Степени в математике формулы – ., ,

Содержание

Все главные формулы по математике — Математика — Теория, тесты, формулы и задачи

Оглавление:

 

Формулы сокращенного умножения

К оглавлению…

Квадрат суммы:

Формула Квадрат суммы

Квадрат разности:

Формула Квадрат разности

Разность квадратов:

Формула Разность квадратов

Разность кубов:

Формула Разность кубов

Сумма кубов:

Формула Сумма кубов

Куб суммы:

Формула Куб суммы

Куб разности:

Формула Куб разности

Последние две формулы также часто удобно использовать в виде:

Формула Куб суммы

Формула Куб разности

 

Квадратное уравнение и формула разложения квадратного трехчлена на множители

К оглавлению…

Пусть квадратное уравнение имеет вид:

Тогда дискриминант находят по формуле:

Формула Дискриминант

Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле:

Формула Корни квадратного уравнения

Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле:

Формула Единственный корень квадратного уравнения

Если D < 0, то квадратное уравнение не имеет корней. В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле:

Формула разложения квадратного трехчлена на множители

Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой:

Формула разложения квадратного трехчлена с единственным корнем на множители

Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета. Согласно Теореме Виета, сумма корней квадратного уравнения равна:

Формула Сумма корней квадратного уравнения

Произведение корней квадратного уравнения может быть вычислено по формуле:

Формула Произведение корней квадратного уравнения

Парабола

График параболы задается квадратичной функцией:

Формула Квадратичная функция

При этом координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины:

Формула Икс вершины параболы

Игрек вершины параболы:

Формула Игрек вершины параболы

 

Свойства степеней и корней

К оглавлению…

Основные свойства степеней:

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Формула Основные свойства степеней

Последнее свойство выполняется только при n > 0. Ноль можно возводить только в положительную степень.

Формула Свойство отрицательной степени

Основные свойства математических корней:

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Для арифметических корней:

Формула Основные свойства математических корней

Последнее справедливо: если n – нечетное, то для любого a; если же n – четное, то только при a больше либо равном нолю. Для корня нечетной степени выполняется также следующее равенство:

Формула Основные свойства математических корней

Для корня четной степени имеется следующее свойство:

Формула Основные свойства математических корней

 

Формулы с логарифмами

К оглавлению…

Определение логарифма:

Формула Определение логарифма

Определение логарифма можно записать и другим способом:

Формула Определение логарифма

Свойства логарифмов:

Формула Свойства логарифмов

Формула Свойства логарифмов

Формула Свойства логарифмов

Логарифм произведения:

Формула Логарифм произведения

Логарифм дроби:

Формула Логарифм дроби

Вынесение степени за знак логарифма:

Формула Вынесение степени за знак логарифма

Формула Вынесение степени за знак логарифма

Формула Вынесение степени за знак логарифма

Формула Вынесение степени за знак логарифма

Другие полезные свойства логарифмов:

Формула Свойства логарифмов

Формула Свойства логарифмов

 

Арифметическая прогрессия

К оглавлению…

Формулы n-го члена арифметической прогрессии:

Формула n-го члена арифметической прогрессии

Формула n-го члена арифметической прогрессии

Соотношение между тремя соседними членами арифметической прогрессии:

Формула Соотношение между тремя соседними членами арифметической прогрессии

Формула суммы арифметической прогрессии:

Формула суммы арифметической прогрессии

Свойство арифметической прогрессии:

Формула Свойство арифметической прогрессии

 

Геометрическая прогрессия

К оглавлению…

Формулы n-го члена геометрической прогрессии:

Формула n-го члена геометрической прогрессии

Формула n-го члена геометрической прогрессии

Соотношение между тремя соседними членами геометрической прогрессии:

Формула Соотношение между тремя соседними членами геометрической прогрессии

Формула суммы геометрической прогрессии:

Формула суммы геометрической прогрессии

Формула суммы бесконечно убывающей геометрической прогрессии:

Формула суммы бесконечно убывающей геометрической прогрессии

Свойство геометрической прогрессии:

Формула Свойство геометрической прогрессии

 

Тригонометрия

К оглавлению…

Пусть имеется прямоугольный треугольник:

Прямоугольный треугольник

Тогда, определение синуса:

Формула Определение синуса

Определение косинуса:

Формула Определение косинуса

Определение тангенса:

Формула Определение тангенса

Определение котангенса:

Формула Определение котангенса

Основное тригонометрическое тождество:

Формула Основное тригонометрическое тождество

Простейшие следствия из основного тригонометрического тождества:

Формула Простейшие следствия из основного тригонометрического тождества

Формула Простейшие следствия из основного тригонометрического тождества

Формулы двойного угла

Синус двойного угла:

Формула Синус двойного угла

Косинус двойного угла:

Формула Косинус двойного угла

Тангенс двойного угла:

Формула Тангенс двойного угла

Котангенс двойного угла:

Формула Котангенс двойного угла

Тригонометрические формулы сложения

Синус суммы:

Формула Синус суммы

Синус разности:

Формула Синус разности

Косинус суммы:

Формула Косинус суммы

Косинус разности:

Формула Косинус разности

Тангенс суммы:

Формула Тангенс суммы

Тангенс разности:

Формула Тангенс разности

Котангенс суммы:

Формула Котангенс суммы

Котангенс разности:

Формула Котангенс разности

Тригонометрические формулы преобразования суммы в произведение

Сумма синусов:

Формула Сумма синусов

Разность синусов:

Формула Разность синусов

Сумма косинусов:

Формула Сумма косинусов

Разность косинусов:

Формула Разность косинусов

Сумма тангенсов:

Формула Сумма тангенсов

Разность тангенсов:

Формула Разность тангенсов

Сумма котангенсов:

Формула Сумма котангенсов

Разность котангенсов:

Формула Разность котангенсов

Тригонометрические формулы преобразования произведения в сумму

Произведение синусов:

Формула Произведение синусов

Произведение синуса и косинуса:

Формула Произведение синуса и косинуса

Произведение косинусов:

Формула Произведение косинусов

Формулы понижения степени

Формула понижения степени для синуса:

Формула понижения степени для синуса

Формула понижения степени для косинуса:

Формула понижения степени для косинуса

Формула понижения степени для тангенса:

Формула понижения степени для тангенса

Формула понижения степени для котангенса:

Формула понижения степени для котангенса

Формулы половинного угла

Формула половинного угла для тангенса:

Формула половинного угла для тангенса

Формула половинного угла для котангенса:

Формула половинного угла для котангенса

 

Тригонометрические формулы приведения

Формулы приведения задаются в виде таблицы:

Таблица Тригонометрические формулы приведения

 

Тригонометрическая окружность

По тригонометрической окружности легко определять табличные значения тригонометрических функций:

Тригонометрическая окружность

 

Тригонометрические уравнения

К оглавлению…

Формулы решений простейших тригонометрических уравнений. Для синуса существует две равнозначные формы записи решения:

Формула Решение простейшего тригонометрического уравнения для синуса

Формула Решение простейшего тригонометрического уравнения для синуса

Для остальных тригонометрических функций запись однозначна. Для косинуса:

Формула Решение простейшего тригонометрического уравнения для косинуса

Для тангенса:

Формула Решение простейшего тригонометрического уравнения для тангенса

Для котангенса:

Формула Решение простейшего тригонометрического уравнения для котангенса

Решение тригонометрических уравнений в некоторых частных случаях:

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

Формула Решение тригонометрических уравнений в некоторых частных случаях

 

Геометрия на плоскости (планиметрия)

К оглавлению…

Пусть имеется произвольный треугольник:

Произвольный треугольник

Тогда, сумма углов треугольника:

Формула Сумма углов треугольника

Площадь треугольника через две стороны и угол между ними:

Формула Площадь треугольника через две стороны и угол между ними

Площадь треугольника через сторону и высоту опущенную на неё:

Формула Площадь треугольника через сторону и высоту опущенную на неё

Полупериметр треугольника находится по следующей формуле:

Формула Полупериметр треугольника

Формула Герона для площади треугольника:

Формула Герона для площади треугольника

Площадь треугольника через радиус описанной окружности:

Формула Площадь треугольника через радиус описанной окружности

Формула медианы:

Формула медианы

Свойство биссектрисы:

Формула Свойство биссектрисы

Формулы биссектрисы:

Формула биссектрисы

Формула биссектрисы

Основное свойство высот треугольника:

Формула Основное свойство высот треугольника

Формула высоты:

Формула высоты

Еще одно полезное свойство высот треугольника:

Формула Свойство высот треугольника

Теорема косинусов:

Формула Теорема косинусов

Теорема синусов:

Формула Теорема синусов

Радиус окружности, вписанной в правильный треугольник:

Формула Радиус окружности, вписанной в правильный треугольник

Радиус окружности, описанной около правильного треугольника:

Формула Радиус окружности, описанной около правильного треугольника

Площадь правильного треугольника:

Формула Площадь правильного треугольника

Теорема Пифагора для прямоугольного треугольника (c — гипотенуза, a и b — катеты):

Формула Теорема Пифагора

Радиус окружности, вписанной в прямоугольный треугольник:

Формула Радиус окружности, вписанной в прямоугольный треугольник

Радиус окружности, описанной вокруг прямоугольного треугольника:

Формула Радиус окружности, описанной вокруг прямоугольного треугольника

Площадь прямоугольного треугольника (h — высота опущенная на гипотенузу):

Формула Площадь прямоугольного треугольника

Свойства высоты, опущенной на гипотенузу прямоугольного треугольника:

Формула Свойства высоты, опущенной на гипотенузу прямоугольного треугольника

Формула Свойства высоты, опущенной на гипотенузу прямоугольного треугольника

Формула Свойства высоты, опущенной на гипотенузу прямоугольного треугольника

Длина средней линии трапеции:

Формула Длина средней линии трапеции

Площадь трапеции:

Формула Площадь трапеции

Площадь параллелограмма через сторону и высоту опущенную на неё:

Формула Площадь параллелограмма через сторону и высоту опущенную на неё

Площадь параллелограмма через две стороны и угол между ними:

Формула Площадь параллелограмма через две стороны и угол между ними

Площадь квадрата через длину его стороны:

Формула Площадь квадрата через длину его стороны

Площадь квадрата через длину его диагонали:

Формула Площадь квадрата через длину его диагонали

Площадь ромба (первая формула — через две диагонали, вторая — через длину стороны и угол между сторонами):

Формула Площадь ромба

Площадь прямоугольника через две смежные стороны:

Формула Площадь прямоугольника через две смежные стороны

Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними:

Формула Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними

Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности (очевидно, что формула выполняется только для фигур в которые можно вписать окружность, т.е. в том числе для любых треугольников):

Формула Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности

Свойство касательных:

Свойство касательных

Свойство хорды:

Свойство хорды

Теорема о пропорциональных отрезках хорд:

Формула Теорема о пропорциональных отрезках хорд

Теорема о касательной и секущей:

Формула Теорема о касательной и секущей

Теорема о двух секущих:

Формула Теорема о двух секущих

Теорема о центральном и вписанном углах (величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу):

Формула Теорема о центральном и вписанном углах

Свойство вписанных углов (все вписанные углы опирающиеся на общую дугу равны между собой):

Свойство вписанных углов

Свойство центральных углов и хорд:

Формула Свойство центральных углов и хорд

Свойство центральных углов и секущих:

Формула Свойство центральных углов и секущих

Условие, при выполнении которого возможно вписать окружность в четырёхугольник:

Условие, при выполнении которого возможно вписать окружность в четырёхугольник

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника:

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника

Сумма углов n-угольника:

Формула Сумма углов n-угольника

Центральный угол правильного n-угольника:

Формула Центральный угол правильного n-угольника

Площадь правильного n-угольника:

Формула Площадь правильного n-угольника

Длина окружности:

Формула Длина окружности

Длина дуги окружности:

Формула Длина дуги окружности

Площадь круга:

Формула Площадь круга

Площадь сектора:

Формула Площадь сектора

Площадь кольца:

Формула Площадь кольца

Площадь кругового сегмента:

Формула Площадь кругового сегмента

 

Геометрия в пространстве (стереометрия)

К оглавлению…

Главная диагональ куба:

Формула Главная диагональ куба

Объем куба:

Формула Объем куба

Объём прямоугольного параллелепипеда:

Формула Объём прямоугольного параллелепипеда

Главная диагональ прямоугольного параллелепипеда (эту формулу также можно назвать: «трёхмерная Теорема Пифагора»):

Формула Трёхмерная Теорема Пифагора

Объём призмы:

Формула Объём призмы

Площадь боковой поверхности прямой призмы (P – периметр основания, l – боковое ребро, в данном случае равное высоте h):

Формула Площадь боковой поверхности прямой призмы

Объём кругового цилиндра:

Формула Объём кругового цилиндра

Площадь боковой поверхности прямого кругового цилиндра:

Формула Площадь боковой поверхности прямого кругового цилиндра

Объём пирамиды:

Формула Объём пирамиды

Площадь боковой поверхности правильной пирамиды (P – периметр основания, l – апофема, т.е. высота боковой грани):

Формула Площадь боковой поверхности правильной пирамиды

Объем кругового конуса:

Формула Объем кругового конуса

Площадь боковой поверхности прямого кругового конуса:

Формула Площадь боковой поверхности прямого кругового конуса

Длина образующей прямого кругового конуса:

Формула Длина образующей прямого кругового конуса

Объём шара:

Формула Объём шара

Площадь поверхности шара (или, другими словами, площадь сферы):

Формула Площадь сферы

 

Координаты

К оглавлению…

Длина отрезка на координатной оси:

Формула Длина отрезка на координатной оси

Длина отрезка на координатной плоскости:

Формула Длина отрезка на координатной плоскости

Длина отрезка в трёхмерной системе координат:

Формула Длина отрезка в трёхмерной системе координат

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости — первые две формулы, для трехмерной системы координат — все три формулы):

Формула Координаты середины отрезка

 

Таблица умножения

К оглавлению…

Таблица умножения

 

Таблица квадратов двухзначных чисел

К оглавлению…

Таблица квадратов двухзначных чисел

 

Расширенная PDF версия документа «Все главные формулы по школьной математике»:

К оглавлению…

educon.by

Формулы сокращенного умножения: таблица, примеры использования

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Формулы сокращенного умножения. Таблица

Впервые тема ФСУ рассматривается в рамках курса «Алгебра» за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения

  1. формула квадрата суммы: a+b2=a2+2ab+b2
  2. формула квадрата разности: a-b2=a2-2ab+b2
  3. формула куба суммы: a+b3=a3+3a2b+3ab2+b3
  4. формула куба разности: a-b3=a3-3a2b+3ab2-b3
  5. формула разности квадратов: a2-b2=a-ba+b
  6. формула суммы кубов: a3+b3=a+ba2-ab+b2
  7. формула разности кубов: a3-b3=a-ba2+ab+b2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Формулы сокращенного умножения. Таблица

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы — соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы. 

Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращ

zaochnik.com

Возведение степени в степень (формула (an)k=ank)

На этом уроке мы изучим возведение степени в степень. Вначале вспомним определение степени и теоремы об умножении и делении степеней с одинаковым основанием. Далее будет сформулирована теорема о возведении степени в степень. Затем мы приведем примеры ее использования на конкретных числах и докажем ее. Также мы применим теорему для решения различных задач и будем решать типичные примеры с помощью всех теорем.

Напоминание:

Основные определения:

Здесь a – основание степени,

n – показатель степени,

– n-ая степень числа.

Теорема 1. Для любого числа а и любых натуральных n и k справедливо равенство:

При умножении степеней с одинаковыми основаниями показатели складываются, основание остается неизменным.

Теорема 2. Для любого числа а и любых натуральных n и k, таких, что  n > k справедливо равенство:

При делении степеней с одинаковыми основаниями показатели отнимаются, а основание остается неизменным.

На этом уроке будет рассмотрена следующая теорема.

Теорема 3. Для любого числа а и любых натуральных n и k справедливо равенство:

Вывод: частные случаи подтвердили правильность формулы . Докажем ее в общем случае, то есть для любого а и любых натуральных n и k.

По определению степени:

 

Применим теорему 1:

 

Итак, мы доказали: , где а – любое число, n и k – любые натуральные числа.

Другими словами, чтобы возвести степень в степень показатели нужно перемножить, а основание оставить неизменным.

Пример 1: Упростить.

Для решения следующих примеров воспользуемся свойством .

а)

б)

в)

Комментарий к примеру 1.

Мы написали, что , но в то же время , так как .

Аналогично,   .

В качестве основания может быть любое допустимое алгебраическое выражение:

Пример 2:Упростить.

а)

б)

Пример 3: Вычислить.

а)  

б)  

в)

г). Комментарий:

д). Комментарий:

е). Комментарий:

Пример 4: Упростить.

Для решения следующих примеров будем пользоваться теоремами 1, 2, 3.

а)

б)

в)

г)

д) или быстрее

е) =

Пример 5: Вычислить:

а)= 

 

Список литературы

  1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. – М.: Просвещение, 2010.
  2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. – М.: ВЕНТАНА-ГРАФ.
  3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7. – М.: Просвещение, 2006.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал Mirurokov.ru (Источник).
  2. Школьный помощник (Источник).
  3. Интернет-портал Testent.ru (Источник).
  4. Фестиваль педагогических идей «Открытый урок» (Источник).

 

Домашнее задание

  1. Упростить:
    а)   б)    в)
  2.  Вычислить:
    а)   б) ;   в)   
  3. Упростить:
    а)   б)     в)              г)
  4. Вычислить:
    а)            б)

interneturok.ru

Самая красивая теорема математики: тождество Эйлера / Habr

Посмотрев лекцию профессора Робина Уилсона о тождестве Эйлера, я наконец смог понять, почему тождество Эйлера является самым красивым уравнением. Чтобы поделиться моим восхищением это темой и укрепить собственные знания, я изложу заметки, сделанные во время лекции. А здесь вы можете купить его прекрасную книгу.

Что может быть более загадочным, чем взаимодействие мнимых чисел с вещественными, в результате дающее ничто? Такой вопрос задал читатель журнала Physics World в 2004 году, чтобы подчеркнуть красоту уравнения Эйлера «e в степени i, умноженного на пи равно минус единице».

Рисунок 1.0: тождество Эйлера — e в степени i, умноженного на пи, плюс единица равно нулю.

Ещё раньше, в 1988 году, математик Дэвид Уэллс, писавший статьи для американского математического журнала The Mathematical Intelligencer, составил список из 24 теорем математики и провёл опрос, попросив читателей своей статьи выбрать самую красивую теорему. И после того, как с большим отрывом в нём выиграло уравнение Эйлера, оно получило званием «самого красивого уравнения в математике».

Рисунок 2.0: обложка журнала The Mathematical Intelligencer
Рисунок 3.0: опрос Дэвида Уэллса из журнала

Леонарда Эйлера называют самым продуктивным математиком за всю историю. Других выдающихся математиков вдохновляли его работы. Один из лучших физиков в мире, Ричард Фейнман, в своих знаменитых лекциях по физике назвал уравнение Эйлера «самой примечательной формулой в математике». Ещё один потрясающий математик, Майкл Атья, назвал эту формулу «…математическим аналогом фразы Гамлета — «быть или не быть» — очень короткой, очень сжатой, и в то же время очень глубокой».

Существует множество интересных фактов об уравнении Эйлера. Например, оно встречалось в некоторых эпизодах «Симпсонов».

Рисунок 4.0: в этой сцене уравнение Эйлера можно заметить на второй книге в самой правой стопке.
Рисунок 5.0: в этой сцене уравнение Эйлера написано на футболке второстепенного персонажа.

Также уравнение Эйлера стало ключевым пунктом в уголовном деле. В 2003 году аспирант Калифорнийского технологического института Билли Коттрелл писал краской на чужих спортивных автомобилях уравнение Эйлера. На суде он сказал: «Я знал теорему Эйлера с пяти лет, и её обязаны знать все«.

Рисунок 6.0: марка, выпущенная в 1983 году в Германии в память о двухсотлетии со смерти Эйлера.
Рисунок 7.0: марка, выпущенная Швейцарией в 1957 году в честь 250-й годовщины Эйлера.

Почему уравнение Эйлера так важно?

Вы имеете полное право задаться вопросом: почему Билли Коттрелл считал, что об уравнении Эйлера обязаны знать все? И был настолько в этом уверен, что начал писать его на чужих машинах? Ответ прост: Эйлер воспользовался тремя фундаментальными константами математики и применил математические операции умножения и возведения в степень, чтобы записать красивую формулу, дающую в результате ноль или минус один.

  • Константа e связана со степенными функциями.
  • Константа i является не вещественным, а мнимым числом, равным квадратному корню из минус единицы.
  • Знаменитая константа π (пи) связана с окружностями.

Впервые тождество Эйлера появилось в 1748 году в его книге Introductio in analysin infinitorum. Позже другие люди увидели, что эта формула связана с тригонометрическими функциями синуса и косинуса, и эта связь удивительна, ведь степенная функция стремится к бесконечности, а тригонометрические функции колеблются в интервале от — 1 до -1.

e в степени i, умноженного на ϕ (фи) = cos ϕ + i * sin ϕ

Рисунок 8.0: экспоненциальная функция y=ex.
Рисунок 8.1: график тождества Эйлера.
Рисунок 8.2: частоты, испускаемые LC-цепью.

Показанные выше уравнения и графы могут показаться абстрактными, но они важны для квантовой физики и вычислений обработки изображений, и при этом зависят от тождества Эйлера.

1: число для счёта

Число 1 (единица) является основой нашей системы исчисления. С неё мы начинаем счёт. Но как мы считаем? Чтобы считать, мы используем цифры 0–9 и систему разрядов, определяющую значение цифры.

Например, число 323 означает 3 сотни, 2 десятка и 3 единицы. Здесь число 3 исполняет две разные роли, которые зависят от его расположения.

323 = (3*100) + (2*10) + (3*1)

Существует и другая система исчисления, называемая двоичной. В этой системе вместо 10 используется основание 2. Она широко применяется в компьютерах и программировании. Например, в двоичной системе:

1001 = (23) + (02) + (01) + (20) = [9 в системе с основанием 10]

Кто создал системы исчисления? Как первые люди считали предметы или животных?

Как возникли наши системы исчисления? Как считали первые цивилизации? Мы точно знаем, что они не пользовались нашей разрядной системой. Например 4000 лет назад древние египтяне использовали систему исчисления с разными символами. Однако они комбинировали символы, создавая новый символ, обозначающий числа.

Рисунок 11: показанные здесь иероглифы образуют число 4622; это одно из чисел, вырезанных на стене в храме в Карнаке (Египет).
Рисунок 12: иероглифы — это изображения, обозначающие слова, а в данном случае — числа.

В то же время, но в другом месте ещё один социум обнаружил способ подсчёта, но в нём тоже использовались символы. Кроме того, основанием их системы исчисления было 60, а не 10. Мы используем их метод счёта для определения времени; поэтому в минуте 60 секунд, а в часе 60 минут.

Рисунок 13: вавилонские числа из шестидесятиричной системы счисления (с основанием 60).

Тысячу лет спустя древние римляне изобрели римские числа. Для обозначения чисел они использовали буквы. Римская нотация не считается разрядной системой, потому что для многих значений нашей системы счисления в ней использовались разные буквы. Именно по этой причине для счёта они использовали абакус.

Рисунок 14: романский абакус в шестнадцатеричной (с основанием 16) системе счисления
Рисунок 15: таблица преобразования из арабских в римские числа

Древние греки тоже не использовали разрядную систему счисления. Греческие математики обозначали числа буквами. У них были специальные буквы для чисел от 100 до 900. Многие люди в то время считали греческие числа запутанными.

Рисунок 15: таблица букв древних греков.

В то же самое время китайские математики начали использовать для расчётов небольшие бамбуковые палочки. Этот китайский способ счёта называют первой десятичной разрядной системой.

Рисунок 16: китайский способ счёта с числами-палочками. Использовался как минимум с 400 года до нашей эры. Квадратная счётная доска использовалась примерно до 1500 года, когда её заменил абакус.

Однако самая уникальная система счёта использовалась индейцами майя. Их система счисления имела основание 20. Для обозначения чисел от 1 до 19 они использовали точки и линии. Чем же отличалась их система счисления? Для каждого числа они использовали изображения голов и отдельный символ нуля 0.

Рисунок 17: Система счисления майя с основанием 20, в которой числа обозначались головами
Рисунок 18: ещё один способ записи чисел майя.

0: число для обозначения ничего

Некоторые цивилизации использовали пробелы, чтобы, например, отличать число 101 от 11. Спустя какое-то время начало появляться особое число — ноль. К примеру, в пещере в индийском городе Гвалиор археологи обнаружили на стене число 270, в котором был ноль. Самое первое зафиксированное использование нуля можно увидеть в Бодлианской библиотеке.
Рисунок 19: вырезанный на стене храма в Гвалиоре круг обозначает ноль. Ему примерно 1500 лет.
Рисунок 20: чёрные точки в манускрипте Бакхшали обозначают нули; это самый старый письменный пример использования числа, ему примерно 1800 лет.

Примерно 1400 лет назад были записаны правила вычислений с нулём. Например, при сложении отрицательного числа и нуля получается то же отрицательное число. Деление на нуль не допускается, потому что если разделить на ноль, то мы получим число, которое может быть равно любому нужному нам числу, что должно быть запрещено.

Вскоре после этого многими людьми были опубликованы книги по арифметике, распространяющие использование индо-арабской записи чисел. Ниже показана эволюция индо-арабских чисел. В большинстве стран используется индо-арабская система чисел, но арабские страны до сих пор пользуются арабскими числами.

Рисунок 21: на этой схеме показана эволюция чисел, происходящих от чисел брахми и заканчивающаяся числами, которыми мы используем и сегодня.
Рисунок 22: классическая гравюра «Арифметика» из Margarita Philosophica Грегора Рейша, на которой изображено соревнование между Боэцием, улыбающимся после открытия индо-арабских чисел и письменных вычислений, и нахмуренным Пифагором, до сих пор пытающимся пользоваться счётной доской.

Пи (π): самое известное иррациональное число

Пи — самое популярное из известных нам иррациональных чисел. Пи можно найти двумя способами: вычислив соотношение длины окружности к её диаметру, или соотношение площади круга к квадрату его радиуса. Евклид доказал, что эти соотношения постоянны для всех окружностей, даже для луны, пенни, шины и т.д.

π = окружность / диаметр ИЛИ π = площадь круга / радиус²

Рисунок 22: анимированная связь между окружностью и диаметром в отношении пи.

Так как иррациональные числа наподобие пи бесконечны и не имеют повторений, мы никогда не закончим записывать пи. Оно продолжается вечно. Есть люди, запомнившие множество десятичных разрядов пи (нынешний рекорд — 70 000 цифр! Источник: «Книга рекордов Гиннесса» ).

Рисунок 23: данные опроса 941 респондентов для определения процента людей, способных запомнить знаки пи после запятой.
Рисунок 24: На стене станции метро Karlsplatz в Вене записаны сотни разрядов пи.

На данный момент компьютеры смогли вычислить всего 2,7 триллиона разрядов пи. Может казаться, что это много, но на самом деле этот путь бесконечен.

Как я сказал выше, число пи нашёл Евклид. Но как поступали люди до Евклида, когда им нужно было найти площадь круга? Историки обнаружили вавилонскую глиняную табличку, в которой было записано отношение периметра шестиугольника к диаметру описанной вокруг него окружности. После вычислений полученное число оказалось равным 3.125. Это очень близко к пи.

Рисунок 24: вавилонская глиняная табличка с отношением периметра шестиугольника к длине описанной окружности.
Рисунок 25: Numberwarrior

Древние египтяне тоже близко подобрались к значению пи. Историки обнаружили документ, показывающий, как древние египтяне нашли число пи. Когда историки перевели документ, то нашли такую задачу:

Например, чтобы найти площадь поля диаметром 9 хета (1 хет = 52,35 метра), нужно выполнить следующее вычисление:

Вычесть 1/9 диаметра, а именно 1. Остаток равен 8. Умножить его на 8, что даёт нам 64. Следовательно, площадь будет равна 64 setjat (единица измерения площади).

Другими словами, диаметр равен 2r, а 1/9 радиуса равно (1/9 • 2r). Тогда если мы вычтем это из исходного диаметра, то получим 2r — (1/9 • 2r) = 8/9(2r). Тогда площадь круга равна 256/81 r². То есть пи равно почти 3,16. Они обнаружили это значение пи примерно 4000 лет назад.

Рисунок 26: математический папирус Ахмеса.

Однако греческие математики нашли для вычисления пи способ получше. Например, Архимед предпочитал работать с периметрами. Он начал рисовать окружности, описывающие многоугольники разного размера. Когда он чертил шестиугольник, то рисовал окружность с диаметром 1. Затем он видел что каждая сторона шестиугольника равна 1/2, а периметр шестиугольника равен 1/2 x 6 = 3. Затем он увеличивал количество сторон многоугольника, пока он не становился похожим на круг. Работая со 96-сторонним многоугольником и применив тот же способ, он получил 2 десятичных разряда пи после запятой: 3 и 10/71 = 3,14084. Спустя много лет китайский математик Лю Ху использовал 3072-сторонний многоугольник и получил число 3,14159 (5 верных десятичных разрядов числа пи после запятой). После этого ещё один китайский математик Цзу Чунчжи провёл ещё более впечатляющую работу. Он работал со 24000-сторонним многоугольником и получил 3,1415926 — семь верных десятичных разрядов пи после запятой.

Спустя тысячу лет немецкий математик Людольф Цейлен работал со 262-сторонним многоугольником и получил 35 десятичных разрядов пи. Это число, названное Людольфовым, было высечено на его могильном камне.

В 1706 году англичанин Джон Мэчин, долгое время работавший профессором астрономии, использовал формулу сложения, чтобы доказать, что пи равно
Не беспокоясь о том, как откуда взялась эта формула, Мэчин начал постоянно ею пользоваться, а затем записал показанный ниже ряд. Это был самый большой на то время шаг в количестве разрядов пи.
Рисунок 29: Формула Мэчина для пи

Однако первое упоминание пи появилось в 1706 году. Преподаватель математики Уильям Джонс написал книгу и впервые предложил пи для измерения окружностей. Так пи впервые появилась в книгах!

Рисунок 30: Juliabloggers

В 1873 году Уильям Шэнкс воспользовался формулой Джона Мэчина и получил 707 десятичных разрядов пи. Эти цифры написаны в комнате пи парижского Дворца открытий. Однако позже математики выяснили, что верными являются только 527 разрядов.

Рисунок 31: комната пи

С другой стороны, более интересный способ нахождения пи обнаружил Буффон. Его эксперимент основывался на случайном разбрасывании иголок для оценки пи. Он нарисовал на доске несколько параллельных линий на расстоянии D и взял иголки длиной L. Затем он случайным образом начал бросать иголки на доску и записывал долю иголок, пересекавших линию.

Рисунок 32.0: Science Friday

А после этого другой математик по имени Ладзарини подбросил иголку 3408 раз и получил шесть десятичных разрядов пи с соотношением 355/113. Однако если бы одна иголка не пересекла линию, он получил бы только 2 разряда пи.

Рисунок 32.1: бросание 1000 иголок для оценки приблизительного значения пи

e: история экспоненциального роста

e — это ещё одно знаменитое иррациональное число. Дробная часть e тоже бесконечна, как и у пи. Мы используем число e для вычисления степенного (экспоненциального) роста. Другими словами, мы используем e, когда видим очень быстрый рост или уменьшение.

Один из величайших, а возможно и лучший математик Леонард Эйлер открыл число e в 1736 году и впервые упомянул это особое число в своей книге Mechanica.

Рисунок 33: источник

Чтобы разобраться в экспоненциальном росте, мы можем использовать историю об изобретателе шахмат. Когда он придумал эту игру, то показал её властителю Севера. Царю понравилась игра и он пообещал, что отдаст автору любую награду. Тогда изобретатель попросил нечто очень простое: 20 зерна на первую клетку шахматной доски, 21 зерна на вторую клетку доски, 22 зерна — на третью, и так далее. Каждый раз количество зерна удваивалось. Царь Севера подумал, что просьбу будет выполнить легко, но он ошибался, потому то на последнюю клетку нужно было бы положить 263 зёрен, что равно 9 223 372 036 854 775 808. Это и есть экспоненциальный рост. Он начался с 1, постоянно удваивался, и через 64 шага вырос в огромное число!

Если бы изобретатель шахмат выбрал линейное уравнение, например 2n, то получил бы 2, 4, 6, 8, … 128… Следовательно, в дальней перспективе экспоненциальный рост часто намного превышает полиномиальный.

Кстати, 9 223 372 036 854 775 808–1 — это максимальное значение 64-битного целого числа со знаком.

Рисунок 34: источник: Wikipedia

Число e открыл Эйлер. Однако Якоб Бернулли тоже работал с числом e, когда вычислял сложный процент, чтобы заработать больше денег. Если вложить 100 долларов под 10% дохода, то как будет расти эта сумма? Во-первых, это зависит от того, как часто банк рассчитывает проценты. Например, если он рассчитывает один раз, то мы получим в конце года 110 долларов. Если мы передумаем и будем брать проценты каждые 6 месяцев, то в этом случае мы получим больше 110 долларов. Дело в ттом, что процент, полученный за первые 6 месяцев, тоже получит свой процент. Общая сумма будет равна 110,25 долларов. Можно догадаться, что мы можем получить больше денег, если будем забирать деньги каждый квартал года. А если мы будем делать временной интервал всё короче, то окончательные суммы будут продолжать расти. Такой бесконечный сложный процент сделает нас богатыми! Однако наш общий доход стремится к ограниченному значению, связанному с e.

Бернулли не называл число 2,71828 именем e. Когда Эйлер работал с 2,71828, он возвёл экспоненциальную функцию e в степень x. Свои открытия он изложил в книге The Analysis of Infinite.

В 1798 году Томас Мальтус использовал экспоненциальную функцию в своём эссе, посвящённом пищевому дефициту будущего. Он создал линейный график, показывающий производство пищи и экспоненциальный график, показывающий население мира. Мальтус сделал вывод, что в дальней перспективе экспоненциальный рост победит, и мир ждёт серьёзный дефицит пищи. Это явление назвали «мальтузианской катастрофой». Ньютон тоже использовал эту модель, чтобы показать, как охлаждается чашка чая.

Рисунок 35: закон Ньютона-Рихмана
Рисунок 36: мальтузианская катастрофа

Мнимость числа: i, квадратный корень -1

Долгое время для решения своих задач математикам было достаточно обычных чисел. Однако в какой-то момент для дальнейшего развития им потребовалось открыть нечто новое и загадочное. Например, итальянский математик Кардано пытался разделить число 10 на 2 части, произведение которых было бы равно 40. Чтобы решить эту задачу, он записал уравнение: x (10-x) = 40. Когда он решил это квадратное уравнение, то получил два решения: 5 плюс √-15 и 5 минус √-15, что в то время не имело никакого смысла. Этот результат был бессмысленным, потому что по определению квадратного корня ему нужно было найти число, квадрат которого был бы отрицательным. Однако и положительное, и отрицательное числа в квадрате имеют положительное значение. Как бы то ни было, он нашёл своё уникальное число. Однако первым математиком, назвавшим √-1 (квадратный корень из минус единицы) мнимым числом i, был Эйлер.

Лейбниц дал такой комментарий о мнимом числе √-1:

Комплексные числа — это прекрасное и чудесное убежище божественного духа, почти что амфибия бытия с небытием.

Мы можем складывать, вычитать, умножать и делить мнимые числа. Сложение, вычитание и умножение просты, а деление немного сложнее. Вещественные и мнимые части складываются по отдельности. В случае умножения i2 будет равно -1.

После Эйлера математик Каспар Вессель представил мнимые числа геометрически с создал комплексную плоскость. Сегодня мы представляем каждое комплексное число a + bi как точку с координатами (a,b).

Рисунки 37 и 38: комплексные числа

В викторианскую эпоху многие относились к мнимым числам с подозрением. Однако ирландский математик и астроном Уильям Роуэн Гамильтон покончил с этими сомнениями, определив комплексные числа применительно к кватернионам.

Самое красивое уравнение: тождество Эйлера

Тождество Эйлера связывает экспоненциальную функцию с функциями синуса и косинуса, значения которых колеблются от минус единицы до единицы. Чтобы найти связь с тригонометрическими функциями, мы можем представить их в виде бесконечного ряда, истинного для всех значений

Рисунок 39: открытие тождества Эйлера

Рисунок 40: тождество Эйлера

Эйлер никогда не записывал это тождество в явном виде, и мы не знаем, кто впервые записал его. Тем не менее, мы связываем его с именем Эйлера в знак почтения перед этим великим первопроходцем математики.

habr.com

Подготовка школьников к ЕГЭ и ОГЭ (Справочник по математике — Алгебра — Формулы сокращенного умножения

      Формулы сокращенного умножения включают в себя следующие группы формул:

Электронный справочник по математике для школьников алгебра формулы сокращенного умножения степень суммы и степень разности

Степень суммы

      Группа формул «Степень суммы» составляет Таблицу 1. Эти формулы можно получить, выполняя вычисления в следующем порядке:

(x + y)2 = (x + y)(x + y) ,
(x + y)3 = (x + y)2(x + y) ,
(x + y)4 = (x + y)3(x + y)

и т.д.

      Группу формул «Степень суммы» можно получить также с помощью треугольника Паскаля и с помощью бинома Ньютона, которым посвящены специальные разделы нашего справочника.

      Таблица 1. – Степень суммы

Название формулы Формула
Квадрат (вторая степень)
суммы
(x + y)2 = x2 + 2xy + y2
Куб (третья степень) суммы (x + y)3 = x3 + 3x2y + 3xy2 + y3
Четвертая степень суммы (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4
Пятая степень суммы (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5
Шестая степень суммы (x + y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

Квадрат (вторая степень) суммы

(x + y)2 = x2 + 2xy + y2

Куб (третья степень) суммы

(x + y)3 =
= x3 + 3x2y + 3xy2 + y3

Четвертая степень суммы

(x + y)4 = x4 + 4x3y +
+ 6x2y2 + 4xy3 + y4

Пятая степень суммы

(x + y)5 = x5 + 5x4y +
+ 10x3y2 +
+ 10x2y3 +
+ 5xy4 + y5

Шестая степень суммы

(x + y)6 = x6 + 6x5y +
+ 15x4y2 +
+ 20x3y3 +
+ 15x2y4 + 6xy5 + y6

      Общая формула для вычисления суммы

(x + y)n

с произвольным натуральным значением   n рассматривается в разделе «Бином Ньютона» нашего справочника.

Степень разности

      Если в формулах из Таблицы 1 заменить  y  на  – y ,  то мы получим группу формул «Степень разности» (Таблица 2.):

      Таблица 2. – Степень разности

Название формулы Формула
Квадрат (вторая степень)
разности
(xy)2 = x2 – 2xy + y2
Куб (третья степень) разности (x y)3 = x3 – 3x2y + 3xy2 y3
Четвертая степень разности (x y)4 = x4 – 4x3y + 6x2y2 – 4xy3 + y4
Пятая степень разности (x y)5 = x5 – 5x4y + 10x3y2 – 10x2y3 + 5xy4y5
Шестая степень разности (x y)6 = x6 – 6x5y + 15x4y2 – 20x3y3 + 15x2y4 – 6xy5 + y6

Квадрат (вторая степень) разности

(xy)2 = x2 – 2xy + y2

Куб (третья степень) разности

(x y)3 =
= x3 – 3x2y + 3xy2 y3

Четвертая степень разности

(x y)4 = x4 – 4x3y +
+ 6x2y2 – 4xy3 + y4

Пятая степень разности

(x y)5 = x5 – 5x4y +
+ 10x3y2
– 10x2y3 +
+ 5xy4y5

Шестая степень разности

(x y)6 = x6 – 6x5y +
+ 15x4y2
– 20x3y3 +
+ 15x2y4 – 6xy5 + y6

Квадрат многочлена

      Следующая формула применяется достаточно часто и называется «Квадрат многочлена»:

Электронный справочник по математике для школьников алгебра формулы сокращенного умножения степень суммы и степень разностиЭлектронный справочник по математике для школьников алгебра формулы сокращенного умножения степень суммы и степень разностиЭлектронный справочник по математике для школьников алгебра формулы сокращенного умножения степень суммы и степень разности

      Словами эту формулу можно выразить так: — «Квадрат многочлена равен сумме квадратов всех его членов плюс сумма всевозможных удвоенных произведений его членов».

Куб трехчлена

      Следующая формула называется «Куб трехчлена»:

(x + y + z)3 =
= x3 + y3 + z3 + 3x2y +
+ 3x2z + 3xy2 +
+ 3xz2 +
+ 3y2z + 3yz2 + 6xyz .

     Другие формулы сокращенного умножения приведены в разделе «Формулы сокращенного умножения: сумма степеней, разность степеней» нашего справочника.

Подготовка к ЕГЭ и ОГЭ в учебном центре Резольвента

www.resolventa.ru

Формулы степеней

Определение степени

Существуют три вида действительных степеней, которые стоит рассматривать отдельно. Рассмотрим вначале понятия степеней с целым, рациональным и иррациональным показателями.

Определение 1

Степенью действительного числа $\alpha$ c целым показателем $z$, будем называть число, определяющееся формулой:

$\alpha^z=\cases{\alpha \cdot \alpha \cdot…\cdot \alpha(z \ раз), \ при z >0\\1, \ при \ z=0\\\frac{1}{\alpha \cdot \alpha\cdot …\cdot \alpha(z \ раз)}, \ при z

Определение 2

Степенью действительного числа $\alpha$ c рациональным показателем $q=\frac{r}{s}$ $(r∈Z,s∈N)$, будем называть число, определяющееся формулой:

$\alpha^q=\sqrt[s]{\alpha^r}$

Замечание 1

Нужно отметить, что когда $s$ – четное число, то $\alpha >0$.

Определение 3

Степенью положительного числа $\alpha$ c иррациональным показателем $j$, будем называть число $\alpha^j$, определяющееся следующим образом:

Когда $\alpha=1$, то $\alpha^j=1$;

Когда $\alpha >1$, то $\alpha^j$ будет удовлетворять следующему условию: $\alpha^{q_1}j$.

Когда $0j$.

Определение 4

Степенью положительного числа $\alpha$ c иррациональным показателем $j$, будем называть число $\alpha^j$, равное пределу последовательности $\alpha^{j_0}, \alpha^{j_1}, \alpha^{j_2}$,…, в которой $j_0,j_1,j_2…$ являются последовательными десятичными приближениями иррационального числа $j$.

Замечание 2

Здесь стоит заметить, что при $j >0$ $0^j=0$, а при$ j

Рассмотрим далее свойства степеней.

Формулы степеней

Для начала рассмотрим и докажем свойства для степени с целыми показателями.

Формула 1: $\alpha^z \cdot \alpha^k=\alpha^{z+k}$

Доказательство.

По определению 1, будем иметь

$\alpha^z=\alpha \cdot \alpha\cdot…\cdot \alpha(z \ раз)$, $\alpha^k= \alpha\cdot \alpha\cdot…\cdot \alpha(k \ раз)$

Тогда

$\alpha^z\cdot \alpha^k=\alpha\cdot \alpha\cdot …\cdot \alpha(z \ раз)\cdot \alpha\cdot \alpha\cdot …\cdot \alpha(k \ раз)=\alpha\cdot \alpha\cdot…\cdot \alpha(z+k \ раз)=\alpha^{z+k}$

Формула 2: $\frac{\alpha^z}{\alpha^k} =\alpha^{z-k}$

Доказательство.

$\frac{\alpha^z}{\alpha^k} =\alpha^z\cdot \alpha^{-k}$

По формуле 1, имеем

$\frac{\alpha^z}{\alpha^k} =\alpha^z\cdot \alpha^{-k}=\alpha^{z+(-k)}=\alpha^{z-k}$

Формула 3: $(\alpha \beta)^z=\alpha^z\cdot \beta^z$

Доказательство.

По определению 1, будем иметь

$(\alpha \beta)^z=\alpha\beta\cdot \alpha\beta\cdot…\cdot \alpha\beta(z \ раз)$

Тогда, по правилу перестановки множителей

$(\alpha\beta)^z=\alpha\cdot \alpha\cdot…\cdot \alpha(z \ раз)\cdot \beta\cdot\beta\cdot…\cdot \beta(z \ раз)=\alpha^z\cdot \beta^z$

Формула 4: $(\alpha^z)^k=\alpha^{zk}$

Доказательство.

По определению 1, будем иметь

$(\alpha^z)^k=\alpha^z\cdot \alpha^z\cdot…\cdot \alpha^z (k \ раз)$

В свою очередь

$\alpha^z=\alpha\cdot \alpha \cdot…\cdot \alpha(z \ раз)$

Тогда будем получать, что

$(\alpha^z)^k={\alpha \cdot \alpha \cdot…\cdot \alpha(z \ раз) }\cdot…\cdot {\alpha\cdot \alpha\cdot…\cdot \alpha(z \ раз) }(k \ раз)=\alpha\cdot \alpha\cdot…\cdot \alpha(zk \ раз)=\alpha^{zk}$

Формула 5: $\frac{\alpha^z}{\beta^z} =(\frac{\alpha}{\beta})^z$

Доказательство.

$\frac{\alpha^z}{\beta^z} =\alpha^z\cdot \beta^{-z}$

По формуле 4, имеем

$\frac{\alpha^z}{\beta^z} =\alpha^z\cdot \beta^{-z}=\alpha^z\cdot (\beta^{-1})^z=\alpha^z\cdot (\frac{1}{\beta})^z$

По формуле 3, имеем

$\frac{\alpha^z}{\beta^z} =\alpha^z\cdot (\frac{1}{\beta})^z=(\frac{\alpha}{\beta})^z$

Все эти формулы справедливы также и для рациональных и для иррациональных показателей степеней и также являются их свойствами. Поэтому отдельно мы их рассматривать и доказывать не будем. Также в рамках этой темы будет полезно рассмотреть таблицы степеней, которые здесь мы приводить не будем.

Примеры задач

Пример 1

Найти:

а) $2^2\cdot 2^3-\frac{3^5}{3^3}$

б) $(2^2)^2+\frac{8^4}{4^2}$

в) $8^{\frac{2}{3}}+0^π$

Решение.

а) По свойствам 1 и 2 степеней, получаем:

$2^2\cdot 2^3-\frac{3^5}{3^3} =2^5-3^2=32-9=23$

б) По свойствам 2, 4 и 5, получаем:

$(2^2)^2+\frac{8^4}{4^2}=4^2+\frac{2^{12}}{2^4}=16+2^8=16+256=272$

в) По определению 2, получаем:

$8^{\frac{2}{3}}+0^π=\sqrt[3]{8^2 }+0=2^2=4$

Пример 2

Упростить:

$\frac{\beta-1}{\beta^{\frac{3}{4}}+\beta^{\frac{1}{2}}}\cdot \frac{\beta^{\frac{1}{2}}+\beta^{\frac{1}{4}}}{\beta^{\frac{1}{2}}+1}\cdot \beta^{\frac{1}{4}}+1$

Решение.

Используя определение 2 степени, а также свойство 1 степеней, будем получать:

$\frac{\beta-1}{\beta^{\frac{3}{4}}+\beta^{\frac{1}{2}}}\cdot \frac{\beta^{\frac{1}{2}}+\beta^{\frac{1}{4}}}{\beta^{\frac{1}{2}}+1}\cdot \beta^{\frac{1}{4}}+1=\frac{\beta-1}{\beta^{\frac{1}{2}}(\beta^{\frac{1}{4}}+1) }\cdot \frac{\beta^{\frac{1}{4}}(\beta^{\frac{1}{4}}+1)}{\beta^{\frac{1}{2}}+1}\cdot \beta^{\frac{1}{4}}+1=\frac{\beta-1}{\beta^{\frac{1}{2}}} \cdot \frac{\beta^{\frac{1}{2}}}{\beta^{\frac{1}{2}}+1}+1=\frac{(\beta^{\frac{1}{2}}-1)(\beta^{\frac{1}{2}}+1)}{\beta^{\frac{1}{2}}+1}+1=\beta^{\frac{1}{2}}-1+1=\sqrt{\beta}$

spravochnick.ru

Счет, степени, корни — Математика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Некоторые рекомендации к проведению алгебраических вычислений, преобразований и упрощений

К оглавлению…

При выполнении численных вычислений с большим количеством операций и дробей желательно выполнять следующие рекомендации:

  • Переводите десятичные дроби в обыкновенные, т.е. такие у которых есть числитель и знаменатель.
  • Не старайтесь посчитать сразу все выражение. Выполняйте вычисления по одному действию, пошагово. При этом учтите, что:
    • сначала выполняют операции в скобках;
    • затем считают произведения и/или деления;
    • потом суммируют или вычитают;
    • и в последнюю очередь, если это была многоэтажная дробь, делят уже полностью упрощенный числитель на тоже полностью упрощенный знаменатель;
    • причем выполняя в первую очередь операции в скобках также соблюдают ту же последовательность, сначала произведения или деления внутри скобок, потом суммирование или вычитание в скобках, а если внутри скобки есть другая скобка то действия в ней выполняются прежде всего.
  • Не спешите умножать и делить «страшные числа». Скорее всего, в одном из следующих действий что-то сократится. Чтобы проще было сократить можно числа раскладывать на простые множители.
  • При сложении и вычитании выделяйте в дробях целую часть (если это возможно). При умножении и делении, наоборот, приводите дробь к виду без целой части.

От корней в знаменателе принято избавляться. Для избавления от корня над всем знаменателем умножают числитель и знаменатель на выражение, равное знаменателю. Для избавления от корня над частью знаменателя умножают числитель и знаменатель на сопряженное знаменателю выражение. В этом случае образуется разность квадратов (сопряжённым для (ab) является выражение (a + b) и наоборот).

При преобразовании или упрощении алгебраических выражений последовательность действий такова:

  • Разложить на множители все, что можно разложить на множители.
  • Сократить все, что можно сократить.
  • И только потом приводить к общему знаменателю. Ни в коем случае не пытайтесь сразу сломя голову приводить к общему знаменателю. Пример будет становиться чем дальше, тем страшнее.
  • Снова разложить на множители и сократить.

Для того чтобы перевести десятичную периодическую дробь в обыкновенную (с числителем и знаменателем) необходимо:

  • Из числа, стоящего до второго периода в исходной периодической дроби вычесть число, стоящее до первого периода в этой же дроби и записать полученную разность в числитель будущей обыкновенной дроби.
  • В знаменателе же записать столько девяток, сколько цифр в периоде исходной дроби, и столько нулей, сколько цифр между запятой и первым периодом.
  • Не забыть про целую часть, если она есть.

При решении задач из данной темы также необходимо помнить много сведений из предыдущих тем. Приведём далее основные из них.

 

Формулы сокращенного умножения

К оглавлению…

При выполнении различных алгебраических преобразований часто удобно пользоваться формулами сокращенного умножения. Зачастую эти формулы применяются не столько для того чтобы сократить процесс умножения, а наоборот скорее для того, чтобы по результату понять, что его можно представить как произведение некоторых множителей. Таким образом, данные формулы нужно уметь применять не только слева направо, но и справа налево. Перечислим основные формулы сокращенного умножения:

Формула Квадрат суммы

Формула Квадрат разности

Формула Разность квадратов

Формула Разность кубов

Формула Сумма кубов

Формула Куб суммы

Формула Куб разности

Последние две формулы также часто удобно использовать в виде:

Формула Куб суммы

Формула Куб разности

 

Квадратный трехчлен и теорема Виета

К оглавлению…

В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле:

Формула разложения квадратного трехчлена на множители

Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой:

Формула разложения квадратного трехчлена с единственным корнем на множители

Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета. Согласно Теореме Виета, сумма корней квадратного уравнения равна:

Формула Сумма корней квадратного уравнения

Произведение корней квадратного уравнения согласно теореме Виета может быть вычислено по формуле:

Формула Произведение корней квадратного уравнения

Итак, еще раз о теореме Виета:

  • Если D < 0 (дискриминант отрицателен), то уравнение корней не имеет и теорему Виета применять нельзя.
  • Если D > 0 (дискриминант положителен), то уравнение имеет два корня и теорема Виета прекрасно работает.
  • Если D = 0, то уравнение имеет единственный корень, для которого бессмысленно вводить понятие суммы или произведения корней, поэтому теорему Виета тоже не применяем.

 

Основные свойства степеней

К оглавлению…

У математических степеней есть несколько важных свойств, перечислим их:

Формула Умножение степеней с одинаковыми основаниями

Формула Деление степеней с одинаковыми основаниями

Формула Степень в степени

Формула Умножение чисел с одинаковой степенью

Формула Деление чисел с одинаковой степенью

Формула Основные свойства степеней

Формула Основные свойства степеней

Последнее свойство выполняется только при n > 0. Ноль можно возводить только в положительную степень. Ну а основное свойство отрицательной степени записывается следующим образом:

Формула Свойство отрицательной степени

 

Основные свойства математических корней

К оглавлению…

Математический корень можно представить в виде обычной степени, а затем пользоваться всеми свойствами степеней приведёнными выше. Для представления математического корня в виде степени используют следующую формулу:

Формула Представление корня в виде степени

Тем не менее можно отдельно выписать ряд свойств математических корней, которые основываются на свойствах степеней описанных выше:

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Формула Основные свойства математических корней

Для арифметических корней выполняется следующее свойство (которое одновременно можно считать определением корня):

Формула Определение математического корня

Последнее справедливо: если n – нечетное, то для любого a; если же n – четное, то только при a больше либо равном нолю. Для корня нечетной степени выполняется также следующее равенство (из под корня нечетной степени можно выносить знак «минус»):

Формула Основное свойство корня нечетной степени

Так как значение корня четной степени может быть только неотрицательным, то для таких корней имеется следующее важное свойство:

Формула Основное свойство корня четной степени

Итак всегда нужно помнить, что под корнем четной степени может стоять только неотрицательное выражение, и сам корень тоже есть неотрицательное выражение. Кроме того, нужно отметить, что если используется запись со значком математического корня, то показатель степени этого корня может быть только целым числом, причем это число должно быть больше либо равно двум:

Формула Свойство записи математического корня

 

Основные свойства квадратного корня

К оглавлению…

Квадратным корнем называется математический корень второй степени:

Формула Квадратный корень

Квадратный корень можно извлечь только из неотрицательного числа. При этом значение квадратного корня также всегда неотрицательно:

Формула Свойство квадратного корня

Для квадратного корня существует два важных свойства, которые важно очень хорошо запомнить и не путать:

Формула Свойство квадратного корня

Формула Свойство квадратного корня

Если под корнем стоит несколько множителей, то корень можно извлекать из каждого из них по-отдельности. При этом важно понимать, что каждый из этих множителей по-отдельности (а не только их произведение) должны быть неотрицательными:

Формула Свойство квадратного корня

educon.by

Отправить ответ

avatar
  Подписаться  
Уведомление о
2015-2019 © Игровая комната «Волшебный лес», Челябинск
тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск