Mathway | Популярные задачи
1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(60) | |
4 | Найти точное значение | sin(30 град. ) | |
5 | Найти точное значение | sin(60 град. ) | |
6 | Найти точное значение | tan(30 град. ) | |
7 | Найти точное значение | arcsin(-1) | |
8 | Найти точное значение | sin(pi/6) | |
9 | Найти точное значение | cos(pi/4) | |
10 | Найти точное значение | sin(45 град. ) | |
11 | Найти точное значение | sin(pi/3) | |
12 | Найти точное значение | arctan(-1) | |
13 | Найти точное значение | cos(45 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | tan(60) | |
16 | Найти точное значение | csc(45 град. ) | |
17 | Найти точное значение | tan(60 град. ) | |
18 | Найти точное значение | sec(30 град. ) | |
19 | Преобразовать из радианов в градусы | (3pi)/4 | |
20 | График | y=sin(x) | |
21 | Преобразовать из радианов в градусы | pi/6 | |
22 | Найти точное значение | cos(60 град. ) | |
23 | Найти точное значение | cos(150) | |
24 | Найти точное значение | tan(45) | |
25 | Найти точное значение | sin(30) | |
26 | Найти точное значение | sin(60) | |
27 | Найти точное значение | cos(pi/2) | |
28 | Найти точное значение | tan(45 град. ) | |
29 | График | y=sin(x) | |
30 | Найти точное значение | arctan(- квадратный корень 3) | |
31 | Найти точное значение | csc(60 град. ) | |
32 | Найти точное значение | sec(45 град. ) | |
33 | Найти точное значение | csc(30 град. ) | |
34 | Найти точное значение | sin(0) | |
35 | Найти точное значение | sin(120) | |
36 | Найти точное значение | cos(90) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | Найти точное значение | sin(45) | |
39 | Найти точное значение | tan(30) | |
40 | Преобразовать из градусов в радианы | 45 | |
41 | Найти точное значение | tan(60) | |
42 | Упростить | квадратный корень x^2 | |
43 | Найти точное значение | cos(45) | |
44 | Упростить | sin(theta)^2+cos(theta)^2 | |
45 | Преобразовать из радианов в градусы | pi/6 | |
46 | Найти точное значение | cot(30 град. ) | |
47 | Найти точное значение | arccos(-1) | |
48 | Найти точное значение | arctan(0) | |
49 | График | y=cos(x) | |
50 | Найти точное значение | cot(60 град. ) | |
51 | Преобразовать из градусов в радианы | 30 | |
52 | Упростить | ( квадратный корень x+ квадратный корень 2)^2 | |
53 | Преобразовать из радианов в градусы | (2pi)/3 | |
54 | Найти точное значение | sin((5pi)/3) | |
55 | Упростить | 1/( кубический корень от x^4) | |
56 | Найти точное значение | sin((3pi)/4) | |
57 | Найти точное значение | tan(pi/2) | |
58 | Найти угол А | tri{}{90}{}{}{}{} | |
59 | Найти точное значение | sin(300) | |
60 | Найти точное значение | cos(30) | |
61 | Найти точное значение | cos(60) | |
62 | Найти точное значение | cos(0) | |
63 | Найти точное значение | arctan( квадратный корень 3) | |
64 | Найти точное значение | cos(135) | |
65 | Найти точное значение | cos((5pi)/3) | |
66 | Найти точное значение | cos(210) | |
67 | Найти точное значение | sec(60 град. ) | |
68 | Найти точное значение | sin(300 град. ) | |
69 | Преобразовать из градусов в радианы | 135 | |
70 | Преобразовать из градусов в радианы | 150 | |
71 | Преобразовать из радианов в градусы | (5pi)/6 | |
72 | Преобразовать из радианов в градусы | (5pi)/3 | |
73 | Преобразовать из градусов в радианы | 89 град. | |
74 | Преобразовать из градусов в радианы | 60 | |
75 | Найти точное значение | sin(135 град. ) | |
76 | Найти точное значение | sin(150) | |
77 | Найти точное значение | sin(240 град. ) | |
78 | Найти точное значение | cot(45 град. ) | |
79 | Преобразовать из радианов в градусы | (5pi)/4 | |
80 | Упростить | 1/( кубический корень от x^8) | |
81 | Найти точное значение | sin(225) | |
82 | Найти точное значение | sin(240) | |
83 | Найти точное значение | cos(150 град. ) | |
84 | Найти точное значение | tan(45) | |
85 | Вычислить | sin(30 град. ) | |
86 | Найти точное значение | sec(0) | |
87 | Упростить | arcsin(-( квадратный корень 2)/2) | |
88 | Найти точное значение | cos((5pi)/6) | |
89 | Найти точное значение | csc(30) | |
90 | Найти точное значение | arcsin(( квадратный корень 2)/2) | |
91 | Найти точное значение | tan((5pi)/3) | |
92 | Найти точное значение | tan(0) | |
93 | Вычислить | sin(60 град. ) | |
94 | Найти точное значение | arctan(-( квадратный корень 3)/3) | |
95 | Преобразовать из радианов в градусы | (3pi)/4 | |
96 | Вычислить | arcsin(-1) | |
97 | Найти точное значение | sin((7pi)/4) | |
98 | Найти точное значение | arcsin(-1/2) | |
99 | Найти точное значение | sin((4pi)/3) | |
100 | Найти точное значение | csc(45) |
www.mathway.com
sin x = 0 решение
Доброй ночи!
Уравнения вида, которое вы попросили решить — очень часто вызывает различные затруднение у многих людей. Но это, на самом деле, не так страшно и не так сложно, как Вам могло показаться. Прежде, чем разобраться с Вашей уравнением sin x = 0, нужно подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.
Вот так будет выглядеть Ваше условие на математическом языке:
Да, я понимаю, что это Вам ничем не помогло, но находить будет легче. Для подобных уравнений есть определённое правило решения, которое принимает всегда вот такой общий вид:
Как только мы разобрались с общим решением, то с лёгкостью можем преступить к решению именно Вашего уравнения:
Значение мы найдём при помощи таблицы. И исходя из этого получаем, что , или же . Возьмём с Вами второй вариант.
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:
Ответ:
ru.solverbook.com
как решить такое уравнение sinx=0?
Решение: sinx=0 x=πn
это частный случай. Если sinx=0, то x=пk
<img src=»//content.foto.my.mail.ru/mail/deva_deva_deva_deva/_answers/i-3.jpg» >
х=пиn,где n принадлежит z
как решить такое уравнение sinx=0 Простейшие тригонометрическое уравнение ( как таблица умножения, надо просто запомнить) х=πk, где κЄZ, т. е. вместо к подставляем любое целое число и получим решение уравнения к=0; х=π*0=0 – первое решение к=1; х=π*1=π= второе к=-20; х=-20π и т. д. Удачи! Татьяна! мне нравится страничка <a rel=»nofollow» href=»http://web-tutor.narod.ru/Pages_1024x768/Trigequations.htm» target=»_blank»>http://web-tutor.narod.ru/Pages_1024x768/Trigequations.htm</a> — решение простейших тригонометрических уравнений!touch.otvet.mail.ru
sin x 0
Вы искали sin x 0? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и sin x 0 решение, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «sin x 0».
Где можно решить любую задачу по математике, а так же sin x 0 Онлайн?
Решить задачу sin x 0 вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.
www.pocketteacher.ru
sin3x – sinx = 0
Рассмотрим левую часть уравнения sin 3x — sin x = 0.
Очевидно, что это разность синусов от различных аргументов. Используем формулу разности синусов и запишем:
Запишем исходное выражение с учетом полученного выражения:
Чтобы немного его упростить, сократим уравнение на 2 и решим получившееся.
Произведение синуса х на косинус 2х равно нулю, следовательно, или синус равен нулю, или косинус. Таким образом, получаем два уравнения, каждое из которых нужно решить.
Значение синуса равно 0, если аргумент равен Пи, 2Пи и т.д. через промежутки Пи. Запишем решение:
при любом из множества целых чисел.
Решим второе уравнение:
Косинус равен нулю при аргументе Пи/2 через промежутки Пи. Тогда:
при любом из множества целых чисел.
Получить окончательное решение уравнения можно, вычислив значение переменной х. Найдем его путем деления обеих частей уравнения на два:
при любом из множества целых чисел.
Окончательным решением данного уравнения будет объединение полученных корней.
Ответ. , при любом из множества целых чисел.
ru.solverbook.com
sin x + cos x = 0 решить уравнение
Добрый вечер!
Спасибо за обращение к нам!
Мы поможем Вам справиться с таким заданием: sin x + cos x = 0 решить уравнение.
Приступим к решению.
На первый взгляд кажется, что решение невозможно, но это ошибочно, так как все забывают про такое свойство как деление на какой-то член. В нашем случае, мы можем поделить две части уравнения на cos x, который не должен равняться нулю, так как на ноль делить нельзя.
И получим следующее:
Так как если sin x поделить на cos x, мы получим tg x.
Теперь известные члены перенесём вправо с изменением знаков и получим:
У нас получилось простейшее тригонометрическое уравнение. Для решения этого уравнения есть определённое правило решения подобных уравнений, которое примет такой общий вид:
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
Если бы у нас было классическое число из таблицы, которое нужно было бы найти, то мы бы с Вами воспользовались уже известной Вам таблицей. И уже исходя из этого получили бы какое-то значение, которое могли бы с Вами использовать.
И мы бы С вами продолжали решать наше уравнение. Но так как с этим не сложилось, то мы с Вами просто напросто ничего не меняем и записываем ответ в таком виде: :
Ответ:
Надеюсь, Вы поняли почему, зачем и как мы с Вами делали. Удачи Вам в решении подобных заданий. Удачи Вам!
ru.solverbook.com