Современная формулировка периодического закона – Урок №43. Периодический закон Д. И. Менделеева

Содержание

Современная формулировка — периодический закон

Современная формулировка — периодический закон

Cтраница 1

Современная формулировка периодического закона следующая: свойства элементов, а также свойства и формы их соединений находятся в периодической зависимости от зарядов ядер атомов элементов.  [1]

Современная формулировка периодического закона Д. И. Менделеева такова: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда атомных ядер. Она только базируется на новых данных, которые придают закону и системе научную обоснованность и подтверждают их правильность.  [2]

Современная формулировка периодического закона: свойства простых веществ и свойства соединений элементов находятся в периодической зависимости от заряда ядра ( атома) элемента.  [3]

Современная формулировка периодического закона Д. И. Менделеева такова: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда атомных ядер. Она только базируется на новых данных, которые придают закону и системе научную обоснованность и подтверждают их правильность.  [4]

Современная формулировка периодического закона Д. И. Менделеева такова: свойства элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов.  [5]

Современная формулировка периодического закона Д. И. Менделеева такова: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда атомных, ядер. Она только базируется на новых данных, которые придают закону и системе научную обоснованность и подтверждают их правильность.  [6]

Чем современная формулировка периодического закона отличается от прежней и почему она является более точной.  [7]

Входит в современную формулировку Периодического закона Д. И. Менделеева: свойства элементов находятся в периодической зависимости от порядкового номера.  [8]

Почему формулировка Д. И. Менделеева и современная формулировка периодического закона не противоречат друг другу.  [9]

На основании закона Мозли и открытий Резерфорда и Чэдвика можно дать современную формулировку периодического закона Д. И. Менделе-ева: свойства химических элементов и их соединений находятся в периодической зависимости от величины положительных зарядов ядер их атомов.  [11]

Представление о величине заряда ядра как об определяющем свойстве атома легло в основу современной формулировки периодического закона Д. И. Менделеева: свойства химических элементов, а также формы и свойства соединений этих элементов находятся в периодической зависимости от величины заряда ядер их атомов.  [12]

Мы видим, что атомы одного и того же элемента различаются по величине атомных весов, и следовательно, химические свойства элементов определяются не их атомным весом, а зарядом ядра атома. Поэтому современная формулировка периодического закона гласит: свойства элементов находятся в периодической зависимости от их порядковых номеров.  [13]

Исследования строения атомов показали, что важнейшей и наиболее устойчивой характеристикой атома является положительный заряд ядра. Поэтому современная формулировка периодического закона

Д. И. Менделеева такова: свойства химических элементов и их соединений находятся в периодической зависимости от зарядов ядер атомов элементов.  [14]

Страницы:      1    2

www.ngpedia.ru

Периодический закон в современной формулировке. Периодическая система. Физический смысл периодического закона. Структура периодической системы. Изменение свойств атомов химических элементов главных подгрупп. План характеристики химического элемента.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Химический справочник / / Химия для самых маленьких. Шпаргалки. Детский сад, Школа.  / / Периодический закон в современной формулировке. Периодическая система. Физический смысл периодического закона. Структура периодической системы. Изменение свойств атомов химических элементов главных подгрупп. План характеристики химического элемента.

Поделиться:   

Периодический закон в современной формулировке. Периодическая система. Физический
смысл периодического закона. Структура периодической системы. Изменение свойств атомов
химических элементов главных подгрупп. План характеристики химического элемента.

Периодический закон в современной формулировке:

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра (=атомного номера элемента)

Периодическая система:

Периодическая таблица: это графическое изображение периодического закона.

Физический смысл периодического закона:

Периодическое изменение свойств химических элементов и их соединений при увеличении заряда ядра атома объясняется тем, что периодически повторяется строение внешнего электронного слоя в атомах элементов.

Структура периодической системы химических элементов:

  • Каждый химический элемент представлен символом и занимает определенную клетку, где приведены некоторые его свойства.
  • Атомный номер: это число протонов = электронов
  • Относительная атомная масса: это отношение массы атома к 1/12 атома массы атома углерода. Округленное значение равно суммарному количеству протонов и нейтронов.

  • Известно  пять типов орбиталей:
  • Период: это ГОРИЗОНТАЛЬНЫЙ ряд элементов, расположенных в порядке возрастания заряда ядра их атомов. Атомы элементов одного периода имеют одинаковое число занятых электронных слоев.
  • Малые периоды (1-й, 2-й, 3-й): состоят из одного горизонтального  ряда
  • Большие периоды (4-7): состоят из двух горизонтальных рядов
  • Номер периода: показывает число занятых электронами энергетических уровней в атомах элементов, относящихся к данному периоду, соответствует номеру последнего электронного уровня, на котором есть хотя бы один электрон
    • Начало каждого периода совпадает с началом заполнения нового электронного слоя.
    • Каждый период начинается элементом, атомы которого образуют вещество-металл, а заканчиваются элементом, атомы которого образуют инертный (=благородный) газ

dpva.ru

Разница между классической и современной формулировкой периодического закона Менделеева

Знаменитый русский ученый Дмитрий Иванович Менделеев еще в 19 веке сформулировал периодический закон, оказавший исключительно большое влияние на развитие физики, химии и науки в целом. Но с тех пор соответствующая концепция претерпела ряд изменений. В чем они заключаются?

Периодический закон Менделеева: первоначальная формулировка

В 1871 году Д. И. Менделеев предложил научному сообществу фундаментальную формулировку, по которой свойства простых тел, соединений элементов (равно как и их формы), как результат — и свойства тел, образуемых ими (простых и сложных), следует рассматривать как находящиеся в периодической зависимости от показателей их атомного веса.

Данная формулировка была опубликована в авторской статье Д. И. Менделеева «Периодическая законность химических элементов». Соответствующей публикации предшествовала большая работа ученого в области исследования физических и химических процессов. В 1869 году в российском научном сообществе появилась новость об открытии Д. И. Менделеевым Периодического закона химических элементов. Вскоре был издан учебник, в котором была обнародована одна из первых версий знаменитой Таблицы Менделеева.

С термином «периодический закон» Д. И. Менделеев первые ознакомил широкую публику в 1870 году, в одной из своих научных статей. В данном материале ученый указал на тот факт, что существуют еще не открытые химические элементы. Менделеев обосновывал это тем, что свойства каждого отдельного химического элемента промежуточны между характеристиками тех, что соседствуют с ним по периодической таблице. Причем как в группе, так и в периоде. То есть свойства элемента промежуточны между характеристиками элементов, располагающихся выше и ниже по таблице относительно него, а также находящихся правее и левее.

Таблица Менделеева стала уникальным результатом научных трудов. Кроме того, принципиальная новизна концепции Менделеева заключалась в том, что он, во-первых, разъяснил закономерности в соотношениях величин атомных масс химических элементов, а во-вторых, предложил сообществу исследователей рассматривать данные закономерности в качестве закона природы.

В течение нескольких лет после обнародования периодического закона Менделеева химические элементы, не известные на момент публикации соответствующей концепции, но предсказанные ученым, были открыты. В 1875 году был открыт галлий. В 1879-м — скандий, в 1886-м — германий. Периодический закон Менделеева стал неоспоримой теоретической основой химии.

к содержанию ↑

Современная формулировка периодического закона

По мере развития химии и физики концепция Д. И. Менделеева развивалась. Так, в конце 19 — начале 20 века ученые смогли объяснить физический смысл того или иного атомного номера химического элемента. Позже исследователи разработали модель изменений электронной структуры атомов в корреляции с ростом зарядов ядер соответствующих атомов.

Сейчас формулировка периодического закона — с учетом вышеобозначенных и других открытий ученых — несколько отличается от предложенной Д. И. Менделеевым. В соответствии с ней свойства элементов, а также образуемых ими веществ (равно как и их формы) характеризуются периодической зависимостью от зарядов ядер атомов соответствующих элементов.

к содержанию ↑

Сравнение

Главное отличие классической формулировки периодического закона Менделеева от современной заключается в том, что первоначальная трактовка соответствующего научного закона предполагает зависимость свойств элементов и образуемых ими соединений от показателей их атомного веса. Современная трактовка также предполагает наличие подобной зависимости — но предопределяемой зарядом ядер атомов химических элементов. Так или иначе, ко второй формулировке ученые пришли, в течение долгого времени развивая первую путем кропотливого труда.

Определив, в чем разница между классической и современной формулировкой периодического закона Менделеева, отразим выводы в таблице.

к содержанию ↑

Таблица

Формулировка периодического закона МенделееваСовременная формулировка периодического закона
Что общего между ними?
Обе концепции предполагают периодическую зависимость свойств элементов и образуемых ими соединений от неких факторов
В чем разница между ними?
Д. И. Менделеев предложил формулировку, по которой свойства элементов имеют периодическую зависимость от показателей их атомного весаСовременные ученые применяют формулировку, по которой свойства элементов имеют периодическую зависимость от заряда ядер их атомов

thedifference.ru

Периодический закон – HIMI4KA

Существуют две формулировки Периодического закона химических элементов: классическая и современная.

Классическая формулировка (в изложении его первооткрывателя Д.И. Менделеева): свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.

Современная формулировка: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).

Графическим изображением Периодического закона является Периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространенными изображениями Периодической системы элементов Д. И. Менделеева являются короткая и длинная формы.

Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгруппы. Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов. Химические свойства элементов главных и побочных подгрупп значительно различаются.

Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).

Оксиды состава R2O проявляют сильные оснОвные свойства, причем их основность возрастает с увеличением порядкового номера. Оксиды состава RO (за исключением BeO) проявляют основные свойства.

Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причем их кислотность возрастает с увеличением порядкового номера.

Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH4, RH3, RH2, RH.

Соединения RH4 имеют нейтральный характер; RH3 — слабоосновный; RH2 — слабокислый; RH — сильнокислый характер.

Свойства элементов в подгруппах закономерно изменяются сверху вниз:

  • усиливаются металлические свойства и ослабевают неметаллические;
  • возрастает атомный радиус;
  • возрастает сила образованных элементом оснований и бескислородных кислот;
  • электроотрицательность падает.

Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров. В периодической системе имеются семь периодов: первый, второй и третий периоды называют малыми, в них содержится соответственно 2, 8 и 8 элементов; остальные периоды называют большими: в четвертом и пятом периодах расположены по 18 элементов, в шестом — 32, а в седьмом (пока незавершенном) — 29 элемента. Каждый период, кроме первого, начинается щелочным металлом, а заканчивается благородным газом.

Физический смысл порядкового номера химического элемента: число протонов в атомном ядре и число электронов, вращающихся вокруг атомного ядра, равны порядковому номеру элемента.

В пределах периода с увеличением порядкового номера элемента:

  • электроотрицательность возрастает;
  • металлические свойства убывают, неметаллические возрастают;
  • атомный радиус уменьшается.

himi4ka.ru

Современная формулировка периодического закона. — КиберПедия

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.

 

№16 Структура переодической системы элементов Менднлеева s,p,d,f блоки элементов

Периодическая система химических элементов — естественная классификация химических элементов, являющаяся табличным выражением периодического закона Д.И. Менделеева. Главный принцип построения Периодической системы — выделение в ней периодов (горизонтальных рядов) и групп (вертикальных столбцов) элементов. Современная Периодическая система состоит из 7 периодов (седьмой период должен закончиться 118-м элементом). Короткопериодный вариант Периодической системы содержит 8 групп элементов, каждая из которых условно подразделяется на группу А (главную) и группу Б (побочную). В длиннопериодном варианте Периодической системы — 18 групп, имеющих те же обозначения, что и в короткопериодном. Элементы одной группы имеют одинаковое строение внешних электронных оболочек атомов и проявляют определенное химическое сходство. Номер группы в Периодической системе определяет число валентных электронов а атомах элементов. При этом в группах, обозначенных буквой А, содержатся элементы, в которых идет заселение s- и р-подуровней — s-элементы (IA- и IIA-группы) и р-элементы (IIIA-VIIIA-группы), а в группах, обозначенной буквой Б, находятся элементы, в которых заселяются d-подуровни — d-элементы. Поскольку в каждом большом периоде должно находиться по 10 d-элементов (у которых заполняются пять d-орбиталей), то Периодическая система должна содержать 10 соответствующих групп. . Для f-элементов номеров групп не предусмотрено. Обычно их условно помещают в ячейки Периодической системы, отвечающие лантану (лантаноиды) и актинию (актиноиды). Символы лантаноидов и актиноидов выносятся за пределы Периодической системы в виде отдельных рядов. Номер периода в Периодической системе соответствует числу энергетических уровней атома данного элемента, заполненных электронами. Номер периода = Число энергетических уровней, заполненных электронами = Обозначение последнего энергетического уровня Порядок формирования периодов связан с постепенным заселением энергетических подуровней электронами. Последовательность заселения определяется принципом минимума энергии, принципом Паули и правилом Гунда. Периодическое изменение свойств элементов в периоде объясняется последовательностью заполнения электронами уровней и подуровней в атомах при увеличении порядкового номера элемента и заряда ядра атома.

Каждому элементу (кроме f-элементов) в Периодической системе соответствуют вполне определенные координаты: номер периода и номер группы. По этим координатам можно не только найти элемент в таблице Д.И. Менделеева, но и построить его электронную конфигурацию, учитывая физический смысл значения чисел, соответствующих номерам периода и группы, а также наличие буквы в номере группы, определяющей принадлежность элемента к секциям s- и p-элементов или d-элементов.



№17 Переодические свойства элементов, их изменение в группах и периодах.

свойства элементов показывают тенденции. Эти тенденции могут быть предсказаны, используя периодическую таблицу и могут быть объяснены и поняты, анализируя электронные конфигурации элементов. Элементы имеют тенденцию получать или терять валентные электроны, чтобы достигнуть устойчивого формирования октета. Устойчивые октеты замечены в инертных газах, или инертных газах, Группы VIII из периодической таблицы. В дополнение к этой деятельности есть две других важных тенденции. Во-первых, электроны добавлены, по одному перемещаясь от слева направо через период. Поскольку это случается, электроны наиболее удаленного снаряда испытывают все более и более прочное ядерное притяжение, таким образом электроны становятся ближе к ядру и более прочносвязанный к этому. Во-вторых, спуская колонку в периодической таблице, наиболее удаленные электроны становятся менее прочносвязанными к ядру. Это случается, потому что число наполненных основных энергетических уровней (которые экранируют наиболее удаленные электроны от притяжения до ядра) увеличивается вниз в пределах каждой группы. Эти тенденции объясняют периодичность, наблюдаемую в элементных свойствах атомного радиуса, энергии ионизации, сродства к электрону, и электроотрицательности.



, атомный радиус элемента — половина интервала между центрами двух атомов того элемента, которые только касаются друг друга. Вообще, атомный радиус уменьшается через период со слева направо и увеличения вниз данная группа. Атомы с наибольшими атомными радиусами расположены в Группе I и у основания групп.

Перемещающийся от слева направо через период, электроны добавлены по одному к внешнему снаряду энергии. Электроны в пределах снаряда не могут экранировать друг друга от притяжения до протонов. Так как число протонов также увеличивается, увеличения эффективного ядерного заряда через период. Это заставляет атомный радиус уменьшаться.

энергия ионизации, или ионизационный потенциал, является энергией, требуемой полностью удалить электрон из газообразного атома или иона. Чем ближе и более прочносвязанный электрон к ядру, тем более трудный это должно будет удалить, и выше его энергия ионизации будет. Первая энергия ионизации — энергия, требуемая удалить один электрон из материнского атома. Вторая энергия ионизации — энергия, требуемая удалить второй валентный электрон из одновалентного иона, чтобы формировать двухвалентный ион, и так далее. Последовательное увеличение энергий ионизации. Вторая энергия ионизации всегда больше чем первая энергия ионизации. Увеличение энергий ионизации, перемещающееся от слева направо через период (уменьшающий атомный радиус). Уменьшения энергии ионизации, спускающие группу (увеличивающий атомный радиус). Группа у I элементов есть низкие энергии ионизации, потому что потеря электрона формирует устойчивый октет.

Сродства к электрону отражает способность атома принять электрон. Это — изменение энергии, которое происходит, когда электрон добавлен к газообразному атому. У атомов с более сильным эффективным ядерным зарядом есть большее сродство к электрону. Некоторые обобщения могут быть сделаны о сродстве к электрону определенных групп в периодической таблице. У Группы элементы IIA, щелочные земли, есть низкие значения сродства к электрону. Эти элементы относительно устойчивы, потому что они заполнились s подснаряды. У элементов VIIA Группы, галогенов, есть высокое сродство к электрону, потому что дополнение электрона к атому приводит к полностью наполненному снаряду. Группа у VIII элементов, инертных газов, есть сродство к электрону около нуля, начиная с каждого атома, обладает устойчивым октетом и не будет принимать электрон с готовностью. У элементов других групп есть низкое сродство к электрону.

Электроотрицательностей является мерой притяжения атома для электронов в химической связи. Чем выше электроотрицательность атома, тем больше его притяжение для электронов связи. Электроотрицательность связана с энергией ионизации. У электронов с низкими энергиями ионизации есть низкие электроотрицательности, потому что их ядра не проявляют прочную силу притяжения на электронах. У элементов с высокими энергиями ионизации есть высокие электроотрицательности из-за прочного напряжения, проявленного на электронах ядром. В группе электроотрицательность уменьшается как увеличения атомного номера, в результате увеличенного интервала между валентным электроном и ядром (больший атомный радиус). Пример электроположительного (то есть, низкая электроотрицательность) элемент — цезий; пример очень электроотрицательного элемента — фтор.

 

 

№18Комплексные соединения. Координационная теория Вернера. Спектрохимический ряд лигандов

1.Комплексные соединения — наиболее обширный и разнообразный класс соединений. В живых организмах присутствуют комплексные соединения биогенных металлов с белками, аминокислотами, порфиринами, нуклеиновыми кислотами, углеводами, макроциклическими соединениями. Важнейшие процессы жизнедеятельности протекают с участием комплексных соединений. Некоторые из них (гемоглобин, хлорофилл, гемоцианин, витамин В12 и др.) играют значительную роль в биохимических процессах. Многие лекарственные препараты содержат комплексы металлов. Например, инсулин (комплекс цинка), витамин В12 (комплекс кобальта), платинол (комплекс платины) и т.д.

2 Координационная теория Вернера Теория координационных соединений, предложенная А. Вернером в 1893 году, до сих пор является основной теорией координационных соединений (для комплексов определенного вида). Рассмотрим ее основные положения.

1. Большинство элементов проявляет два типа валентности – главную и побочную.

2. Атом элемента стремится насытить не только главные, но и побочные валентности

3. Побочные валентности атома строго фиксированы в пространстве и определяют геометрию комплекса и его различные свойства.

В современной химии синонимом главной валентности является степень окисления элемента (обозначим ее сплошной линией), а побочная валентность определяется как координационное число, то есть количество атомов непосредственно связанных с металлом при насыщении его побочной валентности (обозначим ее пунктирной линией).

Лиганды слабого поля Лиганды средней силы Лиганды сильного поля

I–, Br–, Cl–, OH–, F– h3O, NCS–, Ch4COO–, Nh4 NO2, СО, CN

 

Спектрохимический ряд лигандов

№19 Класификация и нуменклатура комплексных соединений

cyberpedia.su

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *