поэтому вес тела часто отождествляют с его массой или силой тяжести. С точки зрения физики – это грубейшая ошибка. Вес тела – это сила, но сила тяжести и вес тела – разные силы.

Сила тяжести – частный случай проявления сил всемирного тяготения. Поэтому уместно вспомнить закон всемирного тяготения, а также то, что силы гравитационного притяжения проявляются тогда, когда тела или одно из тел имеют огромные массы (слайд 2).

При применении закона всемирного тяготения для земных условий (слайд 3) планету можно рассматривать как однородный шар, а небольшие тела вблизи ее поверхности как точечные массы. Радиус земли равен 6400 км. Масса Земли равна 6∙1024 кг.

= ,
где g – ускорение свободного падения.

Вблизи поверхности Земли g = 9,8 м/c2 ≈ 10 м/c2. [1]

Вес тела – сила, с которой это тело действует на горизонтальную опору или растягивает подвес.

 
Рис.1

На рис. 1 показано тело на опоре. Сила реакции опоры N ( Fупр) приложена не к опоре, а к находящемуся на ней телу. Модуль силы реакции опоры равен модулю веса по третьему закону Ньютона. Вес тела – частный случай проявления силы упругости. Важнейшей особенностью веса является то, что его значение зависит от ускорения, с которым движется опора или подвес. Вес равен силе тяжести только для покоящегося тела (или тела, движущегося с постоянной скоростью). Если же тело движется с ускорением, то вес может быть и больше, и меньше силы тяжести, и даже равным нулю. [2]

В презентации на примере решения задачи 1 рассматриваются различные случаи определения веса груза массой 500 г, подвешенного к пружине динамометра, в зависимости от характера движения:

а) груз поднимают вверх с ускорением 2 м/c2;
б) груз опускают вниз с ускорением 2 м/c2;
в) груз равномерно поднимают вверх;
г) груз свободно падает. [3]

Задания на расчет веса тела входят в раздел «Динамика». Решение задач на динамику основывается на использовании законов Ньютона с последующим проецированием на выбранные оси координат. Этим определяется последовательность действий.

  1. Выполняют чертеж, на котором изображают силы, действующие на тело (тела), и направление ускорения. Если направление ускорения неизвестно, его выбирают произвольно, а решение задачи дает ответ о правильности выбора.
  2. Записывают второй закон Ньютона в векторном виде.
  3. Выбирают оси. Обычно одну из осей удобно направить вдоль направления ускорения тела, вторую – перпендикулярно ускорению. Выбор осей определяется соображениями удобства: так, чтобы выражения для проекций законов Ньютона имели бы наиболее простой вид.
  4. Полученные в проекциях на оси векторные уравнения дополняют соотношениями, вытекающими из текста условий задачи. Например, уравнениями кинематической связи, определениями физических величин, третьим законом Ньютона.
  5. Используя полученную систему уравнений, пытаются дать ответ на вопрос задачи.[1]

Настройка анимации в презентации позволяет сделать акцент на последовательность действий при решении задач. Это важно, так как навыки, приобретенные при решении задач на расчет веса тела, пригодятся учащимся при изучении других тем и разделов физики.

Решение задачи 1.

1а. Тело движется с ускорением 2 м/c2 вверх (слайд 7).

 
Рис.2

  1. Обозначим силы, действующие на груз: силу тяжести и силу упругости .
  2. Обозначим направление вектора ускорения .
  3. Запишем второй закон Ньютона:
    (1) + = .
  4. Направим ось ОY по направлению ускорения.
  5. Спроецируем уравнение (1) на ось OY:
    (2) Fупр – mg = ma.
    Из уравнения (2) Fупр = mg + ma.
  6. По третьему закону Ньютона Fупр = P.
    Следовательно, P = mg + ma = m(g + a) = 0,5 кг∙(10 м/c2 + 2 м/c2) = 6 Н.
    P > mg.

1б. Тело движется с ускорением вниз (слайд 8). Ось OY направляем вниз, тогда проекции сил тяжести и упругости в уравнении (2) меняют знаки, и оно имеет вид:

(2) mg – Fупр = ma.

Следовательно, Р = m(g-a) = 0,5 кг∙(10 м/c2 — 2 м/c2) = 4 Н.

Р < mg.

1в. При равномерном движении (слайд 9) уравнение (2) имеет вид:

(2) mg – Fупр = 0, т. к. ускорение отсутствует.

Следовательно, Р = mg = 5 Н.

1г. При свободном падении = (слайд 10). Воспользуемся результатом решения задачи 1б:

P = m(g – a) = 0,5 кг(10 м/c2 – 10 м/c2) = 0 H.

Состояние, при котором вес тела равен нулю, называют состоянием невесомости.

На тело действует только сила тяжести.

Говоря о невесомости, следует отметить, что длительное состояние невесомости испытывают космонавты во время полета при выключенных двигателях космического

корабля, а чтобы испытать кратковременное состояние невесомости, достаточно просто подпрыгнуть. Бегущий человек в момент, когда его ноги не касаются земли, тоже находится в состоянии невесомости.[2]

Презентация может быть использована на уроке при объяснении темы «Вес тела». В зависимости от уровня подготовки класса учащимся могут быть предложены не все слайды с решениями задачи 1. Например, в классах с повышенной мотивацией к изучению физики достаточно объяснить, как рассчитать вес тела, движущегося с ускорением вверх (задача 1а), а остальные задачи (б, в, г) предоставить для самостоятельного решения с последующей проверкой. Выводы, полученные в результате решения задачи1, ученики должны попытаться сделать самостоятельно.

Выводы (слайд 11).

  1. Вес тела и сила тяжести – разные силы. У них разная природа. Эти силы приложены к разным телам: сила тяжести — к телу; вес тела — к опоре (подвесу).
  2. Вес тела совпадает с силой тяжести только тогда, когда тело неподвижно или движется равномерно и прямолинейно, и другие силы, кроме силы тяжести и реакции опоры (натяжение подвеса), на него не действуют.
  3. Вес тела больше силы тяжести (Р > mg), если ускорение тела направлено в сторону, противоположную направлению силы тяжести.
  4. Вес тела меньше силы тяжести (Р < mg), если ускорение тела совпадает по направлению с силой тяжести.
  5. Состояние, при котором вес тела равен нулю, называют состоянием невесомости. Тело находится в состоянии невесомости, когда оно движется с ускорением свободного падения, то есть когда на него действует только сила тяжести.

Задачи 2 и 3 (слайд 12) могут быть предложены учащимся в качестве домашнего задания.

Презентация «Вес тела» может быть использована для дистанционного обучения. В этом случае рекомендуется:

  1. при просмотре презентации решение задачи 1 записать в тетрадь;
  2. самостоятельно решить задачи 2, 3, применяя предложенную в презентации последовательность действий.

Презентация по теме «Вес тела» позволяет показать теорию решения задач на динамику в интересной, доступной трактовке. Презентация активирует познавательную деятельность учащихся и позволяет формировать правильный подход к решению физических задач.

Литература:

  1. Гринченко Б.И. Физика 10-11. Теория решения задач. Для старшеклассников и поступающих в вузы. – Великие Луки: Великолукская городская типография, 2005.
  2. Генденштейн Л.Э. Физика. 10 класс. В 2 ч. Ч 1./Л.Э. Генденштейн, Ю.И. Дик. – М.: Мнемозина, 2009.
  3. Генденштейн Л.Э. Физика. 10 класс. В 2 ч. Ч 2. Задачник./Л.Э. Генденштейн, Л.А. Кирик, И.М. Гельгафгат, И.Ю. Ненашев.- М.: Мнемозина, 2009.

Интернет-ресурсы:

  1. images.yandex.ru
  2. videocat.chat.ru

Сила тяжести и вес тела

       Одна из фундаментальных сил, сила гравитации, проявляется на Земле в виде силы тяжестисилы, с которой все тела притягиваются к Земле.
       Вблизи поверхности Земли все тела падают с одинаковым ускорением – ускорением свободного падения  g.
       Отсюда вытекает, что в системе отсчета, связанной с Землей, на всякое тело действует сила тяжести mg. Она приблизительно равна силе гравитационного притяжения к Земле (различие между силой тяжести и гравитационной силой обусловлено тем, что система отсчета, связанная с Землей, не вполне инерциальная).

       Если подвесить тело (рис. 4.1) или положить его на опору, то сила тяжести уравновесится силой , которую называют реакцией опоры или подвеса.


Рис. 4.1

       По третьему закону Ньютона тело действует на подвес или опору с силой  , которая называется весом тела. Итак, вес тела – это сила, с которой тело в состоянии покоя действует на подвес или опору, вследствие гравитационного притяжения к Земле. Поскольку силы    и    уравновешивают друг друга, то выполняется соотношение

.

       Согласно третьему закону Ньютона
 
(4.2.1)  
то есть вес и сила тяжести равны друг другу, но приложены к разным точкам: вес к подвесу или опоре, сила тяжести – к самому телу. Это равенство справедливо, если подвес (опора) и тело покоятся относительно Земли (или двигаются равномерно, прямолинейно). Если имеет место движение с ускорением, то справедливо соотношение
  (4.2.2)  
       Вес тела может быть больше или меньше силы тяжести: если  g  и  a  направлены в одну сторону (тело движется вниз или падает), то  G < mg, и если наоборот, то  G < mg. Если же тело движется с ускорением  a = g, то  G = 0 – т.е. наступает состояние невесомости.

Сила тяжести и вес тела

В § 2-а мы начали знакомство с явлением гравитации вообще и земным тяготением в частности. Теперь настало время более подробного изучения силы тяжести на Земле и других планетах.

На рисунке изображён опыт с двумя гирями и динамометрами. Вы видите, что при массе гири 200 г (то есть 0,2 кг) на неё действует сила тяжести 2 Н, а при массе 500 г (то есть 0,5 кг) – сила тяжести 5 Н. Обратим внимание на закономерность:

= 10 Н/кг    и= 10 Н/кг

Проделав опыты с многими телами, мы обнаружим ту же самую закономерность: отношение силы тяжести, действующей на тело, к массе этого тела является постоянной величиной, не зависящей ни от силы тяжести, ни от массы тела. Эту величину называют коэффициентом силы тяжести:

Формулу для вычисления коэффициента «g» можно преобразовать, поместив слева силу тяжести:

Fтяж – сила тяжести, Н
m – масса тела, кг
g – коэффициент, Н/кг

В опыте с двумя гирями мы выяснили, что вблизи поверхности Земли коэффициент «g» имеет значение 10 Н/кг (более точные значения 9,78 Н/кг и 9,83 Н/кг – см. далее в таблице).

Опыты показывают, что по мере удаления от Земли сила тяжести ослабевает. Например, на высоте 300 км значение коэффициента «g» уменьшается приблизительно до 9 Н/кг.

Повторяя опыт с гирями и динамометрами в различных местах Земли, а также на поверхности Луны, Марса и так далее, можно выяснить, что коэффициент «g» зависит от места наблюдения:

Коэффициенты силы тяжести, Н/кг

Луна1,7Земля:» 10
Марс3,8а) полюс9,83
Юпитер24б) экватор9,78

В обыденной жизни под словом «вес» мы зачастую подразумеваем массу тела, не делая различия между этими терминами. Однако это неверно.

Весом тела называют силу, с которой тело давит на опору или тянет подвес. Например, на рисунке медведь действует на опору – прогнувшуюся доску. Согласно определению, сила давления медведя на доску – вес медведя. На рисунке правее медведь действует на подвес – канат. Эта сила тоже является весом, но уже медведя вместе с доской.

Часто вес тела равен действующей на него силе тяжести. В виде формулы это записывается так:

W – вес тела, Н
Fтяж – сила тяжести, Н

Однако эта формула верна не всегда. Например, если тело погружено в жидкость или газ. В этом случае возникает выталкивающая сила, обычно приводящая к уменьшению веса. Многочисленные опыты показывают, что вес тела равен действующей на него силе тяжести, когда тело и его опора (подвес) покоятся или движутся вместе равномерно и прямолинейно, и не действуют другие силы, кроме силы тяжести. Это – границы применимости формулы W = Fтяж

Забегая вперед, скажем, что когда тело или его опора (подвес) движутся непрямолинейно или неравномерно, вес тела никогда не равен силе тяжести. Он может быть как больше, так и меньше неё, а также направлен в другую сторону.

Сила веса, формулы

Определение 1

Вес представляет силу влияния тела на опору (подвес, или иную разновидность крепления), препятствующую падению, и возникающую в поле действия сил тяжести. Единицей измерения веса в СИ принят ньютон.

Понятие веса тела

Понятие «вес» как таковое в физике не считается необходимым. Так, больше говорится о массе или о силе тела. Более содержательной величиной считается сила воздействия на опору, знание которой может помочь, например, при оценке способности конструкции удержать исследуемое тело в заданных условиях.

Вес возможно измерить с помощью пружинных весов, служащих также для косвенного измерения массы при их соответствующем градуировании. В то же время, рычажные весы в этом не нуждаются, поскольку в такой ситуации сравнению подлежат массы, на которые воздействует равное ускорение свободного падения либо сумма ускорений в неинерциальных системах отсчета.

При взвешивании за счет технических пружинных весов, вариации ускорения свободного падения обычно не учитываются, поскольку из влияние зачастую оказывается меньше того, что требуется на практике в отношении точности взвешивания. В некоторой степени, на результатах измерений может отражаться сила Архимеда, при условии взвешивания на рычажных весах тел различной плотности и их сравнительных показателей.

Вес и масса в физике представляют различные понятия. Так, вес считается векторной величиной, с которой тело будет непосредственно воздействовать на горизонтальную опору либо вертикальный подвес. Масса в то же время представляет скалярную величину, меру инертности тела (инертную массу) или заряд гравитационного поля (гравитационную массу). У таких величин будут отличаться и единицы измерения (в СИ масса обозначена в килограммах, а вес— в ньютонах).

Возможны также ситуации с нулевым весом и также ненулевой массой (когда речь идет об одном и том же теле, к примеру, при невесомости вес каждого тела будет равным нулевому значению, а вот масса у всех окажется разной).

Важные формулы для расчета веса тела

Вес тела ($P$), которое покоится в инерциальной системе отсчёта, равнозначен силе тяжести, воздействующей на него, и пропорционален массе $m$, а также ускорению свободного падения $g$ в данной точке.

$P = mg$

Замечание 1

Ускорение свободного падения будет зависимым от высоты над земной поверхностью, а также от географических координат точки измерения.

Результатом суточного вращения Земли является широтное уменьшение веса. Так, на экваторе вес окажется меньшим, в сравнении с полюсами.

Другим фактором, влияющим на значение $g$, можно считать гравитационные аномалии, которые обусловлены особенностями строения земной поверхности. При местонахождении тела вблизи другой планеты (не Земли), ускорение свободного падения зачастую определяется за счет массы и размеров этой планеты.

Состояние отсутствия веса (невесомости) наступит в условиях отдаленности тела от притягивающего объекта или его пребывании в свободном падении, то есть в ситуации, когда

${g – w} = 0$.

Тело массой $m$, чей вес анализируется, может оказаться субъектом приложения определенных дополнительных сил, косвенно обусловленных фактом присутствия гравитационного поля, в частности, силы Архимеда и силы трения.

Отличие силы веса тела от силы тяжести

Замечание 2

Сила тяжести и вес представляют собой два различных понятия, участвующих непосредственно в теории гравитационного поля физики. Эти два совершенно разных понятия зачастую истолковывают неверно, используя их в неверном контексте.

Такая ситуация усугубляется еще и тем, что в стандартном понимании понятия массы (имеется в виду свойство материи) и веса также будут восприниматься как тождественные. Именно по этой причине правильное понимание тяжести и веса считается очень важным для научной среды.

Зачастую эти две практически аналогичные концепции применяются в формате взаимозаменяемых. Сила, которая направляется на объект со стороны Земли или другой планеты в нашей Вселенной (в более широком понимании — любого астрономического тела) будет представлять силу тяжести:

$Fт = mg$

Сила, с которой тело оказывает непосредственное воздействие на опору или вертикальный подвес и будет считаться весом тела, обозначаемым как $W$ и представляющим собой векторно направленную величину.

Атомы (молекулы) тела будут отталкиваться от частиц основания. Следствием такого процесса становится:

  • осуществление частичной деформации не только опоры, но и также объекта;
  • возникновение сил упругости;
  • изменение в определенных ситуациях (в незначительной степени) формы тела и опоры, что будет происходить на макроуровне;
  • возникновение силы реакции опоры при параллельном на поверхности тела возникновении силы упругости, что становится ответной реакцией на опору (это и будет представлять вес).

Сила упругости. Вес тела – FIZI4KA

1. Твёрдые тела под действием силы способны изменять свои форму и (или) объём. Взяв за концы металлическую линейку, можно её согнуть. Если перестать прикладывать силу, то линейка восстановит свою форму. Если сжать пружину (рис. 35), то она сократится, т.е. деформируется. При прекращении действия силы пружина вернётся в первоначальное
состояние.

Изменение формы или объёма тела при действии на него силы называется деформацией.

Если длина пружины в недеформированном состоянии ​\( l_0 \)​, а после растяжения ​\( l \)​, то изменение её длины ​\( l=l-l_0=x \)​, где ​\( l \)​ или ​\( x \)​ – удлинение или деформация.

2. При деформации в теле возникает сила упругости, которая стремится вернуть его в первоначальное состояние. Сила упругости ​\( (\vec{F}_{упр}) \)​ — сила, возникающая в теле в результате деформации, стремящаяся вернуть тело в первоначальное состояние и направленная в сторону, противоположную деформации (удлинению).

Так, при растяжении пружины эта сила направлена влево к положению равновесия, при
сжатии пружины сила упругости направлена вправо (рис. 36).

Если тело после прекращения действия силы принимает первоначальную форму, то деформация является упругой. Если тело после прекращения действия силы не принимает первоначальную форму, то деформация является неупругой или пластической.

3. При малых деформациях сила упругости прямо пропорциональна удлинению. Поскольку сила упругости и деформация направлены в противоположные стороны, то: ​\( F_{упр}=-k\Delta l \)​, где ​\( k \)​ — коэффициент пропорциональности, называемый жёсткостью тела. Жёсткость зависит от размеров тела, его формы, материала, из которого сделано тело.

Единица жесткости ​\( [\,k\,]=\frac{[\,F\,]}{[\,\Delta l\,]} \)​; ​\( [\,k\,]=\frac{1\,Н}{1\,м}=1\frac{Н}{м} \)​.

Формула \( F_{упр}=-k\Delta l \) выражает закон Гука: сила упругости, возникающая при деформации тела, прямо пропорциональна удлинению (деформации) тела и направлена в сторону, противоположную деформации.

Важно понимать, что закон Гука справедлив при малых деформациях.

На рисунке 37 приведён график зависимости модуля силы упругости от деформации. Поскольку эта зависимость линейная, то графиком зависимости является прямая, проходящая через начало координат и составляющая угол ​\( \alpha \)​ с осью абсцисс. По графику можно определить жёсткость тела. Например, значению деформации 2 см соответствует сила упругости 4 Н. Разделив 4 Н на 0,02 м, получим ​\( k \)​ = 200 Н/м. В треугольнике АОВ жёсткость ​\( k \)​ равна тангенсу угла ​\( \alpha \)​: ​\( k=\mathrm{tg}\alpha \)​.

4. Существуют разные виды деформации: растяжения, сжатия, сдвига, изгиба и кручения. В рассмотренных примерах линейка подвергалась деформации изгиба, пружина — деформации растяжения и сжатия, винты, гайки, болты при закручивании испытывают деформацию кручения, тяжёлые предметы при перемещении по полу — деформацию сдвига.

5. Предположим, что на полу стоит ящик (рис. 38). На него действует сила тяжести ​\( \vec{F}_т \)​, направленная вертикально вниз. Ящик, взаимодействуя с полом, деформирует его и деформируется сам. И на ящик, и на пол действует сила упругости, характеризующая их взаимодействие. Сила упругости ​\( \vec{N} \)​, действующая на ящик со стороны пола, приложена к ящику и направлена вертикально вверх; сила упругости ​\( \vec{P} \)​, действующая со стороны ящика на пол, приложена к полу и направлена вертикально вниз. Эта сила называется весом тела.

Весом тела называют силу, с которой тело, вследствие его притяжения к Земле, действует на опору или подвес. В отличие от силы тяжести, вес тела приложен не к телу, а к опоре или к подвесу. Вес — это сила упругости.

6. Если тело покоится или движется равномерно и прямолинейно, вес тела численно равен силе тяжести, действующей на него: ​\( \vec{P}=m\vec{g} \)​.

На тело, движущееся вместе с платформой или подвесом вертикально вниз с ускорением ​\( \vec{a} \)​, направленным в сторону движения, действуют сила тяжести ​\( \vec{F}_{т} \)​ и сила упругости ​\( N \)​ со стороны опоры или подвеса (рис. 39, 40).

Второй закон Ньютона для этой ситуации: ​\( m\vec{g}+\vec{N}=m\vec{a} \)​. В проекциях на координатную ось: ​\( mg-N=ma \)​ или ​\( N=mg-ma \)​. Поскольку ​\( N=P \)​, ​\( P = m(g — a) \)​.

Если тело движется вниз вместе с опорой или подвесом с ускорением, направленным так же, как и ускорение свободного падения, то его вес меньше силы тяжести, т.е. меньше веса покоящегося тела. Если ускорение тела равно ускорению свободного падения ​\( \vec{a}=\vec{g} \)​, то тело находится в состоянии невесомости.

В таком состоянии находится космонавт в космическом корабле, прыгун с трамплина во время полёта вниз.

7. На тело, движущееся вместе с платформой или подвесом вертикально вверх с ускорением ​\( \vec{a} \)​, направленным в сторону движения, действуют сила тяжести ​\( \vec{F}_т \)​ и сила упругости ​\( \vec{N} \)​ со стороны опоры или подвеса (рис. 40).

Второй закон Ньютона для этой ситуации: \( m\vec{g}+\vec{N}=m\vec{a} \). В проекциях на координатную ось: ​\( mg-N=-ma \)​ или ​\( N=mg+ma \)​. Поскольку ​\( N=P \)​, ​\( P=m(g+a) \)​.

Таким образом, если тело движется вверх вместе с опорой или подвесом с ускорением, направленным противоположно ускорению свободного падения, то его вес больше силы тяжести, т.е. больше веса покоящегося тела. Увеличение веса тела при движении с ускорением называют перегрузкой. Перегрузки испытывают космонавт в космическом корабле, пилот реактивного самолёта при взлёте и посадке.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Имеются две абсолютно упругие пружины. Под действием одной и той же силы первая пружина удлинилась на 8 см, а вторая — на 4 см. Сравните жёсткость ​\( k_2 \)​ второй пружины с жёсткостью \( k_1 \) первой пружины.

1) ​\( k_1=k_2 \)​
2) \( 4k_1=k_2 \)
3) \( 2k_1=k_2 \)
4) \( k_1=2k_2 \)

2. Имеются две абсолютно упругие пружины: одна жёсткостью 200 Н/м, другая жёсткостью 400 Н/м. Сравните силу упругости ​\( F_2 \)​, возникающую во второй пружине, с силой упругости \( F_1 \), возникающей в первой пружине, при одинаковом их удлинении.

1) ​\( F_2=F_1 \)​
2) ​\( F_2=4F_1 \)
3) ​\( 2F_2=F_1 \)
4) ​\( 0.5F_2=F_1 \)

3. Ученик, растягивая пружину динамометра последовательно на 1Н, 2Н, ЗН и 4Н, каждый раз измерял её удлинение и результаты измерений вносил в таблицу. Определите по данным таблицы жёсткость пружины динамометра.

1) 0,02 Н/м
2) 0,5 Н/м
3) 2 Н/м
4) 50 Н/м

4. На рисунке приведены графики зависимости силы упругости от удлинения. Сравните жёсткость пружин.

1) ​\( k_2=k_1 \)​
2) \( k_2>k_1 \)
3) \( k_2<k_1 \)
4) \( k_2\geq k_1 \)

5. Учащийся выполнял эксперимент по измерению удлинения ​\( x \)​ пружин при подвешивании к ним грузов. Полученные учащимся результаты представлены на рисунке в виде диаграммы. Какой вывод о жёсткости пружин ​\( k_1 \)​ и ​\( k_2 \)​ можно сделать из анализа диаграммы, если к концам пружин были подвешены грузы одинаковой массы?

1) ​\( k_2=4k_1 \)​
2) \( k_1=2k_2 \)
3) \( k_2=2k_1 \)
4) \( k_1=k_2 \)

6. Под действием силы 3 Н пружина удлинилась на 4 см. Чему равна сила, под действием которой удлинение этой пружины составит 6 см?

1) 3,5 Н
2) 4 Н
3) 4,5 Н
4) 5 Н

7. Две пружины растягиваются одинаковыми силами. Жёсткость первой пружины ​\( k_1 \)​ в 2 раза больше жесткости второй пружины ​\( k_2 \)​. Удлинение первой пружины ​\( \Delta l_1 \)​, удлинение второй пружины \( \Delta l_2 \) равно

1) ​\( 0.5\Delta l_1 \)
2) \( 0.67\Delta l_1 \)
3) \( 1.5\Delta l_1 \)
4) \( 2.5\Delta l_1 \)

8. В лифте, движущемся вниз равноускоренно из состояния покоя, стоит ящик. Модуль веса ящика

1) равен модулю силы тяжести
2) больше модуля силы тяжести
3) меньше модуля силы тяжести
4) увеличивается с увеличением скорости лифта

9. Человек испытывает перегрузки при

1) равномерном движении вниз
2) равномерном движении вверх
3) равноускоренном движении вверх из состояния покоя
4) равноускоренном движении вниз с ускорением свободного падения

10. Различие веса тела на экваторе и на полюсе можно обнаружить

А. Взвешивая тело на рычажных весах
Б. Взвешивая тело на пружинных весах

Правильный ответ

1)только А
2)только Б
3) и А, и Б
4) ни А, ни Б

11. Установите соответствие между физической величиной (левый столбец) и характером её изменения (правый столбец) при растяжении пружины динамометра. В ответе запишите подряд номера выбранных ответов

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A. Модуль силы упругости пружины
Б. Жёсткость пружины
B. Модуль удлинения пружины

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИНЫ
1) уменьшается
2) увеличивается
3) не изменяется

12. Из приведённых ниже высказываний выберите два верных и запишите их номера в таблицу.

1) Закон Гука справедлив при любых деформациях.
2) Сила упругости направлена в сторону, противоположную деформации.
3) Жёсткость зависит только от материала, из которого изготовлено тело.
4) Вес тела всегда равен действующей на него силе тяжести.
5) Вес приложен к опоре или к подвесу.

Часть 2

13. Груз массой 5 кг начинают поднимать вертикально вверх с ускорением 2 м/с2. Чему равен вес груза?

Ответы

Сила упругости. Вес тела

5 (100%) 1 vote

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *