Урок 48. функции. свойства функций и их графики. исследование функций — Алгебра и начала математического анализа — 11 класс
Алгебра и начала математического анализа, 11 класс
Урок №48. Функции. Свойства функций и их графики. Исследование функций.
Перечень вопросов, рассматриваемых в теме:
- функция, аргумент функции, значение функции
- график функции, преобразование графика функции
- свойства функции, исследование свойств функции
Глоссарий по теме урока
Определение
Зависимость переменной у от переменной х называется функцией, если каждому значению х соответствует единственное значение у.
х – независимая переменная, аргумент,
у — зависимая переменная, значение функции
Определение
Множество значений аргумента функции называется областью определения функции и обозначается D(y).
Определение
Множество значений, которые принимает сама функция, называется множеством значений функции и обозначается Е(у).
Определение
Функция у = f(х) называется четной, если она обладает двумя свойствами:
- область определения этой функции симметрична относительно 0;
- для любого х из области определения выполняется равенство f(-х)=f(х).
Функция у = f(х) называется нечетной, если она обладает двумя свойствами:
- область определения этой функции симметрична относительно 0;
для любого х из области определения выполняется равенство f(-х)=-f(х).
Определение
Значения аргумента, при которых значение функции равно 0, называются корнями (нулями) функции.
Определение
Функция у=f(x) возрастает на промежутке (а; в), если для любых х1, х2 из этого промежутка, таких, что х1<х2, выполняется неравенство у1<у2.
Функция у=f(x) убывает на промежутке (а; в), если для любых х1, х
2 из этого промежутка, таких что, х1<х2, выполняется неравенство у1>у2.
Основная литература:
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл.– М.: Просвещение, 2015. С. 98-118, 271-307.
Дополнительная литература:
Шахмейстер А.Х. Построение и преобразование графиков. Параметры. Ч.2-3. СПб.: Петроглиф; М.: МЦНМО, 2016. 392 с. С.73-307.
Открытые электронные ресурсы:
Образовательный портал “Решу ЕГЭ”.
https://mathb-ege.sdamgia.ru/test?theme=177
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.
Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.
Теоретический материал для самостоятельного изучения
1. Исследование функции и построение графика
Схема исследования функции на примере функции
1) Область определения функции
Знаменатель дроби не равен нулю:
Получили область определения
D(y)=
- Множество значений функции
Отыскание Е(у) можно свести к решению уравнения с параметром у. Все значения параметра у, при которых уравнение имеет хотя бы одно решение, и составят Е (у).
Получили
- Четность / нечетность функции
D(y)= — симметрична относительно нуля
,
следовательно, функция четная и ее график симметричен относительно оси ОУ
- Нули функции
Для нахождения нулей функции необходимо решить уравнение
Уравнение не имеет действительных корней, значит, нулей у данной функции нет, ее график не пересекает ось ОХ
- Промежутки знакопостоянства
у>0 при
у<0 при
- Монотонность
Найдем производную
Найдем точки, в которых производная равна нулю или не существует: х=0, х=-1, х=1.
Определим знаки производной в полученных промежутках.
точки -1, 1 – выколоты, 0 — закрашена
Производная положительна, а значит, функция возрастает при .
Производная отрицательна, а значит, функция убывает при
- Экстремум
х=0 – стационарная точка.
В ней производная меняет знак с плюса на минус, следовательно, х=0 – точка максимума.
Значение функции в точке максимума
- Дополнительные точки
у(0,5)= у(-0,5)=-5/3; у(2)=у(-2)=5/3; у(3)= у(-3)=5/4
- Отразим найденные свойства графически, построим график функции
2. Решение задачи на оптимизацию
Задачи на отыскание наибольших или наименьших значений величин решаются по определенному плану.
В решении таких задач выделяют 3 основных этапа:
1 этап. «Перевод» задачи на язык функций:
- вводят независимую переменную х
- выявляют оптимизируемую величину у, для которой надо найти наибольшее или наименьшее значение
- выражают у через х и другие известные величины
- устанавливают по условию задачи границы изменения переменной х
2 этап. Исследуют составленную функцию на наибольшее или наименьшее значение (в зависимости от условия задачи) с помощью производной или элементарными средствами.
3 этап. Интерпретация найденного решения для поставленной задачи – «перевод» полученного математического результата на язык задачи.
Рассмотрим план решения на примере задачи.
Задача. В распоряжении начальника имеется бригада рабочих в составе 24 человек. Их нужно распределить на день на два объекта. Если на первом объекте работает t человек, то их суточная зарплата составляет 4t2 у.е. Если на втором объекте работает t человек, то их суточная зарплата составляет t2 у.е. Как нужно распределить на эти объекты бригаду рабочих, чтобы выплаты на их суточную зарплату оказались наименьшими? Сколько у.е. в этом случае придется заплатить рабочим?
Решение:
1 этап. Ведем переменную, выразим нужные компоненты, составим искомую функцию.
Пусть на 1 объект направлено х рабочих, суточная зарплата которых составит 4x2 у.е.
Тогда на 2 объект направлено (24 — x) рабочих – суточная заработная плата (24 — x)2 (у.
Всем рабочим нужно заплатить 4x2+(24 — x)2 = 5x2 -48x+576 (у.е.)
Причем 0≤ x ≤ 24, x ϵ N.
2 этап.
Рассмотрим функцию f(x)=5x2-48x+576.
Функция квадратичная, старший коэффициент положителен, следовательно, наименьшее значение в вершине при x0 = 4,8 .
3 этап. Перевод на язык задачи
Поскольку x ϵ N, подходящим будет ближайшее к вершине натуральное значение, x=5 (рабочих) – на 1 объекте.
24-5=19 (рабочих) – на 2 объекте.
Наименьшее значение f(5)=125+240-576=461 (у.е.) – наименьшая суточная выплата.
Примечание: исследовать функцию также можно было с помощью производной.
Ответ: 5 рабочих на 1 объекте, 19 – на втором, 461 у.е. – наименьшая суточная выплата.
Примеры и разбор решения заданий тренировочного модуля
1. Исследуйте функции на четность.
Функции |
у=0 |
у=sin(x+5π/2) |
у=lg(x+10) |
|
Решение:
- у=0
область определения – множество действительных чисел – симметрична относительно нуля
у(-х)=0, что можно интерпретировать и как у(х), и как –у(х). К тому же график этой функции – прямая, совпадающая с осью ОХ, — симметричен относительно оси ОУ и относительно начала координат.
Данная функция одновременно четна и нечетна.
- у=sin(x+5π/2)
область определения – множество действительных чисел – симметрична относительно нуля
преобразуем функцию, применив формулы приведения: sin(x+5π/2)=cos x
у= cos x – четная функция, значит, исходная функция также четная
- у=lg(x+10)
логарифмируемое выражение должно быть положительным
x+10>0; x>-10
D(y): x>-10
Найдем область определения D(f)
Проверим второе условие
Полученное в результате подстановки –х в функцию выражение, очевидно, не равно f(x), не дает пока понимания о выполнении условия нечетности.
Зайдем с другого конца, выразим -f(x):
домножим на сопряженное
Теперь можем сделать вывод: f(-x)=-f(x), функция нечётная.
Ответ:
Функции | Четность / нечетность |
у=0 | и четная, и нечетная |
у=sin(x+5π/2) | четная |
у=lg(x+10) | общего вида |
нечетная |
2.
Решение:
Используем функциональный подход при решении данной задачи. Представим каждое из уравнений как функции. Построим их графики. Единственное решение системы будем интерпретировать как единственную точку пересечения графиков функций первого и второго уравнений.
Второе уравнение проще, но содержит параметр. Перепишем его в явном виде для функции, выразив у: у=-х+а.
В таком виде понятно, что данное уравнение задает множество прямых, параллельных у=-х.
Первое уравнение содержит квадратные корни, что накладывает ограничения: х≥-4, у<7
Сгруппируем в скобках первое, третье и пятое слагаемые, второе и четвертое, получим:
Приравнивая каждый из множителей числителя к нулю, получаем прямые: у=4, у=х+3, х=-4, точнее, с учетом ограничений, части прямых.
Выполним построения выделенных функций.
Условию задачи удовлетворяют только такие прямые второго уравнения у=-х+а, которые пересекают графики первого уравнения только в одной точке.
Анализируя рисунок, получаем: а ≤ -5, а ≥11, а=5.
Ответ:
область определения, нули функции, четность функции и все остальные.
Функция — это одно из важнейших математических понятий.
Функция — зависимость переменной у от переменной x, если каждому значению
х соответствует единственное значение у. Переменную х называют независимой переменной или аргументом.
Переменную у называют зависимой переменной. Все значения независимой переменной (переменной x) образуют область определения функции.
Все значения, которые принимает зависимая переменная (переменная y), образуют область значений функции.
Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции, тоесть по оси абсцисс откладываются значения переменной x, а по оси ординат откладываются значения переменной y. Для построения графика функции необходимо знать свойства функции. Основные свойства функции будут рассмотрены далее!
Для построения графика функции советуем использовать нашу программу — Построение графиков функций онлайн. Если при изучении материала на данной странице у Вас возникнут вопросы, Вы всегда можете задать их на нашем форуме. Также на форуме Вам помогут решить задачи по математике, химии, геометрии, теории вероятности и многим другим предметам!
Основные свойства функций.
1) Область определения функции и область значений функции.
Область определения функции — это множество всех допустимых действительных значений аргумента x (переменной x), при
которых функция y = f(x) определена.
Область значений функции — это множество всех действительных значений y, которые принимает функция.
В элементарной математике изучаются функции только на множестве действительных чисел.
2) Нули функции.
Нуль функции – такое значение аргумента, при котором значение функции равно нулю.
3) Промежутки знакопостоянства функции.
Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.
4) Монотонность функции.
Возрастающая функция (в некотором промежутке) — функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.
Убывающая функция (в некотором промежутке) — функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.
5) Четность (нечетность) функции.
Четная функция — функция, у которой область определения симметрична относительно
начала координат и для любого х из области определения выполняется равенство f(-x) = f(x). График четной функции симметричен
относительно оси ординат.
Нечетная функция — функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = — f(x). График нечетной функции симметричен относительно начала координат.
6) Ограниченная и неограниченная функции.
Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция — неограниченная.
7) Периодическость функции.
Функция f(x) — периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).
Изучив данные свойства функции Вы без проблем сможете исследовать функцию и по
свойствам функции сможете построить график функции. Также посмотрите материал про
таблицу истинности,
таблицу умножения,
таблицу Менделеева,
таблицу производных и
таблицу интегралов.
Слишком сложно?
Свойства функции не по зубам? Тебе ответит эксперт через 10 минут!
11.3.1. Показательная функция, ее свойства и график.
Автор Татьяна Андрющенко На чтение 5 мин. Просмотров 5.8k. Опубликовано
data-ad-client=»ca-pub-8602906481123293″
data-ad-slot=»8834522701″
data-ad-format=»auto»>
- Функцию вида y=ax, где а>0, a≠1, х – любое число, называют показательной функцией.
- Область определения показательной функции: D (y)=R – множество всех действительных чисел.
- Область значений показательной функции: E (y)=R+ — множество всех положительных чисел.
- Показательная функция y=ax возрастает при a>1.
- Показательная функция y=ax убывает при 0<a<1.
Справедливы все свойства степенной функции:
- а0=1 Любое число (кроме нуля) в нулевой степени равно единице.
- а1=а Любое число в первой степени равно самому себе.
- ax∙ay=ax+y При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.
- ax:ay=ax- y При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.
- (ax)y=axy При возведении степени в степень основание оставляют прежним, а показатели перемножают
- (a∙b)x=ax∙by При возведении произведения в степень возводят в эту степень каждый из множителей.
- (a/b)x=ax/by При возведении дроби в степень возводят в эту степень и числитель и знаменатель дроби.
- а-х=1/ax
- (a/b)-x=(b/a)x.
Примеры.
1) Построить график функции y=2x. Найдем значения функции
при х=0, х=±1, х=±2, х=±3.
x=0, y=20=1; Точка А.
x=1, y=21=2; Точка В.
x=2, y=22=4; Точка С.
x=3, y=23=8; Точка D.
x=-1, y=2-1=1/2=0,5; Точка K.
x=-2, y=2-2=1/4=0,25; Точка M.
x=-3, y=2-3=1/8=0,125; Точка N.
Большему значению аргумента х соответствует и большее значение функции у. Функция y=2x возрастает на всей области определения D (y)=R, так как основание функции 2>1.
2) Построить график функции y=(1/2)x. Найдем значения функции
при х=0, х=±1, х=±2, х=±3.
x=0, y=(½)0=1; Точка A.
x=1, y=(½)1=½=0,5; Точка B.
x=2, y=(½)2=¼=0,25; Точка C.
x=3, y=(½)3=1/8=0,125; Точка D.
x=-1, y=(½)-1=21=2; Точка K.
x=-2, y=(½)-2=22=4; Точка M.
x=-3, y=(½)-3=23=8; Точка N.
Большему значению аргумента х соответствует меньшее значение функции y. Функция y=(1/2)x убывает на всей своей области определения: D (y)=R, так как основание функции 0<(1/2)<1.
3) В одной координатной плоскости построить графики функций:
y=2x, y=3x, y=5x, y=10x. Сделать выводы.
График функции у=2х мы уже строили, графики остальных функций строим аналогично, причем, достаточно будет найти значения функций при х=0 и при х=±1.
Переменная х может принимать любое значение (D (y)=R), при этом значение у всегда будет больше нуля (E (y)=R+).
Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю. Чем больше основание а (если a>1) показательной функции у=ах, тем ближе расположена кривая к оси Оу.
Все данные функции являются возрастающими, так как большему значению аргумента соответствует и большее значение функции.
4) В одной координатной плоскости построить графики функций:
y=(1/2)x, y=(1/3)x, y=(1/5)x, y=(1/10)x. Сделать выводы.
Смотрите построение графика функции y=(1/2)x выше, графики остальных функций строим аналогично, вычислив их значения при х=0 и при х=±1.
Переменная х может принимать любое значение: D (y)=R, при этом область значений функции: E (y)=R+.
Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю.
Чем меньше основание а (при 0<a<1) показательной функции у=ах, тем ближе расположена кривая к оси Оу.
Все эти функции являются убывающими, так как большему значению аргумента соответствует меньшее значение функции.
Решить графически уравнения:
1) 3x=4-x.
В одной координатной плоскости построим графики функций: у=3х и у=4-х.
Графики пересеклись в точке А(1; 3).
Ответ: 1.
2) 0,5х=х+3.
В одной координатной плоскости строим графики функций: у=0,5х
(y=(1/2)x )
и у=х+3.
Графики пересеклись в точке В(-1; 2).
Ответ: -1.
Найти область значений функции: 1) y=-2x; 2) y=(1/3)x+1; 3) y=3x+1-5.
Решение.
1) y=-2x
Область значений показательной функции y=2x – все положительные числа, т.е.
0<2x<+∞. Значит, умножая каждую часть двойного неравенства на (-1), получаем:
— ∞<-2x<0.
Ответ: Е(у)=(-∞; 0).
2) y=(1/3)x+1;
0<(1/3)x<+∞, тогда, прибавляя ко всем частям двойного неравенства число 1, получаем:
0+1<(1/3)x+1<+∞+1;
1<(1/3)x+1<+∞.
Ответ: Е(у)=(1; +∞).
3) y=3x+1-5.
Запишем функцию в виде: у=3х∙3-5.
0<3x<+∞; умножаем все части двойного неравенства на 3:
0∙3<3x∙3<(+∞)∙3;
0<3x∙3<+∞; из всех частей двойного неравенства вычитаем 5:
0-5<3x∙3-5<+∞-5;
— 5<3x∙3-5<+∞.
Ответ: Е(у)=(-5; +∞).
Смотрите Карту сайта, и Вы найдете нужные Вам темы!
Параграф 2.2. Свойства и графики основных функций.
Работу выполнила: Казанцева А.А. студентка группы 45.2
Пункт 2.2. Свойства и графики основных функций.
Объяснение и обоснование
1. Линейная функция y = kx + b.Линейной функцией называется функция вида
y = kx + b, где k и b — некоторые числа.
Обоснуем основные характеристики этой функции: область определения, область
значений, четность или нечетность, возрастание и убывание.
Область определения — множество всех действительных чисел: D (y) = R,
поскольку формула kx + b имеет смысл при всех действительных значениях
x, то есть для любого действительного x мы можем вычислить значение
kx + b (из свойств действительных чисел, которые строго доказываются в
курсах математического анализа, следует, что для любых действительных
чисел х, k и b однозначно определены произведение kх и сумма kх + b = у).
Область значений линейной функции будет разной в зависимости от зна-
чения коэффициента k.
Если k = 0, то функция имеет вид y = b, то есть ее
область значений состоит из одного числа b. В таком
случае графиком линейной функции y = b является
прямая, параллельная оси Ox, которая пересекает
ось Oy в точке b (рис. 19).
Если k ≠ 0, то E (y) = R (обоснование приведено в примере 3).
Четность и нечетность линейной функции существенно
зависит от значений коэффициентов b и k.
При b = 0 и k ≠ 0 функция y = kx + b превращается в функцию y = kx,
которая является нечетной, поскольку для всех x из ее области определения
Таким образом, график функции y = kx (рис. 22) симметричен относительно
точки O.
При k = 0 получаем функцию y = b, которая является
четной, поскольку для всех x из ее области определения
f (-x) = b = f (x). То есть график функции y = b
симметричен относительно оси Oy (рис. 21).
В общем случае при k ≠ 0 и b ≠ 0 функция
y = kx + b не является ни четной, ни нечетной, поскольку
f (-x) = k (-x) + b = -kx + b ≠ f (x) и также
f (-x) = -kx + b = -(kx — b) ≠ -f (x).
Возрастание и убывание линейной функции зависит от значения коэффициента k.
При k = 0 получаем функцию y = b — постоянную. При k > 0 функция y = kx + b
возрастает, а при k < 0 — убывает (обоснование приведено в примере 4).
В курсе геометрии было показано, что графиком линейной функции y = kx + b всегда является прямая линия.
Поскольку при x = 0 функция принимает значение y = b, то эта прямая всегда
пересекает ось Oy в точке b. Графики линейных функций приведены в таблице 3/
2. Функция y = k/x (k ≠ 0).
Эта функция выражает обратно пропорциональную зависимость.
Область определения: х ≠ 0. Это можно записать также так:
Область значений: у Ф 0. Это можно записать также так:

Для обоснования области значений функции y = k/x обозначим k/x = a.
Тогда из этого равенства получим x = k/a для всех a ≠ 0. То есть
для всех a ≠ 0 существует значение x = k/a, при котором
y =k/x = k/(k/a) = a. Таким образом, y принимает все
действительные значения, не равные нулю.
Функция нечетная, поскольку ее областью определения является множество,
симметричное относительно точки О, и f (-x) = -k/x = -f(x). Таким образом,
её график симметричен относительно начала координат (рис. 23).
Возрастание и убывание функции зависит от знака коэффициента k.
Если х2 > х1 (то есть х2 — х1 > 0), то для сравнения значений f(х2) и f(х1)
рассмотрим их разность: f(x2)-f(x1) = k/x2 — k/x1 = -k(x2-x1)/x2x1.
На промежутке (0; +∞) значение х1 > 0 и х2 > 0, следовательно, х1х2 > 0.
На промежутке (-∞;0) значение х1 < 0 и х2 < 0, значит, х1х2 > 0.
Учитывая, что х2 — х1 > 0 на каждом из промежутков (—∞; 0) или (0; +∞), при
k > 0 из равенства (1) получаем f(х2) — f(х1) < 0, а при k < 0 получаем f(х2) — f(х1) > 0.
При k > 0 на каждом из промежутков (—∞; 0) и (0; +∞), если х2 > х1, то f (х2) < f (х1),
таким образом, функция убывает на каждом из этих промежутков.
При k < 0 на каждом из промежутков (—∞; 0) и (0; +∞), если х2 > х1, то f (х2) > f (х1),
следовательно, функция возрастает на каждом из этих промежутков.
Из курса алгебры известно, что график функции у = k/x называется
гиперболой (она состоит из двух ветвей). При k > 0 ветви гиперболы
находятся в I и III координатных четвертях, а при k < 0 — во II и IV четвертях (рис. 23).
Замечание. Характеризируя возрастание или убывание функции у = k/x (k ≠ 0),
следует помнить, что, например, функция у = 1/x (рис. 24) убывает
каждом из промежутков (—∞; 0) и (0; +∞), но на всей области определения (х ≠ 0)
эта функция не является убывающей (и не является возрастающей).
Действительно, если взять х1 = —1 и х2 = 1, то x2 > x1, но f(x2) = f(1) = 1, а f(x1) = f(—1) = —1,
то есть большему значению аргумента не соответствует меньшее значение функции,
и на всей ее области определения функция f(x) = 1/x не является убывающей.
Поэтому же нельзя сказать, что функция f (x) = 1/x — убывает на
объединении интервалов (—∞; 0) U (0; +∞).
3. Функция y = ax² (a ≠ 0).Как известно из курса алгебры, графиком этой
функции является парабола, ветви которой направлены вверх при а > 0 (рис. 25, а)
и вниз при а < 0 (рис. 25, б). Поскольку при х = 0 значение у = 0, то график
всегда проходит через начало координат.
<Область определения: х ∈ R, поскольку значение у = ах² можно вычислить при
любых значениях х (из свойств действительных чисел, которые строго
доказываются в курсах математического анализа, следует, что для любых
действительных чисел х и а однозначно определены произведения х • х = х2 и ах²
и ax² = y).
Функция четная, поскольку f (—x) = а (—х)² = ах² = f (x). Таким образом, ее
график симметричен относительно оси Оу.
Область значений. Для нахождения области значений функции у = ax²
обозначим ax² = u. Поскольку а ≠ 0, то из этого равенства x² = u/a (*). При а > 0
уравнение (*) имеет решение для любого u ≥ 0, а при а < 0 уравнение (*) имеет
решение для любого u ≤ 0.
Следовательно, при а > 0 Е (у) = [0; +∞), а при а < 0 Е (у) = (—∞; 0].
Возрастание и убывание.
Если x2 > x1 ( то есть x2 — x1 >0), то для сравнения значений y(x2) и y(x1) рассмотрим их разность
y(x2)-y(x1) = ax2² — ax1² = a(x2² — x1²) = a(x2-x1)(x2+x1). (2)
На промежутке [0; +∞) значение х1 ≥ 0 и х2 > 0, следовательно, х2 + х1 > 0.
На промежутке (—∞; 0] значение х1 < 0 и х2 ≤ 0, значит, х2 + х1 < 0.
Учитывая, что х2 — х1 > 0 на каждом из указанных промежутков, из равенства (2)
получаем:
— при a > 0 на промежутке [0; +∞) у (х2) — у (х1) > 0, а на промежутке (—∞; 0]
y(x2) — y(x1) < 0.
— при a < 0 на промежутке [0; +∞) у (х2) — у (х1) < 0, а на промежутке (—∞; 0]
y(x2) — y(x1) > 0.
Следовательно, при х2 > х1, если a > 0, то на промежутке [0; +∞) у(х2) > y(x1)
функция возрастает, а на промежутке (—∞; 0] у (х2) < у (х1) функция убывает.
если же a < 0, то на промежутке [0; +∞) у (х2) < у (х1)
функция убывает, а на промежутке (—∞; 0] у (х2) > у (х1) функция возрастает.
Соответствующие графики приведены также в таблице 3.
4. Квадратичная функция y = ax² + bx + c (a ≠ 0).
Из курса агебры за 9 класс известно, что функция вида
y = ax² + bx +c, где a,b,c — действительные числа, причём
a≠0, называется квадратичной.Ее графиком является парабола,
ветви которой направлены вверх при а > 0 и вниз при а < 0.
Абсцисса вершины этой параболы x0 =-b/2a. Для обоснования этого
достаточно в заданном квадратном трехчлене выделить полный квадрат:
y = ax² + bx + c = a(x² + (b/a)x + c/a) = a(x + b/2a)² + (4ac — b²)/4a, то есть
y = ax² + bx + c = a(x + b/2a)² + y0, где y0 = (4ac — b²)/4a = -D/4a (3)
(D = b² — 4ac — дискриминант квадратного треёхчлена ax² + bx + c).
Напомним, что в зависимости от знака дискриминанта D парабола или
пересекает ось Ох (D > 0), или не пересекает (D < 0), или касается ее (D = 0).
Основные варианты расположения графика функции у = ax²2 + bx + с (a ≠ 0)
представлены в таблице 4.
Охарактеризуем свойства функции у = ax² + bx + с (a ≠ 0).
Область определения: D (у) = R, поскольку значение у = ax²2 + bx + с (a ≠ 0)
можно вычислить при любых значениях х (из свойств действительных чисел,
которые строго доказываются в курсах математического анализа, следует, что для
любых действительных чисел х, а, b и с однозначно определены произведения
х • х = х&, ах² и bx и суммы ах² + bx, (ax² + bx) + с = ax² + bx + с = у).
Область значений. Для нахождения области значений функции у = ax² + bx + с
используем формулу (3) и обозначим a(x + b/2a)² + y0 = u. Поскольку a ≠ 0, то
из этого равенства: (x + b/2a)² = (u — y0)/a.
ВОПРОСЫ ДЛЯ КОНТРОЛЯ:
1.Какая функция называется линейной? Назовите свойства линейной функции.
Какая линия является графиком линейной функции? Приведите примеры
линейных функций и их графиков.

2. Какая линия является графиком функции у = k/x (k≠ 0)? Приведите
графиков функций у = k/x при k > 0 и при k < 0. По графикам
укажите свойства этой функции при k > 0 и при k < 0. Докажите нечетность
функции у = k/x (k≠ 0).
3. Какая линия является графиком функции у = ax² (a ≠ 0)?
Как расположен этот график при а > 0 и при а < 0? Приведите примеры графиков функций
у = ax² при а > 0 и при а < 0. По графикам укажите свойства этой
функции при а > 0 и при а < 0. Докажите четность функции у = ax² (a ≠ 0).
4. Какая линия является графиком функции у = ax²2 + bx + с (a ≠ 0)?
Как расположен график при а > 0 и при а < 0? Как найти абсциссу
вершины графика функции у = ax²2 + bx + с (a ≠ 0)?
Приведите примеры графиков этой функции при а > 0 и при а < 0.
По графикам укажите свойства этой функции при а > 0 и при а < 0.
1. Постройте график функции:
1) y = 3x — 2; 2)y = -x + 4; 3) y = -2 4) y = -5x 5) y = 0 6)y = 4x
Есть ли среди этих функций чётные или нечётные? Ответ обоснуйте.
2. По приведёнными графикам функций y = kx + b (рис. 26) укажите знаки k и b в каждом случае.
Постройте график функции (3 — 5 ).
3. 1) y = -2/x; 2) y = 3/x 3) y = 1/x 4) y = 5/x
4. 1) y = -2x² 2) y = 3x² 3) y = -3x² 4) y = 5x²
5. 1) y = x² — 6x + 7 2) y = -x² + 4x + 2 3) y = 2x² — 2x + 1 4) y = -3x² + 6x
6. По приведённым графикам функции y = ax² + bx + c (a≠) (рис. 27)
укажите знаки a, b, c в каждом случае.
Свойства функций синуса, косинуса, тангенса и котангенса и их графики
Свойства функции y=sin(x) и ее график.
График функции (синусоида)
Свойства функции
- Область определения: R (x — любое действительное число) т.
е.
- Область значений:
-
Функция нечетная:
(график симметричен относительно начала координат).
- Функция периодическая с периодом
- Точки пересечения с осями координат:
- Промежутки знакопостоянства:
- Промежутки возрастания и убывания:
Объяснение и обоснование
Описывая свойства функций, мы будем чаще всего выделять такие их характеристики: 1) область определения; 2) область значений; 3) четность или нечетность; 4) периодичность; 5) точки пересечения с осями координат; 6) промежутки знакопостоянства; 7) промежутки возрастания и убывания; 8) наибольшее и наименьшее значения функции.
Замечание. Абсциссы точек пересечения графика функции с осью Ох (то есть те значения аргумента, при которых функция равна нулю) называют нулями функции.
Напомним, что значение синуса — это ордината соответствующей точки единичной окружности (рис. 1).
Рис.1.
Поскольку ординату можно найти для любой точки единичной окружности (в силу того, что через любую точку окружности всегда можно провести единственную прямую, перпендикулярную оси ординат), то область определения функции — все действительные числа. Это можно записать так:
Для точек единичной окружности ординаты находятся в промежутке [—1; 1] и принимают все значения от —1 до 1, поскольку через любую точку отрезка [—1; 1] оси ординат (который является диаметром единичной окружности) всегда можно провести прямую, перпендикулярную оси ординат, и получить точку окружности, которая имеет рассматриваемую ординату. Таким образом, для функции область значений: . Это можно записать так:.Как видим, наибольшее значение функции sin x равно единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при Наименьшее значение функции равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка B, то есть при.
Синус — нечетная функция: , поэтому ее график симметричен относительно начала координат.
Синус — периодическая функция с наименьшим положительным периодом : , таким образом, через промежутки длиной вид графика функции повторяется. Поэтому при построении графика этой функции достаточно построить график на любом промежутке длиной , а потом полученную линию параллельно перенести вправо и влево вдоль оси Ox на расстояние , где k — любое натуральное число.
Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси значение . Тогда соответствующее значение , то есть график функции проходит через начало координат.
На оси значение . Поэтому необходимо найти такие значения , при которых , то есть ордината соответствующей точки единичной окружности, равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D, то есть при (см. рис. 1).
Промежутки знакопостоянства. Значения функции синус положительны (то есть ордината соответствующей точки единичной окружности положительна) в I и II четвертях (рис. 2). Таким образом, при всех , а также, учитывая период, при всех .
Значения функции синус отрицательны (то есть ордината соответствующей точки единичной окружности отрицательна) в III и IV четвертях, поэтому при .
Промежутки возрастания и убывания. Учитывая периодичность функции с периодом , достаточно исследовать ее на возрастание и убывание на любом промежутке длиной , например на промежутке .
Если (рис. 3, а), то при увеличении аргумента ордината соответствующей точки единичной окружности увеличивается (то есть , следовательно, на этом промежутке функция возрастает. Учитывая периодичность функции , делаем вывод, что она также возрастает на каждом из промежутков
Рис.2 Рис.3
Если (рис.3,б), то при увеличении аргумента ордината соответствующей точки единичной окружности уменьшается (то есть ), таким образом, на этом промежутке функция убывает. Учитывая периодичность функции , делаем вывод, что она также убывает на каждом из промежутков
Проведенное исследование позволяет обоснованно построить график функции . Учитывая периодичность этой функции (с периодом ), достаточно сначала построить график на любом промежутке длиной , например на промежутке . Для более точного построения точек графика воспользуемся тем, что значение синуса — это ордината соответствующей точки единичной окружности. На рисунке 4 показано построение графика функции на промежутке . Учитывая нечетность функции (ее график симметричен относительно начала координат), для построения графика на промежутке отображаем полученную кривую симметрично относительно начала координат (рис. 5).
Рис.4
Рис.5
Поскольку мы построили график на промежутке длиной , то, учитывая периодичность синуса (с периодом ), повторяем вид графика на каждом промежутке длиной (то есть переносим параллельно график вдоль оси на , где k — целое число). Получаем график, который называется синусоидой .(Рис.6)
Рис.6
Замечание. Тригонометрические функции широко применяются в математике, физике и технике. Например, множество процессов, таких как колебания струны, маятника, напряжения в цепи переменного тока и т. п., описываются функцией, которая задается формулой . Такие процессы называют гармоническими колебаниями.
График функции можно получить из синусоиды сжатием или растяжением ее вдоль координатных осей и параллельным переносом вдоль оси . Чаще всего гармоническое колебание является функцией времени t. Тогда оно задается формулой , где А — амплитуда
колебания, — частота, — начальная фаза, — период колебания.
СВОЙСТВА ФУНКЦИИ И ЕЕ ГРАФИК
График функции (косинусоида).
Свойства функции
- Область определения: R (x — любое действительное число).
- Область значений:
-
Функция четная:
(график симметричен относительно оси ).
- Функция периодическая с периодом :
- Точки пересечения с осями координат
- Промежутки знакопостоянства:
- Промежутки возрастания и убывания:
Объяснение и обоснование
Напомним, что значение косинуса — это абсцисса соответствующей точки единичной окружности (рис.7). Поскольку абсциссу можно найти для любой точки единичной окружности (в силу того, что через любую точку окружности, всегда можно провести единственную прямую, перпендикулярную оси абсцисс), то область определения функции — все действительные числа. Это можно записать так:
.
Рис.7
Для точек единичной окружности абсциссы находятся в промежутке и принимают все значения от -1 до 1, поскольку через любую точку отрезка оси абсцисс (который является диаметром единичной окружности) всегда можно провести прямую, перпендикулярную оси абсцисс, и получить
точку окружности, которая имеет рассматриваемую абсциссу. Следовательно, область значений функции . Это можно записать так: .
Как видим, наибольшее значение функции равно единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при .
Наименьшее значение функции cos x равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка B, то есть при .
Косинус — четная функция: , поэтому ее график симметричен относительно оси .
Косинус — периодическая функция с наименьшим положительным периодом : . Таким образом, через промежутки длиной вид графика функции повторяется.
Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси значение . Тогда соответствующее значение . На оси значение . Поэтому необходимо найти такие значения , при которых , то есть абсцисса соответствующей точки единичной окружности будет равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D, то есть при .
Промежутки знакопостоянства. Значения функции косинус положительны (то есть абсцисса соответствующей точки единичной окружности положительна) в I и IV четвертях (рис. 8). Следовательно, 0 при , а также, учитывая период, при всех .
Значения функции косинус отрицательны (то есть абсцисса соответствующей точки единичной окружности отрицательна) во II и III четвертях, поэтому при
Промежутки возрастания и убывания. Учитывая периодичность функции , достаточно исследовать ее на возрастание и убывание на любом промежутке длиной , например на промежутке .
Если (рис. 9, а), то при увеличении аргумента абсцисса соответствующей точки единичной окружности уменьшается (то есть ), следовательно, на этом промежутке функция убывает. Учитывая периодичность функции , делаем вывод, что она также убывает на каждом из промежутков .
Если (рис. 9, б), то при увеличении аргумента абсцисса соответствующей точки единичной окружности увеличивается (то есть ), таким образом, на этом промежутке функция возрастает. Учитывая периодичность функции , делаем вывод, что она возрастает также на каждом из промежутков .
Рис.8 Рис.9
Проведенное исследование позволяет построить график функции аналогично тому, как был построен график функции . Но график функции можно также получить с помощью геометрических преобразований графика функции , используя формулу
Рис.10
Эту формулу можно обосновать, например, так. Рассмотрим единичную окружность (рис. 10), отметим на ней точки а также
абсциссы и ординаты этих точек. Так как , то при повороте
прямоугольника около точки на угол — против часовой стрелки он перейдет в прямоугольник . Но тогда . Следовательно, 00.
Укажем также формулы, которые нам понадобятся далее:.
Тогда,
Таким образом, .
Учитывая, что , график функции можно получить из графика функции его параллельным переносом вдоль оси на (рис. 11). Полученный график называется косинусоидой (рис. 12).
Рис.11
Рис.12
График функции (тангенсоида)
Свойства функции :
1. Область определения:
2. Область значений:
3. Функция нечетная:
4. Функция периодическая с периодом
5. Точки пересечения с осями координат:
6. Промежутки знакопостоянства:
7. Промежутки возрастания и убывания:
8. Наибольшего и наименьшего значений функция не имеет.
График функции (котангенсоида)
Свойства функции :
1. Область определения:
2. Область значений:
3. Функция нечетная:
4. Функция переодическая с периодом
5. Точки пересечения с осями координат:
6. Промежутки знакопостоянства:
7. Промежутки возрастания и убывания:
8. Наибольшего и наименьшего значений функция не имеет.
Если график функции y = f(x) имеет бесконечную ветвь (ветви), у графика могут быть асимптоты. Асимптотой графика называется прямая, к которой неограниченно приближается точка графика при удалении этой точки по бесконечной ветви.
Прямая x = a является вертикальной асимптотой, если хотя бы один из пределов Прямая y = b является горизонтальной асимптотой, если существуют конечные пределы . Прямая y = kx + b является наклонной асимптотой, если существуют конечные пределы либо при x -> , либо при x -> — . ОБРАТНЫЕ ФУНКЦИИПонятие обратной функции применимо к функциям, обладающим следующим свойством: каждому значению y из области определения соответствует единственное значение x из области определения этой функции. Для многих функций это свойство выполняется лишь на части области определения, в частности (для функции y = x2 таким промежутком является, например, луч [0; ), для функции y =sin x — отрезок [- /2;/2]). Функция g называется обратной для функции f, если каждому y из области значений функции f функция g ставит в соответствие такое x из области определения функции f, что y = f(x). Таким образом, если y = f(x), то x = g(y). Функции f и g являются взаимно обратными.
|
Гипербола. График функции и свойства. 🐲 СПАДИЛО.РУ
ОпределениеГрафиком функции у=kx.., где k≠0 число, а х – переменная, является кривая, которую называют гиперболой.
Графиком функции у=kx.., где k≠0 число, а х – переменная, является кривая, которую называют гиперболой. Гипербола имеет две ветви и может располагаться в 1 и 3 координатных четвертях, либо во 2 и 4. Это зависит от знака числа k. Рассмотрим данную кривую на рисунке, где показано ее расположение в зависимости от знака k.
Свойства гиперболы (у=kx.)
График функции симметричен относительно начала координат (0;0). Поэтому функцию еще называют – обратная пропорциональность.
- Область определения – любое число, кроме нуля.
- Область значения – любое число, кроме нуля.
- Функция не имеет наибольших или наименьших значений.
Построение графика функции
Для построения графика функции необходимо подбирать несколько положительных и несколько отрицательных значений переменной х, затем подставлять их в заданную функцию для вычисления значений у. После этого по найденным координатам построить точки и соединить их плавной линией. Рассмотрим построение графиков на примерах.
Построить график функции у=10x…
Для этого построим две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число 10 на них делилось
х | –1 | –2 | –4 | –5 | –10 |
у |
х | –1 | –2 | –4 | –5 | –10 |
у | –10 | –5 | –2,5 | –2 | –1 |
Выполняем построение точек, они будут располагаться в первой и третьей координатных четвертях, так как число k положительное.
Теперь для построения гиперболы соединим точки плавной линией.Построить график функции у=−5x…
Для этого построим также две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число минус 5 на них делилось. Выполняем деление и получаем значения у. При делении обращаем внимание на знаки, чтобы не допускать ошибок.
х | 1 | 2 | 5 | 10 |
у | –5 | –2,5 | –1 | –0,5 |
х | –1 | –2 | –5 | –10 |
у | 5 | 2,5 | 1 | 0,5 |
Теперь отмечаем точки во 2 и 4 координатных четвертях (число k отрицательное) и соединяем их для получения ветвей гиперболы.
Характеристики функций и их графиков
Результаты обучения
- Определите, представляет ли отношение функцию.
- Найдите значения функции.
- Определите, является ли функция взаимно однозначной.
- Используйте тест вертикальной линии для определения функций.
- Изобразите функции в библиотеке функций.
Реактивный лайнер меняет высоту по мере увеличения расстояния от точки старта полета.Вес подрастающего ребенка со временем увеличивается. В каждом случае одно количество зависит от другого. Между двумя величинами существует взаимосвязь, которую мы можем описывать, анализировать и использовать для прогнозирования. В этом разделе мы разберем такие отношения.
Характеристики функций
Отношение — это набор упорядоченных пар. Набор первых компонентов каждой упорядоченной пары называется областью отношения, а набор вторых компонентов каждой упорядоченной пары называется диапазоном отношения.Рассмотрим следующий набор упорядоченных пар. Первые числа в каждой паре — это первые пять натуральных чисел. Второе число в каждой паре вдвое больше первого.
[латекс] \ влево \ {\ влево (1,2 \ вправо), \ влево (2,4 \ вправо), \ влево (3,6 \ вправо), \ влево (4,8 \ вправо), \ влево (5,10 \ вправо) \ вправо \} [/ латекс]
Домен [латекс] \ left \ {1,2,3,4,5 \ right \} [/ latex]. Диапазон: [латекс] \ left \ {2,4,6,8,10 \ right \} [/ latex].
Обратите внимание, что значения в домене также называются входными значениями или значениями независимой переменной и часто обозначаются строчной буквой [latex] x [/ latex].Значения в диапазоне также известны как выход значений или значения зависимой переменной и часто обозначаются строчной буквой [латекс] y [/ латекс].
Функция [latex] f [/ latex] — это отношение, которое присваивает одно значение в диапазоне каждому значению в домене . Другими словами, значения [latex] x [/ latex] не используются более одного раза. В нашем примере, который связывает первые пять натуральных чисел с числами, удваивающими их значения, это отношение является функцией, потому что каждый элемент в домене, [latex] \ left \ {1,2,3,4,5 \ right \} [/ latex] соединяется ровно с одним элементом в диапазоне, [latex] \ left \ {2,4,6,8,10 \ right \} [/ latex].
Теперь давайте рассмотрим набор упорядоченных пар, который связывает термины «четный» и «нечетный» с первыми пятью натуральными числами. Это будет выглядеть как
[латекс] \ left \ {\ left (\ text {odd}, 1 \ right), \ left (\ text {even}, 2 \ right), \ left (\ text {odd}, 3 \ right), \ left (\ text {even}, 4 \ right), \ left (\ text {odd}, 5 \ right) \ right \} [/ latex]
Обратите внимание, что каждый элемент в домене [latex] \ left \ {\ text {even,} \ text {odd} \ right \} [/ latex] — это , а не в паре с ровно одним элементом в диапазоне, [latex ] \ left \ {1,2,3,4,5 \ right \} [/ латекс].Например, термин «нечетный» соответствует трем значениям из домена [латекс] \ left \ {1,3,5 \ right \} [/ latex], а термин «четный» соответствует двум значениям из диапазона, [латекс] \ left \ {2,4 \ right \} [/ латекс]. Это нарушает определение функции, поэтому это отношение не является функцией.
На этом изображении сравниваются отношения, которые являются функциями, а не функциями.
(a) Это отношение является функцией, потому что каждый вход связан с одним выходом. Обратите внимание, что input [latex] q [/ latex] и [latex] r [/ latex] оба дают output [latex] n [/ latex].(б) Эта взаимосвязь также является функцией. В этом случае каждый вход связан с одним выходом. (c) Эта связь не является функцией, потому что input [latex] q [/ latex] связан с двумя разными выходами.
A Общее примечание: Функции
Функция — это отношение, в котором каждое возможное входное значение приводит ровно к одному выходному значению. Мы говорим: «Выход — это функция входа».
Входные значения составляют область , а выходные значения составляют диапазон .
Как сделать: учитывая отношение между двумя величинами, определите, является ли отношение функцией.
- Определите входные значения.
- Определите выходные значения.
- Если каждое входное значение приводит только к одному выходному значению, связь является функцией. Если какое-либо входное значение приводит к двум или более выходам, связь не является функцией.
Пример: определение того, являются ли прайс-листы меню функциями
Меню кофейни состоит из позиций и их цен.
- Цена зависит от товара?
- Товар зависит от цены?
- Начнем с рассмотрения ввода как пунктов меню. Выходные значения — это цены. У каждого элемента в меню есть только одна цена, поэтому цена является функцией этого элемента.
- Два пункта меню имеют одинаковую цену. Если мы рассматриваем цены как входные значения, а товары как выходные, то с одним и тем же входным значением может быть связано несколько выходных данных.Следовательно, товар не зависит от цены.
Пример: определение того, являются ли правила оценки класса функциями
В конкретном классе математики общая процентная оценка соответствует среднему баллу. Является ли средний балл функцией процентной оценки? Является ли процентная оценка функцией среднего балла? В таблице ниже показано возможное правило присвоения баллов.
Процентная оценка | 0–56 | 57–61 | 62–66 | 67–71 | 72–77 | 78–86 | 87–91 | 92–100 |
---|---|---|---|---|---|---|---|---|
Средний балл | 0.0 | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 | 3,5 | 4,0 |
Для любой процентной оценки существует связанный средний балл, поэтому средний балл является функцией процентной оценки. Другими словами, если мы введем процентную оценку, на выходе получится конкретный средний балл.
В данной системе оценок существует диапазон процентных оценок, соответствующих одному и тому же среднему баллу.Например, учащиеся, получившие средний балл 3,0, могут иметь различные процентные оценки от 78 до 86. Таким образом, процентная оценка не является функцией среднего балла.
Попробуйте
В таблице ниже перечислены пять величайших бейсболистов всех времен в порядке рангов.
Игрок | Рейтинг |
---|---|
Бэйб Рут | 1 |
Уилли Мейс | 2 |
Тай Кобб | 3 |
Уолтер Джонсон | 4 |
Хэнк Аарон | 5 |
- Является ли ранг функцией имени игрока?
- Имя игрока зависит от ранга?
- да
- да.(Примечание: если бы два игрока были разделены, скажем, за 4-е место, то имя не зависело бы от ранга.)
Использование обозначения функций
Как только мы определим, что отношение является функцией, нам нужно отобразить и определить функциональные отношения, чтобы мы могли их понять и использовать, а иногда и чтобы мы могли программировать их в компьютерах. Есть разные способы представления функций. Стандартное обозначение функции — это представление, упрощающее работу с функциями.
Чтобы представить «рост является функцией возраста», мы начинаем с определения описательных переменных [latex] h [/ latex] для роста и [latex] a [/ latex] для возраста. Буквы [latex] f, g [/ latex] и [latex] h [/ latex] часто используются для обозначения функций точно так же, как мы используем [latex] x, y [/ latex] и [latex] z [/ латекс] для обозначения чисел и [латекс] A, B [/ латекс] и [латекс] C [/ латекс] для представления наборов.
[латекс] \ begin {align} & h \ text {is} f \ text {of} a && \ text {Мы называем функцию} f; \ text {высота является функцией возраста}.\\ & h = f \ left (a \ right) && \ text {Мы используем круглые скобки для обозначения ввода функции} \ text {. } \\ & f \ left (a \ right) && \ text {Мы называем функцию} f; \ text {выражение читается как} » f \ text {of} a ». \ end {align} [/ latex]
Помните, мы можем использовать любую букву для названия функции; мы можем использовать обозначение [латекс] h \ left (a \ right) [/ latex], чтобы показать, что [latex] h [/ latex] зависит от [latex] a [/ latex]. Входное значение [latex] a [/ latex] должно быть помещено в функцию [latex] h [/ latex], чтобы получить выходное значение.Скобки указывают, что возраст вводится в функцию; они не указывают на умножение.
Мы также можем дать алгебраическое выражение в качестве входных данных для функции. Например, [латекс] f \ left (a + b \ right) [/ latex] означает «сначала добавьте [latex] a [/ latex] и [latex] b [/ latex], и результат будет входом для функции [латекс] е [/ латекс] ». Мы должны выполнять операции в таком порядке, чтобы получить правильный результат.
A Общее примечание: обозначение функций
Обозначение [латекс] y = f \ left (x \ right) [/ latex] определяет функцию с именем [latex] f [/ latex].Это читается как [latex] «y [/ latex] является функцией [latex] x». [/ Latex] Буква [latex] x [/ latex] представляет входное значение или независимую переменную. Буква [латекс] y [/ latex] или [латекс] f \ left (x \ right) [/ latex] представляет выходное значение или зависимую переменную.
Пример: использование обозначения функций для дней в месяце
Используйте обозначение функции для представления функции, входом которой является название месяца, а выходом — количество дней в этом месяце в невисокосном году.
Показать решениеКоличество дней в месяце является функцией названия месяца, поэтому, если мы назовем функцию [latex] f [/ latex], мы напишем [latex] \ text {days} = f \ left (\ text {месяц} \ справа) [/ латекс] или [латекс] d = f \ left (m \ right) [/ латекс].Название месяца — это вход в «правило», которое связывает определенное число (выход) с каждым входом.
Например, [латекс] f \ left (\ text {April} \ right) = 30 [/ latex], потому что в апреле 30 дней. Обозначение [латекс] d = f \ left (m \ right) [/ latex] напоминает нам, что количество дней, [latex] d [/ latex] (вывод), зависит от названия месяца, [ латекс] м [/ латекс] (вход).
Анализ решения
Мы должны ограничить функцию невисокосными годами. В противном случае у февраля было бы 2 выхода, и это не было бы функцией.Также обратите внимание, что входные данные функции не обязательно должны быть числами; входные данные функции могут быть именами людей, метками геометрических объектов или любым другим элементом, определяющим какой-либо вид вывода. Однако большинство функций, с которыми мы будем работать в этой книге, будут иметь числа как входы и выходы.
Пример: интерпретация обозначения функции
Функция [латекс] N = f \ left (y \ right) [/ latex] дает количество полицейских, [latex] N [/ latex], в городе в году [latex] y [/ latex].Что означает [латекс] f \ left (2005 \ right) = 300 [/ latex]?
Показать решениеКогда мы читаем [латекс] f \ left (2005 \ right) = 300 [/ latex], мы видим, что входным годом является 2005. Значение для выходных данных — количество полицейских [латекс] N [/ latex] , равно 300. Помните, [латекс] N = f \ left (y \ right) [/ latex]. Выражение [латекс] f \ left (2005 \ right) = 300 [/ latex] говорит нам, что в 2005 году в городе было 300 полицейских.
Вопросы и ответы
Вместо обозначения, такого как [latex] y = f \ left (x \ right) [/ latex], могли бы мы использовать тот же символ для вывода, что и для функции, например [latex] y = y \ left (x \ right) [/ latex], что означает « y является функцией x ?»
Да, это часто делается, особенно в прикладных предметах, использующих высшую математику, таких как физика и инженерия.Однако, исследуя математику, нам нравится различать такую функцию, как [latex] f [/ latex], которая является правилом или процедурой, и выводом [latex] y [/ latex], который мы получаем, применяя [latex ] f [/ latex] к конкретному входу [latex] x [/ latex]. Вот почему мы обычно используем такие обозначения, как [латекс] y = f \ left (x \ right), P = W \ left (d \ right) [/ latex] и так далее.
Представление функций с помощью таблиц
Распространенный метод представления функций — таблица. Строки или столбцы таблицы отображают соответствующие входные и выходные значения.В некоторых случаях эти значения представляют все, что мы знаем об отношениях; в других случаях таблица предоставляет несколько избранных примеров из более полных отношений.
В таблице ниже перечислены входные числа каждого месяца (январь = 1, февраль = 2 и т. Д.) И выходное значение количества дней в этом месяце. Эта информация представляет все, что мы знаем о месяцах и днях для данного года (который не является високосным). Обратите внимание, что в этой таблице мы определяем функцию дней в месяце [latex] f [/ latex], где [latex] D = f \ left (m \ right) [/ latex] определяет месяцы целым числом. а не по имени.
Номер месяца, [латекс] м [/ латекс] (ввод) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Количество дней в месяце, [латекс] D [/ латекс] (вывод) | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
В таблице ниже определяется функция [латекс] Q = g \ left (n \ right) [/ latex].Помните, что эта запись говорит нам, что [latex] g [/ latex] — это имя функции, которая принимает входные данные [latex] n [/ latex] и выдает на выходе [latex] Q [/ latex].
[латекс] n [/ латекс] | 1 | 2 | 3 | 4 | 5 |
[латекс] Q [/ латекс] | 8 | 6 | 7 | 6 | 8 |
В таблице ниже показан возраст детей в годах и их рост.В этой таблице показаны лишь некоторые из имеющихся данных о росте и возрасте детей. Сразу видно, что эта таблица не представляет функцию, потому что одно и то же входное значение, 5 лет, имеет два разных выходных значения, 40 дюймов и 42 дюйма
Возраст в годах, [latex] \ text {} a \ text {} [/ latex] (ввод) | 5 | 5 | 6 | 7 | 8 | 9 | 10 |
Высота в дюймах, [латекс] \ text {} h \ text {} [/ latex] (вывод) | 40 | 42 | 44 | 47 | 50 | 52 | 54 |
Как: по таблице входных и выходных значений определить, представляет ли таблица функцию.
- Определите входные и выходные значения.
- Убедитесь, что каждое входное значение сопряжено только с одним выходным значением. Если это так, таблица представляет функцию.
Пример: определение таблиц, представляющих функции
Какая таблица, A, B или C, представляет функцию (если есть)?
Таблица A | |
---|---|
Вход | Выход |
2 | 1 |
5 | 3 |
8 | 6 |
Таблица B | |
---|---|
Вход | Выход |
–3 | 5 |
0 | 1 |
4 | 5 |
Таблица C | |
---|---|
Вход | Выход |
1 | 0 |
5 | 2 |
5 | 4 |
a) и b) определяют функции.В обоих случаях каждое входное значение соответствует ровно одному выходному значению. c) не определяет функцию, потому что входное значение 5 соответствует двум различным выходным значениям.
Когда таблица представляет функцию, соответствующие входные и выходные значения также могут быть указаны с использованием обозначения функции.
Функция, обозначенная a), может быть представлена записью
[латекс] f \ left (2 \ right) = 1, f \ left (5 \ right) = 3, \ text {and} f \ left (8 \ right) = 6 [/ latex]
Аналогично, утверждения [латекс] g \ left (-3 \ right) = 5, g \ left (0 \ right) = 1, \ text {и} g \ left (4 \ right) = 5 [/ latex] представляют функцию в b).
c) нельзя выразить аналогичным образом, потому что он не представляет функцию.
Когда мы знаем входное значение и хотим определить соответствующее выходное значение для функции, мы оцениваем функцию. Оценка всегда дает один результат, потому что каждое входное значение функции соответствует ровно одному выходному значению.
Когда мы знаем выходное значение и хотим определить входные значения, которые будут производить это выходное значение, мы устанавливаем выход равным формуле функции и решаем для входа.Решение может дать более одного решения, потому что разные входные значения могут давать одно и то же выходное значение.
Определить, является ли функция взаимно однозначной
Некоторые функции имеют заданное выходное значение, соответствующее двум или более входным значениям. Например, на следующей биржевой диаграмме цена акции составляла 1000 долларов в пять разных дат, что означает, что было пять различных входных значений, которые все привели к одному и тому же выходному значению в 1000 долларов.
Однако некоторые функции имеют только одно входное значение для каждого выходного значения, а также имеют только один выход для каждого входа.Мы называем эти функции взаимно однозначными функциями. В качестве примера рассмотрим школу, в которой используются только буквенные оценки и десятичные эквиваленты, как указано в.
Буквенный класс | Средний балл |
---|---|
А | 4,0 |
B | 3,0 |
С | 2,0 |
Д | 1,0 |
Эта система оценок представляет собой функцию «один-к-одному», потому что каждая вводимая буква дает один конкретный выходной средний балл, а каждый средний балл соответствует одной вводимой букве.
Чтобы визуализировать эту концепцию, давайте еще раз посмотрим на две простые функции, схематически изображенные в пунктах (a) и (b) ниже.
Функция в части (a) показывает взаимосвязь, которая не является однозначной, потому что входы [latex] q [/ latex] и [latex] r [/ latex] дают выход [latex] n [/ latex ]. Функция в части (b) показывает взаимосвязь, которая является функцией «один-к-одному», потому что каждый вход связан с одним выходом.
Общее примечание: индивидуальная функция
Однозначная функция — это функция, в которой каждое выходное значение соответствует ровно одному входному значению.{2} [/ латекс]. Поскольку площади и радиусы являются положительными числами, существует ровно одно решение: [latex] r = \ sqrt {\ frac {A} {\ pi}} [/ latex]. Таким образом, площадь круга однозначно зависит от радиуса круга.
Попробуйте
- Является ли остаток функцией номера банковского счета?
- Является ли номер банковского счета функцией баланса?
- Является ли баланс однозначной функцией номера банковского счета?
- да, потому что каждый банковский счет (вход) имеет единственный баланс (выход) в любой момент времени. {2} + 2p [/ latex], решите относительно [латекс] h \ left (p \ right) = 3 [/ latex].{2} + 2p — 3 = 0 && \ text {Вычтите по 3 с каждой стороны}. \\ & \ left (p + 3 \ text {) (} p — 1 \ right) = 0 && \ text {Factor}. \ end {align} [/ latex]
Если [латекс] \ left (p + 3 \ right) \ left (p — 1 \ right) = 0 [/ latex], либо [latex] \ left (p + 3 \ right) = 0 [/ latex] или [латекс] \ left (p — 1 \ right) = 0 [/ latex] (или оба они равны 0). Мы установим каждый коэффициент равным 0 и решим для каждого случая [латекс] p [/ латекс].
[латекс] \ begin {align} & p + 3 = 0, && p = -3 \\ & p — 1 = 0, && p = 1 \ hfill \ end {align} [/ latex]
Это дает нам два решения.Вывод [латекс] h \ left (p \ right) = 3 [/ latex], когда на входе либо [latex] p = 1 [/ latex], либо [latex] p = -3 [/ latex].
Мы также можем проверить, построив график, как на рисунке 5. График проверяет, что [latex] h \ left (1 \ right) = h \ left (-3 \ right) = 3 [/ latex] и [latex] h \ left (4 \ справа) = 24 [/ латекс].
Попробуйте
Учитывая функцию [латекс] g \ left (m \ right) = \ sqrt {m — 4} [/ latex], решите [latex] g \ left (m \ right) = 2 [/ latex].
Вычисление функций, выраженных в формулах
Некоторые функции определяются математическими правилами или процедурами, выраженными в форме уравнения .Если возможно выразить выход функции с помощью формулы , включающей входную величину, то мы можем определить функцию в алгебраической форме. Например, уравнение [латекс] 2n + 6p = 12 [/ латекс] выражает функциональную взаимосвязь между [латексом] n [/ латексом] и [латексом] p [/ латексом]. Мы можем переписать его, чтобы решить, является ли [latex] p [/ latex] функцией [latex] n [/ latex].
Практическое руководство. Для данной функции в форме уравнения напишите ее алгебраическую формулу.
- Решите уравнение, чтобы изолировать выходную переменную с одной стороны от знака равенства с другой стороной как выражение, которое включает только входную переменную.
- Используйте все обычные алгебраические методы для решения уравнений, такие как сложение или вычитание одной и той же величины с обеих сторон или от них, или умножение или деление обеих сторон уравнения на одинаковую величину.
Пример: поиск уравнения функции
Выразите отношение [латекс] 2n + 6p = 12 [/ latex] как функцию [latex] p = f \ left (n \ right) [/ latex], если это возможно.
Показать решениеЧтобы выразить отношение в этой форме, нам нужно иметь возможность записать отношение, где [latex] p [/ latex] является функцией [latex] n [/ latex], что означает запись его как [latex] p = [/ latex] выражение, включающее [latex] n [/ latex].
[латекс] \ begin {align} & 2n + 6p = 12 \\ [1mm] & 6p = 12 — 2n && \ text {Subtract} 2n \ text {с обеих сторон}. \\ [1mm] & p = \ frac {12 — 2n} {6} && \ text {Разделите обе стороны на 6 и упростите}. \\ [1 мм] & p = \ frac {12} {6} — \ frac {2n} {6} \\ [1 мм] & p = 2- \ frac {1} {3} n \ end {align} [/ latex ]
Следовательно, [латекс] p [/ latex] как функция [latex] n [/ latex] записывается как
[латекс] p = f \ left (n \ right) = 2- \ frac {1} {3} n [/ latex]
Анализ решения
Важно отметить, что не все отношения, выраженные уравнением, также можно выразить как функцию с формулой.{y} [/ latex], если мы хотим выразить [latex] y [/ latex] как функцию [latex] x [/ latex], не существует простой алгебраической формулы, включающей только [latex] x [/ latex] что равно [латекс] y [/ латекс]. Однако каждый [latex] x [/ latex] действительно определяет уникальное значение для [latex] y [/ latex], и существуют математические процедуры, с помощью которых [latex] y [/ latex] может быть найден с любой желаемой точностью. В этом случае мы говорим, что уравнение дает неявное (подразумеваемое) правило для [latex] y [/ latex] как функции [latex] x [/ latex], даже если формулу нельзя записать явно.
Оценка функции, заданной в табличной форме
Как мы видели выше, мы можем представлять функции в виде таблиц. И наоборот, мы можем использовать информацию в таблицах для написания функций, и мы можем оценивать функции с помощью таблиц. Например, насколько хорошо наши питомцы вспоминают теплые воспоминания, которыми мы с ними делимся? Существует городская легенда, что у золотой рыбки память 3 секунды, но это всего лишь миф. Золотая рыбка может помнить до 3 месяцев, в то время как бета-рыба имеет память до 5 месяцев.И хотя продолжительность памяти щенка не превышает 30 секунд, взрослая собака может запоминать 5 минут. Это скудно по сравнению с кошкой, у которой объем памяти составляет 16 часов.
Функция, которая связывает тип домашнего животного с продолжительностью его памяти, легче визуализировать с помощью таблицы. См. Таблицу ниже.
Домашнее животное Объем памяти в часах Щенок 0,008 Взрослая собака 0.083 Кот 16 Золотая рыбка 2160 Бета-рыба 3600 Иногда оценка функции в табличной форме может быть более полезной, чем использование уравнений. Здесь вызовем функцию [латекс] П [/ латекс].
Домен функции — это тип домашнего животного, а диапазон — это действительное число, представляющее количество часов, в которых хранится память домашнего животного.Мы можем оценить функцию [latex] P [/ latex] при входном значении «золотая рыбка». Мы бы написали [латекс] P \ left (\ text {goldfish} \ right) = 2160 [/ latex]. Обратите внимание, что для оценки функции в табличной форме мы идентифицируем входное значение и соответствующее выходное значение из соответствующей строки таблицы. Табличная форма для функции [latex] P [/ latex] кажется идеально подходящей для этой функции, больше, чем запись ее в форме абзаца или функции.
Практическое руководство. Для функции, представленной в виде таблицы, определите конкретные выходные и входные значения.
- Найдите данный вход в строке (или столбце) входных значений.
- Определите соответствующее выходное значение в паре с этим входным значением.
- Найдите заданные выходные значения в строке (или столбце) выходных значений, отмечая каждый раз, когда это выходное значение появляется.
- Определите входные значения, соответствующие заданному выходному значению.
Пример: оценка и решение табличной функции
Используя приведенную ниже таблицу,
- Вычислить [латекс] g \ left (3 \ right) [/ latex].
- Решите [латекс] g \ left (n \ right) = 6 [/ latex].
[латекс] n [/ латекс] 1 2 3 4 5 [латекс] г (п) [/ латекс] 8 6 7 6 8 - Оценка [latex] g \ left (3 \ right) [/ latex] означает определение выходного значения функции [latex] g [/ latex] для входного значения [latex] n = 3 [/ latex].Выходное значение таблицы, соответствующее [latex] n = 3 [/ latex], равно 7, поэтому [latex] g \ left (3 \ right) = 7 [/ latex].
- Решение [latex] g \ left (n \ right) = 6 [/ latex] означает определение входных значений, [latex] n [/ latex], которые дают выходное значение 6. В таблице ниже показаны два решения: [ латекс] n = 2 [/ латекс] и [латекс] n = 4 [/ латекс].
[латекс] n [/ латекс] 1 2 3 4 5 [латекс] г (п) [/ латекс] 8 6 7 6 8 Когда мы вводим 2 в функцию [latex] g [/ latex], мы получаем 6.Когда мы вводим 4 в функцию [latex] g [/ latex], наш результат также равен 6.
Попробуйте
Используя таблицу из предыдущего примера, оцените [латекс] g \ left (1 \ right) [/ latex].
Показать решение[латекс] г \ влево (1 \ вправо) = 8 [/ латекс]
Поиск значений функции из графика
Оценка функции с помощью графика также требует нахождения соответствующего выходного значения для данного входного значения, только в этом случае мы находим выходное значение, глядя на график.Решение функционального уравнения с использованием графика требует нахождения всех экземпляров данного выходного значения на графике и наблюдения за соответствующими входными значениями.
Пример: чтение значений функций из графика
Учитывая график ниже,
- Вычислить [латекс] f \ left (2 \ right) [/ latex].
- Решите [латекс] f \ left (x \ right) = 4 [/ latex].
- Чтобы оценить [латекс] f \ left (2 \ right) [/ latex], найдите точку на кривой, где [latex] x = 2 [/ latex], затем прочтите [latex] y [/ latex] — координата этой точки.Точка имеет координаты [latex] \ left (2,1 \ right) [/ latex], поэтому [latex] f \ left (2 \ right) = 1 [/ latex].
- Чтобы решить [латекс] f \ left (x \ right) = 4 [/ latex], мы находим выходное значение [latex] 4 [/ latex] по вертикальной оси. Двигаясь горизонтально по линии [latex] y = 4 [/ latex], мы обнаруживаем две точки кривой с выходным значением [latex] 4: [/ latex] [latex] \ left (-1,4 \ right) [/ латекс] и [латекс] \ влево (3,4 \ вправо) [/ латекс]. Эти точки представляют два решения [латекс] f \ left (x \ right) = 4: [/ latex] [latex] x = -1 [/ latex] или [latex] x = 3 [/ latex].Это означает [латекс] f \ left (-1 \ right) = 4 [/ latex] и [latex] f \ left (3 \ right) = 4 [/ latex], или когда ввод [латекс] -1 [ / latex] или [latex] \ text {3,} [/ latex] вывод будет [latex] \ text {4} \ text {.} [/ latex] См. график ниже.
Попробуйте
Используя график, решите [латекс] f \ left (x \ right) = 1 [/ latex].
Показать решение[латекс] x = 0 [/ латекс] или [латекс] x = 2 [/ латекс]
Определение функций с помощью графиков
Как мы видели в примерах выше, мы можем представить функцию с помощью графика.Графики отображают множество пар ввода-вывода на небольшом пространстве. Предоставляемая ими визуальная информация часто упрощает понимание взаимоотношений. Обычно мы строим графики с входными значениями по горизонтальной оси и выходными значениями по вертикальной оси.
Наиболее распространенные графики называют входное значение [latex] x [/ latex] и выходное значение [latex] y [/ latex], и мы говорим, что [latex] y [/ latex] является функцией [latex] x [ / latex] или [latex] y = f \ left (x \ right) [/ latex], если функция называется [latex] f [/ latex].График функции — это набор всех точек [латекс] \ left (x, y \ right) [/ latex] в плоскости, которая удовлетворяет уравнению [латекс] y = f \ left (x \ right) [/ latex ]. Если функция определена только для нескольких входных значений, то график функции представляет собой только несколько точек, где координата x каждой точки является входным значением, а координата y каждой точки является соответствующее выходное значение. Например, черные точки на графике на графике ниже говорят нам, что [латекс] f \ left (0 \ right) = 2 [/ latex] и [latex] f \ left (6 \ right) = 1 [/ latex ].Однако набор всех точек [latex] \ left (x, y \ right) [/ latex], удовлетворяющих [latex] y = f \ left (x \ right) [/ latex], является кривой. Показанная кривая включает [латекс] \ left (0,2 \ right) [/ latex] и [latex] \ left (6,1 \ right) [/ latex], потому что кривая проходит через эти точки.
Тест вертикальной линии может использоваться для определения того, представляет ли график функцию. Вертикальная линия включает все точки с определенным значением [latex] x [/ latex]. Значение [latex] y [/ latex] точки, где вертикальная линия пересекает график, представляет собой выход для этого входного значения [latex] x [/ latex].Если мы можем нарисовать любую вертикальную линию , которая пересекает график более одного раза, тогда график , а не определяет функцию, потому что это значение [latex] x [/ latex] имеет более одного вывода. Функция имеет только одно выходное значение для каждого входного значения.
Как сделать: для данного графика используйте тест вертикальной линии, чтобы определить, представляет ли график функцию.
- Проверьте график, чтобы убедиться, что какая-либо вертикальная линия пересекает кривую более одного раза.
- Если такая линия есть, график не представляет функцию.
- Если ни одна вертикальная линия не может пересекать кривую более одного раза, график действительно представляет функцию.
Пример: применение теста вертикальной линии
Какой из графиков представляет функцию [латекс] y = f \ left (x \ right)? [/ Latex]
Показать решениеЕсли какая-либо вертикальная линия пересекает график более одного раза, отношение, представленное на графике, не является функцией. Обратите внимание, что любая вертикальная линия будет проходить только через одну точку двух графиков, показанных в частях (a) и (b) графика выше.Из этого можно сделать вывод, что эти два графика представляют функции. Третий график не представляет функцию, потому что при максимальном значении x вертикальная линия пересекает график более чем в одной точке.
Попробуйте
Представляет ли приведенный ниже график функцию?
Тест горизонтальной линии
После того, как мы определили, что график определяет функцию, простой способ определить, является ли функция взаимно однозначной, — это использовать тест горизонтальной линии .Проведите через график горизонтальные линии. Горизонтальная линия включает все точки с определенным значением [latex] y [/ latex]. Значение [latex] x [/ latex] точки, где вертикальная линия пересекает функцию, представляет вход для этого выходного значения [latex] y [/ latex]. Если мы можем нарисовать любую горизонтальную линию , которая пересекает график более одного раза, тогда график , а не представляет собой взаимно-однозначную функцию, потому что это значение [latex] y [/ latex] имеет более одного входа.
Практическое руководство. Имея график функции, используйте тест горизонтальной линии, чтобы определить, представляет ли график однозначную функцию.
- Проверьте график, чтобы увидеть, пересекает ли нарисованная горизонтальная линия кривую более одного раза.
- Если такая линия есть, функция не взаимно однозначная.
- Если ни одна горизонтальная линия не может пересекать кривую более одного раза, функция взаимно однозначна.
Пример: применение теста горизонтальной линии
Рассмотрим функции (a) и (b), показанные на графиках ниже.
Являются ли какие-либо функции взаимно однозначными?
Показать решениеФункция в (a) не является взаимно однозначной.Горизонтальная линия, показанная ниже, пересекает график функции в двух точках (и мы даже можем найти горизонтальные линии, которые пересекают его в трех точках).
Функция в (b) взаимно однозначная. Любая горизонтальная линия будет пересекать диагональную линию не более одного раза.
Определение основных функций набора инструментов
В этом тексте мы исследуем функции — формы их графиков, их уникальные характеристики, их алгебраические формулы и способы решения с ними проблем.Когда учимся читать, мы начинаем с алфавита. Когда мы учимся арифметике, мы начинаем с чисел. При работе с функциями также полезно иметь базовый набор стандартных элементов. Мы называем их «функциями набора инструментов», которые образуют набор базовых именованных функций, для которых нам известны график, формула и специальные свойства. Некоторые из этих функций запрограммированы на отдельные кнопки на многих калькуляторах. Для этих определений мы будем использовать [latex] x [/ latex] в качестве входной переменной и [latex] y = f \ left (x \ right) [/ latex] в качестве выходной переменной.
Мы будем часто видеть эти функции набора инструментов, комбинации функций набора инструментов, их графики и их преобразования на протяжении всей этой книги. Будет очень полезно, если мы сможем быстро распознать эти функции набора инструментов и их возможности по имени, формуле, графику и основным свойствам таблицы. Графики и примерные значения таблицы включены в каждую функцию, показанную ниже.
Ключевые понятия
- Отношение — это набор упорядоченных пар. Функция — это особый тип отношения, в котором каждое значение домена или вход приводит ровно к одному значению диапазона или выходу.
- Функциональная нотация — это сокращенный метод соотнесения ввода и вывода в форме [латекс] y = f \ left (x \ right) [/ latex].
- В табличной форме функция может быть представлена строками или столбцами, которые относятся к входным и выходным значениям.
- Чтобы оценить функцию, мы определяем выходное значение для соответствующего входного значения. Алгебраические формы функции можно оценить, заменив входную переменную заданным значением.
- Чтобы найти конкретное значение функции, мы определяем входные значения, которые дают конкретное выходное значение.
- Алгебраическая форма функции может быть записана из уравнения.
- Входные и выходные значения функции можно определить по таблице.
- Связь входных значений с выходными значениями на графике — еще один способ оценить функцию.
- Функция взаимно однозначна, если каждое выходное значение соответствует только одному входному значению.
- График представляет функцию, если любая вертикальная линия, проведенная на графике, пересекает график не более чем в одной точке.
- График представляет собой взаимно однозначную функцию, если любая горизонтальная линия, проведенная на графике, пересекает график не более чем в одной точке.
Глоссарий
- зависимая переменная
- выходная переменная
- домен
- набор всех возможных входных значений для отношения
- функция
- отношение, в котором каждое входное значение дает уникальное выходное значение
- тест горизонтальной линии
- метод проверки взаимно однозначности функции путем определения того, пересекает ли какая-либо горизонтальная линия график более одного раза
- независимая переменная
- входная переменная
- вход
- каждый объект или значение в домене, который относится к другому объекту или значению посредством отношения, известного как функция
- индивидуальная функция
- функция, для которой каждое значение вывода связано с уникальным значением ввода
- выход
- каждый объект или значение в диапазоне, который создается, когда входное значение вводится в функцию
- диапазон
- набор выходных значений, которые являются результатом входных значений в отношении
- отношение
- набор заказанных пар
- тест вертикальной линии
- метод проверки того, представляет ли график функцию путем определения того, пересекает ли вертикальная линия график не более одного раза
Свойства функций | Безграничная алгебра
Увеличивающие, убывающие и постоянные функции
Функции могут быть либо постоянными, либо увеличиваться при увеличении [latex] x [/ latex], либо уменьшаться при увеличении [latex] x [/ latex].
Цели обучения
Применить определения функций увеличения и уменьшения, чтобы определить, увеличивается ли функция, уменьшается или нет в заданном интервале
Ключевые выводы
Ключевые моменты
- Постоянная функция — это функция, значения которой не меняются независимо от ввода в функцию.
- Возрастающая функция — это функция, при которой для каждого [латекса] x_ {1} [/ latex] и [latex] x_ {2} [/ latex], удовлетворяющих [latex] x_ {2} [/ latex]> [latex] x_ {1} [/ latex], затем [latex] f (x_ {2}) \ geq f (x_ {1}) [/ latex].Если оно строго больше чем, то оно строго возрастает.
- Функция уменьшения — это функция, при которой для каждого [латекса] x_ {1} [/ latex] и [latex] x_ {2} [/ latex], удовлетворяющего [latex] x_ {2} [/ latex]> [latex] x_ {1} [/ latex], затем [latex] f (x_ {2}) \ leq f (x_ {1}) [/ latex]. Если он строго меньше, то он строго убывает.
Ключевые термины
- убывающая функция : Любая функция действительной переменной, значение которой уменьшается (или остается постоянным) по мере увеличения переменной.
- постоянная функция : функция, значение которой одинаково для всех элементов ее домена.
- возрастающая функция : Любая функция действительной переменной, значение которой увеличивается (или остается постоянным) по мере увеличения переменной.
Графическое поведение функций
В рамках исследования того, как изменяются функции, мы можем определить интервалы, в течение которых функция изменяется определенным образом. Мы говорим, что функция — это , увеличивающая в интервале, если значения функции увеличиваются по мере увеличения входных значений в пределах этого интервала.Точно так же функция — это , уменьшающая на интервале, если значения функции уменьшаются по мере увеличения входных значений в течение этого интервала.
- Возрастающая функция — это функция, в которой для каждого [latex] x_1 [/ latex] и [latex] x_2 [/ latex], удовлетворяющих [latex] x_2> x_1 [/ latex], затем [latex] f (x_ {2}) ) \ geq f (x_ {1}) [/ латекс]. Если оно строго больше, чем [latex] (f (x_2)> f (x_1)) [/ latex], то оно строго возрастает.
- Функция уменьшения — это функция, при которой для каждого [латекса] x_1 [/ latex] и [latex] x_2 [/ latex], удовлетворяющих [latex] x_2> x_1 [/ latex], затем [latex] f (x_ {2}) \ leq f (x_ {1}) [/ латекс].Если он строго меньше [latex] (f (x_2)
В терминах линейной функции [латекс] f (x) = mx + b [/ latex], если [latex] m [/ latex] положительный, функция увеличивается, если [latex] m [/ latex] отрицательное значение, оно уменьшается, и если [latex] m [/ latex] равно нулю, функция является постоянной функцией.
Средняя скорость изменения возрастающей функции положительна, а средняя скорость изменения убывающей функции отрицательна.3−12x [/ latex] увеличивается по оси [latex] x [/ latex] от отрицательной бесконечности до [latex] -2 [/ latex], а также от [latex] 2 [/ latex] до положительной бесконечности. Обозначение интервалов записывается как: [latex] (- ∞, −2) ∪ (2, ∞) [/ latex]. Функция убывает на интервале: [latex] (−2, 2) [/ latex].
Постоянные функции
В математике постоянная функция ion — это функция, значения которой не меняются, независимо от ввода в функцию. Функция является постоянной функцией, если [latex] f (x) = c [/ latex] для всех значений [latex] x [/ latex] и некоторой константы [latex] c [/ latex].График постоянной функции [latex] y (x) = c [/ latex] представляет собой горизонтальную линию в плоскости, проходящую через точку [latex] (0, c). [/ Latex]
Постоянная функция: График [latex] f (x) = 4 [/ latex] иллюстрирует постоянную функцию.
Определение поведения функции
Пример 1: Определите интервалы, в которых функция увеличивается, уменьшается или остается постоянной.
Посмотрите на график слева направо по оси [latex] x [/ latex]; первая часть кривой убывает от бесконечности до [latex] x [/ latex] -значения [latex] -1 [/ latex], а затем кривая увеличивается.Кривая увеличивается на интервале от [латекс] -1 [/ латекс] до [латекс] 1 [/ латекс], а затем снова уменьшается до бесконечности.
График функции возрастания и убывания: Для функции, изображенной выше, кривая убывает в интервалах: [latex] (- \ infty, -1) \ cup (1, \ infty) [/ latex] и увеличивается в интервале [латекс] (-1,1) [/ латекс].
Относительные минимумы и максимумы
Относительные минимумы и максимумы — это точки наименьшего и наибольшего значений в их окрестностях соответственно.
Цели обучения
Определить локальные и глобальные максимумы и минимумы заданной функции
Ключевые выводы
Ключевые моменты
- Минимумы и максимумы вместе называются экстремумами.
- Функция имеет глобальную (или абсолютную) точку максимума в [latex] x [/ latex] *, если [latex] f (x *) ≥ f (x) [/ latex] для всех [latex] x [/ latex] .
- Функция имеет глобальную (или абсолютную) точку минимума в [latex] x [/ latex] *, если [latex] f (x *) ≤ f (x) [/ latex] для всех [latex] x [/ latex] .
- Функция [latex] f [/ latex] имеет относительный (локальный) максимум r при [latex] x = b [/ latex], если существует интервал [latex] (a, c) [/ latex] с [латекс] a
- Функция [latex] f [/ latex] имеет относительный (локальный) минимум в [latex] x = b [/ latex], если существует интервал [latex] (a, c) [/ latex] с [latex] a
- Функции не обязательно имеют экстремумы. Например, любая строка [latex] f (x) = mx + b [/ latex], где [latex] m [/ latex] и [latex] b [/ latex] — константы, не имеет экстремумов, будь то локальные или глобальный.
- Функция [latex] f [/ latex] имеет относительный (локальный) минимум в [latex] x = b [/ latex], если существует интервал [latex] (a, c) [/ latex] с [latex] a
Ключевые термины
- максимум : Наибольшее значение набора.
- экстремум : точка или значение, которое является максимумом или минимумом.
- минимум : наименьшее значение набора.
Минимумы и максимумы широко используются в задачах оптимизации и искусственного интеллекта, где, учитывая ряд ограничений на ресурсы, мы хотим наилучшим образом использовать наши ресурсы.Например, мы можем захотеть максимизировать нашу прибыль, учитывая предметы, которые мы можем производить, и наши доступные ресурсы. В области искусственного интеллекта мы можем захотеть выяснить, какой план действий наименее затратный для робота (т. Е. Кратчайший путь). В идеале вам нужно найти глобальные минимумы для планов. Однако, поскольку времени для определения правильного плана не существует, искусственный интеллект часто просто находит локальные минимумы.
Определения минимумов и максимумов: относительные и глобальные
В математике максимум и минимум функции (известные вместе как экстремумы ) — это наибольшее и наименьшее значение, которое функция принимает в точке либо в данной окрестности (локальный или относительный экстремум), либо в пределах области функции в ее целостность (глобальный или абсолютный экстремум).
Примеры относительных и глобальных экстремумов : Этот график содержит примеры всех четырех возможностей: относительного (локального) максимума и минимума, а также глобального максимума и минимума.
В то время как некоторые функции увеличиваются (или уменьшаются) во всей своей области, многие другие нет. Значение входа, при котором функция изменяется от увеличения к уменьшению (по мере продвижения слева направо, то есть по мере увеличения входной переменной), называется относительным максимумом. Если функция имеет более одного, мы говорим, что у нее есть локальные максимумы.Точно так же значение входа, при котором функция изменяется от уменьшения к увеличению по мере увеличения входной переменной, называется относительным минимумом. Форма множественного числа — локальные минимумы.
Функция также не увеличивается и не убывает в экстремумах. Обратите внимание, что мы должны говорить о локальных экстремумах, потому что любой данный локальный экстремум, как здесь определено, не обязательно является наивысшим максимумом или наименьшим минимумом во всей области определения функции.
- Функция [latex] f [/ latex] имеет относительный (локальный) максимум при [latex] x = b [/ latex], если существует интервал [latex] (a, c) [/ latex ] С [латексом] a
- Аналогично, [latex] f [/ latex] имеет относительный (local) минимум at [latex] x = b [/ latex], если существует интервал [latex] (a, c) [/ latex] с [латексом] a
График минимума локального максимума: Для изображенной функции локальный максимум находится при значении [latex] y [/ latex], равном 16, и он возникает, когда [latex] x = -2 [/ latex]. Локальный минимум находится при значении [latex] y [/ latex], равном -16, и это происходит, когда [latex] x = 2 [/ latex].
Функция имеет глобальный (или абсолютный) максимум точек в [latex] x [/ latex] *, если [latex] f (x ∗) ≥ f (x) [/ latex] для всех [latex] x [/латекс]. Точно так же функция имеет глобальных (или абсолютных) минимальных точек в [latex] x [/ latex], если [latex] f (x ∗) ≤ f (x) [/ latex] для всех [latex] x [/латекс]. Глобальные экстремумы также являются относительными экстремумами.
Функции не могут иметь в себе экстремумов, таких как строка [latex] y = x [/ latex]. Эта линия увеличивается к бесконечности и убывает к отрицательной бесконечности и не имеет относительных экстремумов.
Разделение относительного и глобального максимума и минимума
Пример 1: Найдите все максимумы и минимумы на графике ниже:
График относительных максимумов и минимумов: Эта кривая показывает относительный минимум при [латексе] (- 1, -2) [/ латекс] и относительный максимум при [латексе] (1,2) [/ латексе].
График достигает локального максимума в [latex] (1,2) [/ latex], потому что это самая высокая точка в открытом интервале вокруг [latex] x = 1 [/ latex]. Локальный максимум — это координата y при [latex] x = 1 [/ latex], которая равна [latex] 2 [/ latex].
График достигает локального минимума в [latex] (- 1, -2) [/ latex], потому что это самая низкая точка в открытом интервале около [latex] x = -1 [/ latex]. Локальный минимум — это координата y [латекс] x = -1 [/ latex], которая равна [latex] -2 [/ latex].
Пример 2:
Найдите все глобальные максимумы и минимумы на графике ниже:Глобальный график максимальных и минимальных значений: Для функции, изображенной выше, абсолютный максимум происходит дважды при [latex] y = 16 [/ latex], а абсолютный минимум — при [latex] (3, -10) [/ latex] .
График достигает абсолютного максимума в двух местах, [latex] x = -2 [/ latex] и [latex] x = 2 [/ latex], потому что в этих местах график достигает своей наивысшей точки в домене. функции. Абсолютный максимум — координата y , которая равна [латекс] 16 [/ латекс].
График достигает абсолютного минимума при [latex] x = 3 [/ latex], потому что это самая низкая точка в области графика функции. Абсолютный минимум — координата y , которая равна [латекс] -10 [/ латекс].
Кусочные функции
Кусочная функция определяется несколькими подфункциями, каждая из которых применяется к отдельным интервалам ввода
Цели обучения
Практика построения графиков кусочных функций и определение их областей и диапазонов
Ключевые выводы
Ключевые моменты
- Кусочные функции определяются с использованием общепринятой функциональной нотации, где тело функции представляет собой массив функций и связанных поддоменов.
- Абсолютное значение, [латекс] \ left | x \ right | [/ latex] — очень распространенная кусочная функция. Для действительного числа его значение равно [latex] -x [/ latex], когда [latex] x <0 [/ latex], и его значение равно [latex] x [/ latex], когда [latex] x \ geq0 [/ latex ].
- Кусочные функции могут иметь горизонтальные или вертикальные пробелы (или и то, и другое) в своих функциях. Горизонтальный зазор означает, что функция не определена для этих входов.
- Открытый кружок в конце интервала означает, что конечная точка не включена в интервал, т.е.е. строго меньше или строго больше чем. Закрашенный кружок означает, что конечная точка включена.
Ключевые термины
- поддомен : домен, который является частью более крупного домена.
- абсолютное значение : Для действительного числа — его числовое значение без учета знака; формально [latex] -1 [/ latex] умноженное на число, если число отрицательное, и число без изменений, если оно равно нулю или положительно.
- кусочная функция : функция, в которой используется более одной формулы для определения вывода для разных частей домена.
В математике кусочная функция — это функция, в которой используется более одной формулы для определения выходных данных для разных частей домена. Кусочные функции определяются с использованием общепринятой функциональной записи, где тело функции представляет собой массив функций и связанных интервалов. Мы используем кусочные функции для описания ситуаций, в которых правило или отношение изменяется, когда входное значение пересекает определенные «границы».
Графические кусочные функции
Пример 1: Рассмотрим кусочное определение функции абсолютного значения:
[латекс] \ displaystyle \ left | x \ right | = \ left \ {\ begin {matrix} -x, & if \ x <0 \\ x, & if \ x \ geq0 \ end {matrix} \ right.[/ латекс]
Для всех значений [latex] x [/ latex] меньше нуля, используется первая функция [latex] (- x) [/ latex], которая отменяет знак входного значения, делая выходные значения положительными. Допустим [латекс] y = f (x) [/ latex], где [latex] f (x) = | x | [/ latex], некоторые примеры упорядоченных пар [latex] (x, | x |) [/ latex ]:
[латекс] \ displaystyle (-2,2) \\ (-1,1) \\ (-0,5,0,5) [/ латекс]
Для всех значений [latex] x [/ latex], больших или равных нулю, используется вторая функция [latex] (x) [/ latex], делая выходные значения равными входным значениям.Вот некоторые примеры упорядоченных пар:
[латекс] \ displaystyle (2,2) \\ (1,1) \\ (0,5,0,5) [/ латекс]
После нахождения и построения некоторых упорядоченных пар для всех частей («частей») функции результатом является V-образная кривая функции абсолютного значения, представленной ниже.
Кусочная функция: модуль: Кусочная функция, [латекс] \ left | x \ right | = \ left \ {\ begin {matrix} -x, & if \ x <0 \\ x, & if \ x \ geq0 \ end {matrix} \ right. [/ latex], является графиком функция абсолютного значения.2 [/ латекс]:
[латекс] \ Displaystyle f (-2) = 4 \\ f (-1) = 1 \\ f (0) = 0 \\ f (1) = 1 [/ latex]
Эти точки удовлетворяют первой части функции и создают следующие упорядоченные пары:
[латекс] \ Displaystyle (-2,4) \\ (-1,1) \\ (0,0) \\ (1,1) [/ латекс]
Для средней части (части), [latex] f (x) = 3 [/ latex] (постоянная функция) для области [latex] 1
[латекс] \ Displaystyle (1.5,3) \\ (1.8, 3) \\ (2,3) [/ латекс]
Для последней части (части) [latex] f (x) = x [/ latex] для домена [latex] x> 2 [/ latex] несколько упорядоченных пар:
[латекс] \ displaystyle (2.2, & if \ x \ leq 1 \\ 3, & if \ 1
2 \\ \ end {matrix} \ right. [/ Latex] состоит из трех частей ( шт). В зависимости от стоимости домена каждый кусок отличается. Обратите внимание на открытые и темные кружки на графике. Это связано с конкретными доменами для каждой части функции. Открытый кружок в конце интервала означает, что конечная точка не входит в интервал, т.е. строго меньше или строго больше чем. Закрашенный кружок означает, что конечная точка включена (равно).
Область определения функции начинается с отрицательной бесконечности и продолжается через каждую часть без пробелов до положительной бесконечности. Поскольку в [latex] x = 1 [/ latex] есть закрытая И открытая точка, функция там кусочно непрерывна. Когда [latex] x = 2 [/ latex], функция также кусочно-непрерывная. Следовательно, область определения этой функции — это набор всех действительных чисел, [latex] \ mathbb {R} [/ latex].
Диапазон начинается с самого низкого значения [latex] y [/ latex], [latex] y = 0 [/ latex] и продолжается до бесконечности.2 [/ latex] включает эти значения. Следовательно, диапазон кусочной функции — это также набор всех действительных чисел, больших или равных [latex] 0 [/ latex], или всех неотрицательных значений: [latex] y \ geq 0 [/ latex].
Индивидуальные функции
Однозначная функция, также называемая инъективной функцией, никогда не отображает отдельные элементы своей области на один и тот же элемент ее кодомена.
Цели обучения
Используйте свойства взаимно-однозначных функций, чтобы определить, является ли данная функция взаимно-однозначной
Ключевые выводы
Ключевые моменты
- Функция «один к одному» имеет уникальный выход для каждого уникального входа.2 [/ latex] для [latex] x \ geq 0 [/ latex].
- Чтобы проверить, является ли функция взаимно однозначной, выполните тест горизонтальной линии. Если какая-либо горизонтальная линия пересекает график более чем в одной точке, функция не взаимно однозначна.
- Если каждый элемент диапазона функции соответствует ровно одному элементу ее домена, то функция называется взаимно однозначной.
Ключевые термины
- инъективная функция : функция, которая сохраняет различимость: она никогда не отображает отдельные элементы своего домена в один и тот же элемент его кодомена.
Свойства однозначной функции
Однозначная функция , также называемая инъективной функцией, никогда не отображает отдельные элементы своей области на один и тот же элемент ее совместной области. Другими словами, каждый элемент диапазона функции соответствует ровно одному элементу ее домена. Иногда инъективная функция от [latex] X [/ latex] до [latex] Y [/ latex] обозначается [latex] f: X \ mapsto Y [/ latex] с помощью стрелки с заостренным хвостом. {2} [/ latex] (без ограничений домена) взаимно однозначной?
Один из способов проверить, является ли функция взаимно однозначной, — это построить график функции и выполнить тест горизонтальной линии.2 [/ latex] не проходит проверку горизонтальной линии и, следовательно, не является однозначной функцией. Если горизонтальная линия может проходить через две или более точек на графике функции, то функция не взаимно однозначна.
Другой способ определить, является ли функция взаимно однозначной — составить таблицу значений и проверить, соответствует ли каждый элемент диапазона ровно одному элементу домена. Список упорядоченных пар для функции:
[латекс] \ Displaystyle (-2,4) \\ (-1,1) \\ (0,0) \\ (1,1) \\ (2,4) [/ латекс]
Упорядоченные пары [latex] (- 2,4) [/ latex] и [latex] (2,4) [/ latex] не передают определение один-к-одному, потому что элемент [latex] 4 [/ латекс] диапазона соответствует [латексу] -2 [/ латексу] и [латексу] 2 [/ латексу].Каждый уникальный вход должен иметь уникальный выход, поэтому функция не может быть взаимно однозначной. Также обратите внимание, что эти две упорядоченные пары образуют горизонтальную линию; что также означает, что функция не является взаимно однозначной, как было сказано ранее.
Пример 2: Функция [латекс] f (x) = \ left | x \ right | [/ latex] один к одному?
Это функция абсолютного значения, которая изображена на графике ниже. Обратите внимание, что он не проходит тест горизонтальной линии. Поскольку каждый уникальный вход не имеет уникального выхода, эта функция не может быть взаимно однозначной.
График абсолютных значений: График функции, [латекс] f (x) = \ left | x \ right | [/ latex], не проходит проверку горизонтальной линии и, следовательно, не является однозначной функцией.
Симметрия функций
Два объекта обладают симметрией, если один объект может быть получен из другого преобразованием.
Цели обучения
Определить, демонстрирует ли данное отношение некоторую форму симметрии
Ключевые выводы
Ключевые моменты
- Функция имеет симметрию, если ее можно каким-либо образом преобразовать без изменения функции.
- Функция может быть симметричной относительно точки, если ее можно повернуть на фиксированную величину вокруг этой точки, не изменяя ее.
- Функция может быть симметричной относительно линии, если ее можно отразить над этой линией, не изменяя ее.
Ключевые термины
- симметрия : математическое свойство, при котором объект может подвергаться преобразованию при сохранении своих свойств.
Симметрия
В математике объект, такой как форма или функция, обладает симметрией, если он может быть преобразован каким-либо образом, сохраняющим свойства математического объекта.В геометрии геометрическая форма или объект являются симметричными, если их можно разделить на две или более идентичных части, которые расположены организованным образом. S означает, что объект является симметричным, если есть преобразование, которое перемещает отдельные части объекта, но не Не меняю общую форму.
Для функций функция демонстрирует симметрию, если каждая точка функции может быть изменена в соответствии с математическим правилом без изменения всей функции. Определение симметрии может включать построение графика функции или ее алгебраическое вычисление.
Симметричные типы функций
Функции и отношения могут быть симметричными относительно точки, линии или оси. Они также могут иметь симметрию после отражения.
Чтобы определить, имеет ли отношение симметрию, постройте график отношения или функции и посмотрите, является ли исходная кривая отражением самой себя над точкой, линией или осью. На изображении ниже показаны примеры отражения функции по оси [latex] x [/ latex] (вертикальное отражение) и по оси [latex] y [/ latex] (горизонтальное отражение).
Отражение : функция может быть отражена по оси [латекс] x [/ латекс] или [латекс] y [/ латекс]. Если функция выглядит так же после отражения, функция симметрична по этой оси.
На следующем графике ниже квадратичные функции обладают симметрией относительно линии, называемой осью симметрии. Ось делит U-образную кривую на две части кривой, которые отражаются над осью симметрии. 2 + 4x + 3 [/ latex] показывает ось симметрии относительно линии [latex] x = -2 [/ latex].Кривая разделена на две эквивалентные [латексные] 2 [/ латексные] половины. Обратите внимание, что точки пересечения [latex] x [/ latex] являются отраженными точками по оси симметрии и находятся на одинаковом расстоянии от оси.
Определение симметрии
Пример: Симметрия функции ниже?
Симметрия относительно точки: График выше имеет симметрию, поскольку помеченные точки отражаются над началом координат.
Граф имеет симметрию относительно начала координат или точки [latex] (0,0) [/ latex].Указанные точки [латекс] (1,3) [/ латекс] и [латекс] (- 1, -3) [/ латекс] отражаются поперек начала координат.
Четные и нечетные функции
Функции, которые имеют аддитивную инверсию, могут быть классифицированы как нечетные или четные в зависимости от их свойств симметрии.
Цели обучения
Определить, является ли функция четной, нечетной или отсутствующей.
Ключевые выводы
Ключевые моменты
- Четность функции не обязательно показывает, является ли функция нечетной или четной.
- Четные функции алгебраически определяются как функции, в которых для всех значений выполняется следующее соотношение: [latex] f (x) = f (-x) [/ latex].
- Четная функция симметрична относительно оси [latex] y [/ latex]: для каждой точки [latex] (x, y) [/ latex] на графике соответствующая точка [latex] (- x, y) [/ latex] или наоборот тоже есть на графике.
- Нечетные функции алгебраически определяются как функции, в которых выполняется следующее соотношение для всех значений: [latex] -f (x) = f (-x) [/ latex].
- Нечетная функция симметрична относительно начала координат: для каждой точки [latex] (x, y) [/ latex] на графике соответствующая точка [latex] (- x, -y) [/ latex] или наоборот наоборот, тоже есть на графике. Другими словами, поворот графика [latex] на 180 [/ latex] градусов вокруг исходной точки приводит к тому же неизменному графику.
Ключевые термины
- четность : Набор со свойством того, что все его элементы принадлежат одному из двух непересекающихся подмножеств, особенно набор целых чисел, разделенных на подмножества четных и нечетных элементов.
- добавка, обратная : Противоположное по отношению к добавлению.
Четные и нечетные определения
Функции могут быть классифицированы как «нечетные» или «четные» в зависимости от их состава. Эти метки коррелируют со свойствами симметрии функции.
Термины «нечетный» и «четный» могут применяться только к ограниченному набору функций. Чтобы функция была классифицирована как одна или другая, она должна иметь аддитивную обратную функцию. Следовательно, он должен иметь номер, который при добавлении к нему равен [latex] 0 [/ latex].3 \ right | [/ latex] имеет показатель степени, который является нечетным целым числом, [latex] 3 [/ latex], но также является четной функцией. Как мы можем проверить, четная или нечетная функция? Давайте посмотрим на их характеристики.
Четные функции
Четные функции алгебраически определяются как функции, в которых для всех значений [latex] x [/ latex] выполняется следующее соотношение:
[латекс] \ Displaystyle f (x) = f (-x) [/ латекс]
Чтобы проверить, является ли функция четной, любое выбранное значение [latex] x [/ latex] должно давать такое же выходное значение при подстановке в функцию как [latex] -x [/ latex].4 + 2x [/ latex], изображенный выше, не является даже потому, что график не является симметричным относительно оси [latex] y [/ latex]. Например, точка [latex] (- 1, -1) [/ latex] не отражается на точке [latex] (1, -1) [/ latex].
Мы можем подтвердить это графически: функции, удовлетворяющие требованию четности, симметричны относительно оси [latex] y [/ latex]. Следовательно, для каждой точки [latex] (x, y) [/ latex] на графике соответствующая точка [latex] (- x, y) [/ latex] или наоборот также находится на графике.
Нечетные функции
Нечетные функции алгебраически определяются как функции, в которых для всех значений [latex] x [/ latex] выполняется следующее соотношение:
[латекс] \ displaystyle -f (x) = f (-x) [/ latex]
Это отношение также может быть выражено как:
[латекс] \ Displaystyle f (x) + f (-x) = 0 [/ латекс]
Чтобы проверить, является ли функция нечетной, отрицание функции (обязательно отрицание всех членов функции) должно привести к тому же результату, что и замена значения [latex] -x [/ latex].3 + 9x \ end {align} [/ latex]
Следовательно, [latex] -f (x) = f (-x) [/ latex] и функция нечетная.
Графическая проверка: функции, удовлетворяющие требованию быть нечетными, симметричны относительно начала координат. Другими словами, поворот графика [latex] на 180 [/ latex] градусов вокруг исходной точки приводит к тому же неизменному графику. Кроме того, для каждой точки [latex] (x, y) [/ latex] на графике соответствующая точка [latex] (- x, -y) [/ latex] также находится на графике. {2} -1 \).{2} -2 х-1 \)
- Ответ
-
- вниз
- вверх
Найдите ось симметрии и вершину параболы
Посмотрите еще раз на Рисунок 9.6.10 . Вы видите, что мы можем сложить каждую параболу пополам, и тогда одна сторона окажется поверх другой? «Линия сгиба» — это линия симметрии. Мы называем ее осью симметрии параболы.
Мы снова показываем те же два графика с осью симметрии.{2} + b x + c \) равно \ (x = — \ frac {b} {2 a} \).
Итак, чтобы найти уравнение симметрии каждой из парабол, которые мы построили на графике выше, мы подставим в формулу \ (x = — \ frac {b} {2 a} \).
Обратите внимание, что это уравнения, изображенные пунктирными синими линиями на графиках.
Точка параболы, которая является самой низкой (парабола открывается вверх) или самой высокой (парабола открывается вниз), лежит на оси симметрии. Эта точка называется вершиной параболы.
Мы можем легко найти координаты вершины, потому что знаем, что она находится на оси симметрии.{2} -6 x + 2 \) найти:
- ось симметрии
- вершина
Решение :
а.
Ось симметрии — это вертикальная линия \ (x = — \ frac {b} {2 a} \). | |
Подставьте значения \ (a, b \) в уравнение. | \ (x = — \ frac {-6} {2 \ cdot 3} \) |
Упростить. | \ (х = 1 \) |
Ось симметрии — это прямая \ (x = 1 \). |
б.
Вершина — это точка на линии симметрии, поэтому ее координата \ (x \) будет \ (x = 1 \). Найдите \ (f (1) \). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Упростить. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Результат — координата \ (y \).{2} -4 х-3 \) находим:
Найдите точки пересечения параболыКогда мы строили линейные уравнения, мы часто использовали точки пересечения \ (x \) и \ (y \), чтобы построить графики линий. Определение координат точек пересечения также поможет нам построить график парабол. Помните, что в точке пересечения \ (y \) значение \ (x \) равно нулю.{2} +4 х + 3 \) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Фактор. | \ (0 = (х + 1) (х + 3) \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Используйте свойство нулевого продукта. | \ (х + 1 = 0 \ четырехъядерный х + 3 = 0 \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Решить. {2} +4 x + 3 \).{2} +4 х + 3 \) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Этот квадратичный коэффициент не учитывается, поэтому мы используем квадратичную формулу. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\ (a = -1, b = 4, c = 3 \) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Упростить. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\ (x = \ frac {-2 (2 \ pm \ sqrt {7})} {- 2} \) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\ (х = 2 \ pm \ sqrt {7} \) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\ (x \) — точки пересечения — это \ ((2+ \ sqrt {7}, 0) \) и \ ((2- \ sqrt {7}, 0) \).{2} -2 х-8 \).
Решение :
|