Степень математика это – определения, обозначение, примеры, степень с отрицательным показателем

определения, обозначение, примеры, степень с отрицательным показателем

В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.

Степени с натуральными показателями: понятие квадрата и куба числа

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a), а в качестве показателя – натуральное (обозначим буквой n).

Определение 1

Степень числа a с натуральным показателем n – это произведение n-ного числа множителей, каждый из которых равен числу а. Записывается степень так: an, а в виде формулы ее состав можно представить следующим образом: Степени с натуральными показателями: понятие квадрата и куба числа

Например, если показатель степени равен 1, а основание – a, то первая степень числа a записывается как a1. Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a1=a.

В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8·8·8·8 можно сократить до 84. Примерно так же произведение помогает нам избежать записи большого числа слагаемых (8+8+8+8=8·4); мы это уже разбирали в статье, посвященной умножению натуральных чисел.

Как же верно прочесть запись степени? Общепринятый вариант – «a в степени n».  Или можно сказать «n-ная степень a» либо «an-ной степени». Если, скажем, в примере встретилась запись 812, мы можем пр

zaochnik.com

Возведение в степень: правила, примеры, дробная степень

Мы разобрались, что вообще из себя представляет степень числа. Теперь нам надо понять, как правильно выполнять ее вычисление, т.е. возводить числа в степень. В этом материале мы разберем основные правила вычисления степени в случае целого, натурального, дробного, рационального и иррационального показателя. Все определения будут проиллюстрированы примерами.

Понятие возведения в степень

Начнем с формулирования базовых определений.

Определение 1

Возведение в степень — это вычисление значения степени некоторого числа.

То есть слова «вычисление значение степени» и «возведение в степень» означают одно и то же. Так, если в задаче стоит «Возведите число 0,5 в пятую степень», это следует понимать как «вычислите значение степени (0,5)5.

Теперь приведем основные правила, которым нужно придерживаться при таких вычислениях.

Как возвести число в натуральную степень

Вспомним, что такое степень числа с натуральным показателем. Для степени с основанием a и показателем n это будет произведение n-ного числа множителей, каждый из которых равен a. Это можно записать так:

Как возвести число в натуральную степень

Чтобы вычислить значение степени, нужно выполнить действие умножения, то есть перемножить основания степени указанное число раз. На умении быстро умножать и основано само понятие степени с натуральным показателем. Приведем примеры.

Пример 1

Условие: возведите -2 в степень 4.

Решение

Используя определение выше, запишем: (−2)4=(−2)·(−2)·(−2)·(−2). Далее нам нужно просто выполнить указанные действия и получить 16.

Возьмем пример посложнее.

Пример 2

Вычислите значение 3272

Решение

Данную запись можно переписать в виде 327·327. Ранее мы рассматривали, как правильно умножать смешанные числа, упомянутые в условии.

Выполним эти действия и получим ответ: 327

zaochnik.com

Степень с натуральным показателем

Математика – точная наука, и математический язык приветствует употребление более кратких записей.

СтепеньВместо записи 5 + 5 + 5 + 5 + 5 + 5, математик использует запись 5 · 6, потому что у нас шесть одинаковых слагаемых.

А запись 5 · 5 · 5 · 5 · 5 · 5 математик заменит записью 56, потому что шесть одинаковых множителей.  Конечно, при необходимости можно использовать обратные записи.

Мы знаем, что 76 есть произведение шести множителей, каждый из которых равен 7:

76 = 7 · 7 · 7 · 7 · 7.

Число 7 – основание степени, число 6 – показатель степени, выражение 7

6 – степень.

Дадим определение степени для любого основания и любого натурального показателя.

Степенью числа а с натуральным показателем n большим 1, называется произведение n множителей, каждый из которых равен а.

Для степени числа а с показателем n принято обозначение: аn.

По определению  аn = а · а · а · а… а. (n раз)

В определение не включён случай, когда показатель n = 1, так как не имеет смысла говорить о произведении, состоящем из одного множителя. Степень с показателем 1 определяется особо.

Степенью числа а с показателем 1 называется само число а: а1 = а.

Вычисление значения степени называют действием возведения в степень. Это действие выполняется первым при вычислении значения выражения.

Рассмотрим примеры вычислений значений выражений, содержащих степени.

Пример 1. Найдём значение степеней  (-4)

4  (-4)3.

(-4)4 = (-4) · (-4) · (-4) · (-4) = 256

(-4)3 = (-4) · (-4) · (-4) = -64

Обратим внимание, при возведении в степень отрицательного числа, положительное число получается, если число возводится в чётную степень, если же отрицательное число возводится в нечётную степень, то получается отрицательное число.

СтепеньПример 2. Вычислим (3/4)3.

(3/4)3 = 3/4 · 3/4 · 3/4 = 27/64.

Пример 3. Найдем значение выражения  6 · 33.

Чтобы найти значение этого выражения, достаточно сначала найти значение степени 33, а затем выполнить умножение:

1) 33 = 3 · 3 · 3 = 27

2) 6 · 27 = 162.

Значение степени можно найти с помощью вычислительной техники, а можно воспользоваться таблицей степеней.

Пример 4.

Рассмотрим ещё один пример. Найдём значение выражения 0,5 · 482.

0,5 · 482 = 0,5 · 2304 = 1152

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Степень и ее свойства. Определение степени

Основная цель

Ознакомить учащихся со свойствами степеней с натуральными показателями и научить выполнять действия со степенями.

Тема “ Степень и её свойства ” включает три вопроса:

  • Определение степени с натуральным показателем.
  • Умножение и деление степеней.
  • Возведение в степень произведения и степени.

Контрольные вопросы

  1. Сформулируйте определение степени с натуральным показателем, большим 1. Приведите пример.
  2. Сформулируйте определение степени с показателем 1. Приведите пример.
  3. Каков порядок выполнения действий при вычислении значения выражения, содержащего степени?
  4. Сформулируйте основное свойство степени. Приведите пример.
  5. Сформулируйте правило умножения степеней с одинаковыми основаниями. Приведите пример.
  6. Сформулируйте правило деления степеней с одинаковыми основаниями. Приведите пример.
  7. Сформулируйте правило возведения в степень произведения. Приведите пример. Докажите тождество (ab)n = anbn .
  8. Сформулируйте правило возведения степени в степень. Приведите пример. Докажите тождество ( аm )n = аm n .

Определение степени.

Степенью числа a с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен а. Степенью числа а с показателем 1 называется само число а.

Степень с основанием а и показателем n записывается так: аn . Читается “ а в степени n ”; “ n- я степень числа а ”.

По определению степени:

а1 = а

а2 = а•а

а3 = а•а•а

а4 = а• а•а•а

. . . . . . . . . . . .

аn =

Нахождение значения степени называют возведением в степень.

1. Примеры возведения в степень:

33 = 3• 3• 3 = 27

04 = 0• 0• 0• 0 = 0

( -5 )3 = ( -5 ) • ( -5 ) • ( -5 ) = -125

71 = 7

2. Представьте в виде квадрата числа: 25 ; 0,09 ;

25 = 52 ; 0,09 = ( 0,3 )2 ; .

3. Представьте в виде куба числа:

27 ; 0,001 ; 8 .

27 = 33 ; 0,001 = ( 0,1 )3 ; 8 = 23 .

4. Найти значения выражений:

а) 3• 103 = 3• 10• 10• 10 = 3• 1000 = 3000

б) -24 + ( -3 )2 = 7
24 = 16
( -3 )2 = 9
-16 + 9 = 7

Вариант 1

1. Запишите произведение в виде степени:

а) 0,3• 0,3• 0,3

б)

в) b• b• b• b• b• b• b

г) ( -х ) • ( -х ) • ( -х ) • ( -х )

д) ( ab ) • ( ab ) • ( ab )

2. Представьте в виде квадрата числа:

    16 ; 0,25 ; .

3. Представьте в виде куба числа:

    125 ; 0,027 ; .

4. Найти значения выражений :

а) 72 + 43

б) 62 + 53

в) -14 + ( -2 )3

г) -43 + ( -3 )2

д) 100 — 5• 24

Умножение степеней.

Для любого числа а и произвольных чисел m и n выполняется:

aman = am + n .

Доказательство:

Правило: При умножении степеней с одинаковыми основаниями основания оставляют прежним, а показатели степеней складывают.

amanak = am + nak = a( m + n ) + k = am + n + k

1. Представить в виде степени:

а) х5• х4 = х5 + 4 = х9

б) y• y6 = y1 • y6 = y1 + 6 = y7

в) b2 • b5 • b4 = b2 + 5 + 4 = b11

г) 34 • 9 = 3432 = 36

д) 0,01• 0,13 = 0,12 • 0,13 = 0,15

2. Представить в виде степени и найти значение по таблице:

а) 23 • 2 = 24 = 16

б) 32 • 35 = 37 = 2187

Вариант 1

1. Представить в виде степени:

а) х3 •х4 е) х2 •х3 •х4

б) а6 •а2 ж) 33•9

в) у4 •у з) 74•49

г) а• а8 и) 16• 27

д) 23•24 к) 0,33•0,09

2. Представить в виде степени и найти значение по таблице:

а) 22•23 в) 8• 25

б) 34•32 г) 27• 243

Деление степеней.

Для любого числа а0 и произвольных натуральных чисел m и n, таких, что m>n выполняется:

am : an = am — n

Доказательство:

am — n an = a( m — n ) + n = am — n + n = am

по определению частного:

am : an = am — n .

Правило: При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

Определение: Степень числа а, не равного нулю, с нулевым показателем равна единице:

а0 = 1

т.к. аn : an = 1 при а0 .

1. Представьте в виде степени частное:

а) х42 = х4 — 2 = х2

б) у83 = у8 — 3 = у5

в) а7:а = а71 = а7 — 1 = а6

г) с50 = с5:1 = с5

2. Найдите значения выражений:

а) 57:55 = 52 = 25

б) 1020:1017 = 103 = 1000

в)

г)

д)

Вариант 1

1. Представьте в виде степени частное:

а) х5 : х2

б) у9 : у4

в) b10 : b

г) с10 : с4

д) а7 : а0

2. Найдите значения выражений:

а) 36 : 32

б) 715 : 713

в)

г)

д)

Возведение в степень произведения.

Для любых а и b и произвольного натурального числа n:

( ab )n = an•bn

Доказательство:

По определению степени

( ab )n =

Сгруппировав отдельно множители а и множители b, получим:

=

Доказанное свойство степени произведения распространяется на степень произведения трех и более множителей.

Например:

( a• b• c )n = an •bn •cn ;

( a• b• c• d )n = an •bn •cn •dn .

Правило: При возведении в степень произведения возводят в эту степень каждый множитель и результат перемножают.

1. Возвести в степень:

а) ( a• b )4 = a4 •b4

б) (2• х• у )3 =23•х3 •у3 = 8• х3 •у3

в) ( 3• а )4 = 34•а4 = 81• а4

г) ( -5• у )3 = (-5)3 •у3 = -125• у3

д) (-0,2• х• у )2 = (-0,2)2 •х2 •у2 = 0,04• х2 •у2

е) (-3• a• b• c )4 = (-3)4 •a4 •b4 •c4 = 81• a4 •b4 •c4

2. Найти значение выражения:

а) (2• 10)4 = 24•104 = 16• 1000 = 16000

б) (3• 5• 20)2= 32•1002= 9• 10000= 90000

в) 24•54 = (2• 5)4 = 104 = 10000

г) 0,2511•411 = (0,25• 4)11 = 111 = 1

д)

Вариант 1

1. Возвести в степень:

а) ( a• b )9

б) ( 2• а• с )4

в) ( 5• а )3

г) ( -3• у )4

д) ( -0,1• х• у )3

е)

2. Найти значение выражения:

а) (3• 10)3

б) (5• 7• 20)2

в) 53•23

г)

д)

Возведение в степень степени.

Для любого числа а и произвольных натуральных чисел m и n:

( аm )n = аm n

Доказательство:

По определению степени

( аm )n =

Правило: При возведении степени в степень основание оставляют тем же, а показатели перемножают.

1. Возвести в степень:

( а3 )2 = а6 ( х5 )4 = х20

( у5 )2 = у10 ( b3 )3 = b9

2. Упростите выражения:

а) а3 •( а2)5 = а3 •а10 = а13

б) ( b3 )2 •b7 = b6 •b7 = b13

в) ( х3 )2 •( х2 )4 = х6 •х8 = х14

г) ( у• у7 )3 = ( у8 )3 = у24

3. Найдите значение выражений:

а)

б)

Вариант 1

1. Возвести в степень:

а) ( а4 )2      б) ( х4 )5

в) ( у3 )2      г) ( b4 )4

2. Упростите выражения:

а) а4 •( а3)2

б) ( b4 )3 •b5+

в) ( х2 )4 •( х4 )3

г) ( у• у9 )2

3. Найдите значение выражений:

а)

б)

 

Приложение

Определение степени.

Вариант 2

1ю Запишите произведение в виде степени:

а) 0,4• 0,4• 0,4

б)

в) а• а• а• а• а• а• а• а

г) ( -у ) • ( -у ) • ( -у ) • ( -у )

д) ( bс ) • ( bс ) • ( bс )

2. Представьте в виде квадрата числа:

    25 ; 0,16 ; .

3. Представьте в виде куба числа:

    64 ; 0,125 ; .

4. Найти значения выражений:

а) 52 + 33

б) 43 — 72

в) -13 + ( -2 )4

г) -62 + ( -3 )2

д) 4• 52 – 100

Вариант 3

1. Запишите произведение в виде степени:

а) 0,5• 0,5• 0,5

б)

в) с• с• с• с• с• с• с• с• с

г) ( -х ) • ( -х ) • ( -х ) • ( -х )

д) ( ab ) • ( ab ) • ( ab )

2. Представьте в виде квадрата числа: 100 ; 0,49 ; .

3. Представьте в виде куба числа:

    1000 ; 0,008 ; .

4. Найти значения выражений :

а) 34 + 72

б) 63 — 92

в) -15 + ( -3 )2

г) -53 + ( -4 )2

д) 5• 42 — 100

Вариант 4

1. Запишите произведение в виде степени:

а) 0,7• 0,7• 0,7

б)

в) х• х• х• х• х• х

г) ( -а ) • ( -а ) • ( -а )

д) ( bс ) • ( bс ) • ( bс ) • ( bc )

2. Представьте в виде квадрата числа:

    81 ; 0,64 ;.

3. Представьте в виде куба числа:

    216 ; 0,064 ; .

4. Найти значения выражений :

а) 62 + 43

б) 53 — 82

в) -14 + ( -3 )3

г) -34 + ( -5 )2

д) 100 — 3• 25

Умножение степеней.

Вариант 2

1. Представить в виде степени:

а) х4 •x5      е) х3 •х4 •х5

б) а7 •а3      ж) 23•4

в) у5 •у      з) 43•16

г) а• а7      и) 4• 25

д) 22•25      к) 0,23• 0,04

2. Представить в виде степени и найти значение по таблице:

а) 32•33    в) 16• 23

б) 24•25    г) 9• 81

Вариант 3

1. Представить в виде степени:

а) а3•а5    е) у2 •у4 •у6

б) х4•х7    ж) 35•9

в) b6•b    з) 53•25

г) у• у8    и) 49• 74

д) 23•26    к) 0,34•0,27

2. Представить в виде степени и найти значение по таблице:

а) 33•34    в) 27• 34

б) 24•26    г) 16• 64

Вариант 4

1. Представить в виде степени:

а) а6•а2    е) х4 •х• х6

б) х7•х8    ж) 34•27

в) у6•у    з) 43•16

г) х• х10    и) 36• 63

д) 24•25    к) 0,22•0,008

2. Представить в виде степени и найти значение по таблице:

а) 26•23    в) 64• 24

б) 35•32    г) 81• 27

Деление степеней.

Вариант 2

1. Представьте в виде степени частное:

а) х6 : х3

б) у10 : у5

в) b9 : b

г) с12 : с7

д) а9 : а0

2. Найдите значения выражений:

а) 27 : 24

б) 610 : 68

в)

г)

д)

Вариант 3

1. Представьте в виде степени частное:

а) у7 : у4

б) а11 : а7

в) с10 : с

г) b17 : b15

д) х8 : х0

2. Найдите значения выражений:

а) 38 : 35

б) 410 : 47

в)

г)

д)

Вариант 4

1. Представьте в виде степени частное:

а) х8 : х3

б) b12 : b5

в) у9 : у

г) с19 : с14

д) а10 : а0

2. Найдите значения выражений:

а) 510 : 58

б) 617 : 612

в)

г)

д)

Возведение в степень произведения.

Вариант 2

1. Возвести в степень:

а) ( х• у )7

б) (3• а• b )4

в) (2• а )5

г) (-4• у )3

д) (-0,3• a• b )2

е) ( -2• x• y• z )3

2. Найти значение выражения:

а) (2• 10)3

б) (7• 4• 25)2

в) 43•53

г) 49•0,259

д)

Вариант 3

1. Возвести в степень:

а) ( a• b )8

б) (2• х• у )5

в) (3• х )4

г) (-4• с )4

д) (-0,2• х• у )2

е)

2. Найти значение выражения:

а) (5• 10)3

б) (9• 4• 25)2

в) 23•33

г)

д) 0,54

urok.1sept.ru

Степень с натуральным показателем и её свойства

Степень с натуральным показателем и ее свойства.

Степенью числа a с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен a:

an

В выражении an :

—  число а (повторяющийся множитель) называют основанием степени

—  число n (показывающее сколько раз повторяется множитель) – показателем степени

Например: 25 = 2·2·2·2·2 = 32, здесь: 2   – основание степени, 5   – показатель степени, 32 – значение степени

Отметим, что основание степени может быть любым числом.

Вычисление значения степени называют действием возведения в степень. Это действие третьей ступени. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).

Для записи больших чисел часто применяются степени числа 10. Так, расстояние от земли до солнца примерно равное 150 млн. км, записывают в виде 1,5 · 108

Каждое число большее 10 можно записать в виде: а · 10n , где 1

Например:  4578 = 4,578 · 103 ;

103000 = 1,03 · 105.

Свойства степени с натуральным показателем:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней складываются

am · an = am + n

например:  71.7 · 7 — 0.9 = 71.7+( — 0.9) = 71.7 — 0.9 =  70.8

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней вычитаются

am / an = am — n ,

где,  m > n,

a ? 0

например: 133.8 / 13 -0.2 = 13(3.8 -0.2) = 133.6

3. При возведении степени в степень основание остается прежним, а показатели степеней перемножаются.

(am )n = a m ·  n

    например: (23)2 = 2 3·2 = 26

    4. При возведении в степень произведения в эту степень возводится каждый множитель

      (a · b)n = an · b m ,

      например:(2·3)3 = 2n · 3 m ,

      5. При возведении в степень дроби в эту степень возводятся числитель и знаменатель

      (a / b)n = an / bn

      например: (2 / 5)3 = (2 / 5) · (2 / 5) · (2 / 5) = 23 / 53

      mirurokov.ru

      Ответы@Mail.Ru: что такое степень числа?

      степень показывает, какое кол-во раз необходимо умножить данное число (основание) на само себя, точнее сколько цифр нужно перемножить, Например: 5 в степени 4 — 5*5*5*5 = 625 (-3) в степени 4 = (-3)*(-3)*(-3)*(-3)=81 (-1) в степени 1 = (-1) Важно: если отрицательное число стоит без скобок, то это значит что знак минус не участвует в перемножении и выносится за скобки, например: -3 в степени 4 = -( 3*3*3*3) = — 81 Это же касается дробных чисел, пример: (2/3) в степени 2 = (2 в степени 2) /(3 в степени 2) 2/3 в степени 2 = (2 в степени 2) / 3 6 в степени 3 — 6*6*6=216, Существуют такие понятие как «квадрат числа» — это вторая степень, например: 4 в квадрате = 4*4=16 и «куб числа» или «число в кубе» — третья степень — 1в кубе = 1*1*1=1 Правило: Любое число в нулевой степени равняется 1, будь то отрицательное число или дробное, даже ноль в степени ноль равен 1 Отрицательная степень переворачивает число, пример: 3 в степени (-1) = 1/3, 2 в степени (-2)= 1/4, (2/3) в степени (-1 )= 3/2

      Степенью числа «a» с натуральным показателем «n», бóльшим 1, называется произведение «n» одинаковых множителей, каждый из которых равен числу «a». Для записи произведения числа самого на себя несколько раз применяют сокращённое обозначение. Так, вместо произведения шести одинаковых множителей 4 • 4 • 4 • 4 • 4 • 4 пишут 4*6 (6 вверху) и произносят «четыре в шестой степени». Выражение «четыре в шестой степени».называют степенью числа, где: 4 — основание степени; 6 — показатель степени.

      Смотря по тому, о какой степени идет речь! ! Олег Дьяченко неплохо рассказал про целые степени. Правда, с одной грубой ошибкой: НУЛЕВАЯ СТЕПЕНЬ НУЛЯ НЕОПРЕДЕЛЕНА или 0^0 — не имеет смысла. Рациональная степень определяется через понятие арифметического корня, а иррациональная степень через предельный переход.

      степень показывает, какое кол-во раз необходимо умножить данное число (основание) на само себя, точнее сколько цифр нужно перемножить, Например: 5 в степени 4 — 5*5*5*5 = 625 (-3) в степени 4 = (-3)*(-3)*(-3)*(-3)=81 (-1) в степени 1 = (-1) Важно: если отрицательное число стоит без скобок, то это значит что знак минус не участвует в перемножении и выносится за скобки, например: -3 в степени 4 = -( 3*3*3*3) = — 81 Это же касается дробных чисел, пример: (2/3) в степени 2 = (2 в степени 2) /(3 в степени 2) 2/3 в степени 2 = (2 в степени 2) / 3 6 в степени 3 — 6*6*6=216, Существуют такие понятие как «квадрат числа» — это вторая степень, например: 4 в квадрате = 4*4=16 и «куб числа» или «число в кубе» — третья степень — 1в кубе = 1*1*1=1 Правило: Любое число в нулевой степени равняется 1, будь то отрицательное число или дробное, даже ноль в степени ноль равен 1 Отрицательная степень переворачивает число, пример: 3 в степени (-1) = 1/3, 2 в степени (-2)= 1/4, (2/3) в степени (-1 )= 3/2

      степень показывает, какое кол-во раз необходимо умножить данное число (основание) на само себя, точнее сколько цифр нужно перемножить,

      touch.otvet.mail.ru

      Таблица степеней

      Таблица степеней чисел с 1 до 10. Калькулятор степеней онлайн. Интерактивная таблица и изображения таблицы степеней в высоком качестве.


      Калькулятор степеней

      Вычислить Очистить

      \begin{align} \end{align}

      С помощью данного калькулятора вы сможете в режиме онлайн вычислить степень любого натурального числа. Введите число, степень и нажмите кнопку «вычислить».




      Таблица степеней от 1 до 10


      n12345678910
      1n1111111111
      2n2481632641282565121024
      3n392781243729218765611968359049
      4n416642561024409616384655362621441048576
      5n5251256253125156257812539062519531259765625
      6n636216129677764665627993616796161007769660466176
      7n749343240116807117649823543576480140353607282475249
      8n8645124096327682621442097152167772161342177281073741824
      9n9817296561590495314414782969430467213874204893486784401
      10n10100100010000100000100000010000000100000000100000000010000000000



      Таблица степеней от 1 до 10

      11=1

      12=1

      13=1

      14=1

      15=1

      16=1

      17=1

      18=1

      19=1

      110=1

      21=2

      22=4

      23=8

      24=16

      25=32

      26=64

      27=128

      28=256

      29=512

      210=1024

      31=3

      32=9

      33=27

      34=81

      35=243

      36=729

      37=2187

      38=6561

      39=19683

      310=59049

      41=4

      42=16

      43=64

      44=256

      45=1024

      46=4096

      47=16384

      48=65536

      49=262144

      410=1048576

      51=5

      52=25

      53=125

      54=625

      55=3125

      56=15625

      57=78125

      58=390625

      59=1953125

      510=9765625

      61=6

      62=36

      63=216

      64=1296

      65=7776

      66=46656

      67=279936

      68=1679616

      69=10077696

      610=60466176

      71=7

      72=49

      73=343

      74=2401

      75=16807

      76=117649

      77=823543

      78=5764801

      79=40353607

      710=282475249

      81=8

      82=64

      83=512

      84=4096

      85=32768

      86=262144

      87=2097152

      88=16777216

      89=134217728

      810=1073741824

      91=9

      92=81

      93=729

      94=6561

      95=59049

      96=531441

      97=4782969

      98=43046721

      99=387420489

      910=3486784401

      101=10

      102=100

      103=1000

      104=10000

      105=100000

      106=1000000

      107=10000000

      108=100000000

      109=1000000000

      1010=10000000000



      Теория

      Степень числа – это сокращенная запись операции многократного умножения числа самого на себя. Само число в данном случае называется — основанием степени, а количество операций умножения — показателем степени.

      an = a×a … ×a

      запись читается: «a» в степени «n».

      «a» — основание степени

      «n» — показатель степени

      Пример:

      46 = 4 × 4 × 4 × 4 × 4 × 4 = 4096

      Данное выражение читается: 4 в степени 6 или шестая степень числа четыре или возвести число четыре в шестую степень.


      Скачать таблицу степеней

      • Нажмите на картинку чтобы посмотреть в увеличенном виде.
      • Нажмите на надпись «скачать», чтобы сохранить картинку на свой компьютер. Изображение будет с высоким разрешением и в хорошем качестве.
      Таблица степеней Таблица степеней

      doza.pro

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *