Таблица радиоактивности – Радиация: Естественный фон, безопасная доза, виды излучений, единицы измерения.

Радиоактивные ряды — Википедия

Материал из Википедии — свободной энциклопедии

Радиоактивные ряды (семейства) — цепочки радиоактивных превращений.

Выделяют три естественных радиоактивных ряда и один искусственный.

Естественные ряды:

  • ряд тория (4n) — начинается с нуклида Th-232;
  • ряд радия (4n+2) — начинается с U-238;
  • ряд актиния (4n+3) — начинается с U-235.

Искусственный ряд:

  • ряд нептуния (4n+1) — начинается с Np-237.

После альфа- и бета-радиоактивных превращений ряды заканчиваются образованием стабильных изотопов.

Активности тех членов ряда, путь к которым от родительского изотопа не проходит через ветвления, при наступлении векового равновесия равны. Так, активность радия-224 в ториевых образцах через несколько десятков лет после изготовления становится практически равной активности тория-232, тогда как активность таллия-208 (образующегося в этом же ряду при α-распаде висмута-212 с коэффициентом ветвления 0,3594) стремится к 35,94 % от активности тория-232. Характерное время прихода к вековому равновесию в ряде равно нескольким периодам полураспада наиболее долгоживущего (среди дочерних) члена семейства. Вековое равновесие в ряду тория наступает достаточно быстро, за десятки лет, так как периоды полураспадов всех членов ряда (кроме родительского нуклида) не превышают нескольких лет (максимальный период полураспада

T1/2=5,7 лет — у радия-228). В ряду урана-235 равновесие восстанавливается примерно за сто тысяч лет (наиболее долгоживущий дочерний член ряда — протактиний-231, T1/2=32760 лет), в ряду урана-238 — примерно за миллион лет (определяется ураном-234, T1/2=245500 лет).

Тремя наиболее распространёнными видами радиоактивного распада являются α-распад, β±-распад и изомерный переход. В результате альфа-распада массовое число ядер всегда уменьшается на четыре, тогда как в результате бета-распадов и изомерных переходов массовое число ядра не меняется. Это приводит к тому, что все нуклиды делятся на четыре группы (ряда) в зависимости от остатка целочисленного деления массового числа нуклида на четыре (то есть родительский нуклид и его дочерний нуклид, образовавшийся в результате альфа-распада, будут принадлежать к одной группе). Во всех рядах происходит образование гелия (из альфа-частиц).

Три основных радиоактивных ряда, наблюдающихся в природе, обычно называются рядом тория, рядом радия и рядом актиния. Каждый из этих рядов заканчивается образованием различных стабильных изотопов свинца. Массовый номер каждого из нуклидов в этих рядах может быть представлен в виде A=4n, A=4n+2 и A=4n+3, соответственно.

Радиоактивный ряд нуклидов с массовым числом, представимым в виде 4n, называется рядом тория. Ряд начинается с встречающегося в природе тория-232 и завершается образованием стабильного свинца-208.

НуклидИсторическое обозначениеИсторическое названиеВид распадаПериод полураспадаВыделяемая энергия, МэВПродукт распада
252Cfα2,645 года6,1181248Cm
248Cmα3,4⋅105 лет6,260244Pu
244Puα8⋅107 лет4,589240U
240Uβ14,1 ч0,39240Np
240Npβ1,032 ч2,2240Pu
240Puα6561 год 5,1683236U
236Uα2,3⋅107 лет4,494232Th
232ThThТорийα1,405⋅1010 лет4,081228Ra
228RaMsTh1Мезоторий 1β5,75 лет0,046228Ac
228AcMsTh2Мезоторий 2β6,15 ч2,124228Th
228ThRdThРадиоторийα1,9116 года5,520224Ra
224RaThXТорий Xα3,66 дня5,789220Rn
220
Rn
Tn (ThEm)Торон (эманация тория)α55,6 с6,404216Po
216PoThAТорий Aα0,145 с6,906212Pb
212PbThBТорий Bβ10,64 ч0,570212Bi
212BiThCТорий Cβ 64,06 %
α 35,94 %
60,55 мин2,252
6,208
212Po
208Tl
212PoThC’Торий C’α299 нс8,955208Pb
208TlThC»Торий C»β3,053 мин4,999208Pb
208PbThDТорий D, ториевый свинец стабильный

Радиоактивный ряд нуклидов с массовым числом, представимым в виде 4n+1, называется рядом нептуния. Ряд начинается с нептуния-237 и завершается образованием стабильного таллия-205. В этой серии только два нуклида встречаются в природе — висмут-209 и таллий-205. Однако с развитием ядерных технологий в результате ядерных испытаний и радиационных аварий в окружающую среду попали радионуклиды, такие как плутоний-241 и америций-241, которые также могут быть отнесены по массовому числу к началу ряда нептуния. Так как этот ряд был изучен недавно, его изотопы не имеют исторических названий. Слабая альфа-активность висмута-209 была обнаружена лишь в 2003 году, поэтому в более ранних работах он называется конечным (и единственным сохранившимся в природе) нуклидом ряда.

НуклидВид распадаПериод полураспадаВыделяемая энергия, МэВПродукт распада
249Cfα351 год5,813 + 0,388245Cm
245Cmα8500 лет5,362 + 0,175241Pu
241Puβ14,4 года0,021241Am
241Amα432,7 года5,638237Np
237Npα2,14⋅106 лет4,959233Pa
233Paβ27,0 д0,571233U
233Uα1,592⋅105 лет4,909229Th
229Thα7340 лет5,168225Ra
225Raβ
14,9 д0,36225Ac
225Acα10,0 д5,935221Fr
221Frα4,8 мин6,3217At
217Atα32 мс7,0213Bi
213Biβ 97,80 %
α 2,20 %
46,5 мин1,423
5,87
213Po
209Tl
213Poα3,72 мкс8,536209Pb
209Tlβ2,2 мин3,99209Pb
209Pbβ3,25 ч0,644209Bi
209Biα1,9⋅1019 лет3,14205Tl
205Tlстабильный

Радиоактивный ряд нуклидов с массовым числом, представимым в виде 4n+2, называется рядом радия (иногда называют рядом урана или урана-радия). Ряд начинается с урана-238 (встречается в природе) и завершается образованием стабильного свинца-206.

НуклидИсторическое обозначениеИсторическое названиеВид распадаПериод полураспадаВыделяемая энергия, МэВПродукт распада
238UUIУран Iα4,468⋅109лет4,270234Th
234ThUX1Уран X1β24,10 сут0,273234Pam
234PamUX
2
Уран X2, бревийβ 99,84 %
изомерный переход 0,16 %
1,16 мин2,271
0,074
234U
234Pa
234PaUZУран Zβ6,70 ч2,197234U
234UUIIУран IIα245500 лет4,859230Th
230ThIoИонийα75380 лет4,770226Ra
226RaRaРадийα1602 года4,871222Rn
222RnRn (RaEm)Радон (эманация радия)α3,8235 д5,590218Po
218PoRaAРадий Aα 99,98 %
β 0,02 %
3,10 мин6,115
0,265
214Pb
218At
218AtRaAtАстатα 99,90 %
β 0,10 %
1,5 с6,874
2,883
214Bi
218Rn
218RnAtEmэманация астатаα35 мс7,263214Po
214PbRaBРадий Bβ26,8 мин1,024214Bi
214BiRaCРадий Cβ 99,98 %
α 0,02 %
19,9 мин3,272
5,617
214Po
210Tl
214PoRaC’Радий C’α0,1643 мс7,883210Pb
210TlRaC»Радий C»β1,30 мин5,484210Pb
210PbRaDРадий Dβ22,3 года0,064210Bi
210BiRaEРадий Eβ 99,99987 %
α 0,00013 %
5,013 сут1,426
5,982
210Po
206Tl
210PoRaFРадий F, полонийα138,376 сут5,407206Pb
206TlRaE»Радий E»β4,199 мин1,533206Pb
206PbRaGРадий G, урановый свинецстабильный

Радиоактивный ряд нуклидов с массовым числом, представимым в виде 4n+3, называется рядом актиния или урана-актиния. Ряд начинается с урана-235 и завершается образованием стабильного свинца-207.

НуклидИсторическое обозначениеИсторическое названиеВид распадаПериод полураспадаВыделяемая энергия, МэВПродукт распада
239Puα2,41⋅104 лет5,244235U
235UAcUАктиноуранα7,04⋅108 лет4,678231Th
231ThUYУран Yβ25,52 ч0,391231Pa
231PaPaПротактинийα32760 лет5,150227Ac
227AcAcАктинийβ 98,62 %
α 1,38 %
21,772 года0,045
5,042
227Th
223Fr
227ThRdAcРадиоактинийα18,68 сут6,147223Ra
223FrAcKАктиний Kβ 99,994 %
α 0,006 %
22,00 мин1,149
5,340
223Ra
219At
223RaAcXАктиний Xα11,43 сут5,979219Rn
219AtAcAtIАктиноастат Iα 97,00 %
β 3,00 %
56 с6,275
1,700
215Bi
219Rn
219RnAn (AcEm)Актинон (эманация актиния)α3,96 с6,946215Po
215Biβ7,6 мин2,250215Po
215PoAcAАктиний Aα 99,99977 %
β 0,00023 %
1,781 мс7,527
0,715
211Pb
215At
215AtAcAtIIАктиноастат IIα0,1 мс8,178211Bi
211PbAcBАктиний Bβ36,1 мин1,367211Bi
211BiAcCАктиний Cα 99,724 %
β 0,276 %
2,14 мин6,751
0,575
207Tl
211Po
211PoAcC’Актиний C’α516 мс7,595207Pb
207TlAcC»Актиний C»β4,77 мин1,418207Pb
207PbAcDАктиний D, актиниевый свинецстабильный

Период полураспада радиоактивных элементов и их излучение (Таблица)

Период полураспада – это промежуток времени (Т½), за который распадается 1/2 начального количества радиоактивных ядер. Для каждого радиоизотопа эта величина является строго индивидуальной. У одних и тех же элементов могут быть изотопы с разными периодами полураспада. Есть изотопы у которых период полураспада менее секунды до миллиардов лет.

Радиоактивный элемент (Символ)

Порядковый номер

Массовое число изотопа

Период полураспада (Т½)

Излучение

Актиний (Ас)

89

227

22 года

α, β

Америций (Аm)

95

243

7,8·103 лет

α

Астат (At)

85

210

8,3 часа

Эл. захв.

Азот (N)

7

13

10 минут

α

Бериллий (Bi)

4

8

8,2·10-17 секунды

α

Берклий (Вк)

97

247

104 лет

α

Висмут (Bi)

83

208

368 тыс. лет

α, β 

209

1,9·1019 лет

α, β 

210

5,012 суток

α, β 

Водород (H) — тритий

1

3

12,3 года

β

Железо (Fe)

26

59

44,495 суток

β 

Иридий (Ir)

77

192

74 дня

 

Йод (I)

53

131

8,02070 дня

β

Калий (K)

19

40

1,248·109 лет

β

Калифорний (Cf)

98

249

360 лет

α

Кадмий (Cd)

48

113

7,7·1015 лет 

β 

Кобальт (Co)

27

60

5,2713 года

β 

Кюрий (Cm)

96

247

4·107 лет

α

Эйнштейний (Es)

99

254

480 дней

α

Фермий (Fm)

100

253

3 дня

Эл. захв., α

Фосфор (P)

15

32

14,26 суток

 

Франций (Fr)

87

223

22 минуты

α, β

Фтор (F)

9

18

109,771 минут

β

21

4,158 секунды

β, γ

Лоуренсий (Lr)

103

257

8 секунд

α

Менделевий (Md)

101

256

1,5 часа

Эл. захв.

Натрий (Na)

11

22

2,6 года

 

24

14,959 часов

 

Нептуний (Np)

93

237

2,1·108 лет

α

Нобелий (No)

102

256

8 секунд

α

Протактиний (Pa)

91

231

3,2·104 лет

α

Прометий (Pm)

61

147

2,5 года

β

Полоний (Po)

84

210

138,4 дня

α

214

0,16 секунды

α

Плутоний (Pu)

94

238

87,74 лет

α

239

24100 лет

α

241

14,4 лет

β

242

3,3·105 лет

α

Радий (Ra)

88

226

1622 года

α

Радон (Rn)

86

222

3,83 дня

α

Рубидий (Rb)

37

82

76 секунд

Эл. захв., позитр. расп.

87

49,7·109 лет

β 

Сера (S)

16

35

87,51 дней

 

Технеций (Tc)

43

99

2,1·105 лет

β

Торий (Th)

90

232

1,4·1010 лет

α

Уран (U)

92

233

1,59⋅105 лет

α

234

2,45⋅105 лет

α

235

7,13⋅108 лет

α

238

4,5·109 лет

α

240

14 часов

β

Углерод (C)

6

14

5700 лет

β

Цезий (Cs)

55

137

30 лет

β



примеры, применение, опасность :: BusinessMan.ru

Радиация, радиоактивность и радиоизлучение — понятия, которые даже звучат достаточно опасно. В этой статье вы узнаете, почему некоторые вещества радиоактивные, и что это значит. Почему все так боятся радиации и насколько она опасна? Где мы можем встретить радиоактивные вещества и чем нам это грозит?

Понятие радиоактивности

Радиоактивностью называю «умение» атомов некоторых изотопов расщепляться и создавать этим излучения. Термин «радиоактивность» появился не сразу. Изначально такое излучение называли лучами Беккереля, в честь ученого, открывшего его в работе с изотопом урана. Уже теперь мы называем этот процесс термином «радиоактивное излучение».

Вещества радиоактивные

В этом достаточно сложном процессе изначальный атом превращается в атом совсем другого химического элемента. За счет выбрасывания альфа- или бета-частиц, массовое число атома изменяется и, соответственно, это перемещает его по таблице Д. И. Менделеева. Стоит заметить, что массовое число изменяется, но сама масса остается практически такой же.

Опираясь на данную информацию, можем немного перефразировать определение понятия. Итак, радиоактивность — это также способность неустойчивых ядер атомов самостоятельно превращаться в другие, более стабильные и устойчивые ядра.

Вещества — что это такое?

Перед тем как говорить о том, что такое вещества радиоактивные, давайте вообще определим, что называется веществом. Итак, в первую очередь, это разновидность материи. Логичным есть и тот факт, что эта материя состоит из частиц, и в нашем случае это чаще всего электроны, протоны и нейтроны. Здесь уже можно говорить об атомах, которые состоят из протонов и нейтронов. Ну а из атомов получаются молекулы, ионы, кристаллы и так далее.

радиоактивное излучение

Понятие химического вещества основывается на этих же принципах. Если в материи невозможно выделить ядро, то ее нельзя причислить к химическим веществам.

О радиоактивных веществах

Как уже говорилось выше, чтобы проявлять радиоактивность, атом должен самопроизвольно распадаться и превращаться в атом совсем другого химического элемента. Если все атомы вещества нестабильны до такой степени, чтобы распасться таким образом, значит перед вами радиоактивное вещество. Более техническим языком определение прозвучало бы так: вещества радиоактивные, если они содержат радионуклиды, причем в высокой концентрации.

Где в таблице Д. И. Менделеева находятся радиоактивные вещества?

Довольно простой и легкий способ узнать, относиться ли вещество к радиоактивным, это посмотреть в таблицу Д. И. Менделеева. Все, что находится после элемента свинец — это радиоактивные элементы, а также еще прометий и технеций. Важно помнить, какие вещества радиоактивные, ведь это может спасти вам жизнь.

к радиоактивным веществам относятся

Существует также ряд элементов, которые имеют хотя бы один радиоактивный изотоп в своих природных смесях. Вот их неполный список, где указаны одни из самых распространенных элементов:

  • Калий.
  • Кальций.
  • Ванадий.
  • Германий.
  • Селен.
  • Рубидий.
  • Цирконий.
  • Молибден.
  • Кадмий.
  • Индий.

К радиоактивным веществам относятся те, которые содержат любые радиоактивные изотопы.

Виды радиоактивного излучения

Радиоактивное излучение бывает нескольких типов, о которых сейчас и пойдет речь. Уже упоминалось альфа- и бета-излучение, но это не весь список.

Альфа-излучение — это самое слабое излучение, которое представляет опасность в том случае, если частицы попадают непосредственно в тело человека. Такое излучение реализуется тяжелыми частицами, и именно поэтому легко останавливается даже листом бумаги. По этой же причини альфа-лучи не пролетают больше 5 см.

какие вещества радиоактивные

Бета-излучение более сильное, чем предыдущее. Это излучение электронами, которые намного легче альфа-частиц, поэтому могут проникать на несколько сантиметров в кожу человека.

Гамма-излучение реализуется фотонами, которые достаточно легко проникают еще дальше к внутренним органам человека.

Самое мощное по проникновению излучение — это нейтронное. От него спрятаться достаточно сложно, но в природе его, по сути, и не существует, разве что в непосредственной близости к ядерным реакторам.

Воздействие радиации на человека

Радиоактивно опасные вещества часто могут быть смертельными для человека. К тому же радиационное облучение имеет необратимый эффект. Если вы подверглись облучению, значит, вы обречены. В зависимости от масштабов повреждения, человек погибает в течение нескольких часов или на протяжении многих месяцев.

радиоактивно опасные вещества

Вместе с этим нужно сказать, что люди непрерывно подвергаются радиоактивному излучению. Слава Богу, оно достаточно слабое, чтобы иметь летальный исход. Например, посмотрев футбольный матч по телевиденью, вы получаете 1 микрорад радиации. До 0,2 рад в год — это вообще естественный радиационный фон нашей планеты. 3 дар — ваша порция радиации при рентгене зубов. Ну а облучение свыше 100 рад уже является потенциально опасным.

Вредные радиоактивные вещества, примеры и предостережения

Самое опасное радиоактивное вещество — это Полоний-210. Из-за излучения вокруг него даже видно своеобразную светящуюся «ауру» голубого цвета. Стоит сказать о том, что существует стереотип, будто все радиоактивные вещества светятся. Это совсем не так, хотя и встречаются такие варианты, как Полоний-210. Большинство радиоактивных веществ внешне совсем не подозрительные.

Самым радиоактивным металлом на данный момент считают ливерморий. Его изотопу Ливерморию-293 достаточно 61 миллисекунды, чтобы распасться. Это выяснили еще в 2000 году. Немного уступает ему унунпентий. Время распада Унунпентия-289 составляет 87 миллисекунды.

радиоактивные химические вещества

Также интересный факт состоит в том, что одно и то же вещество может быть как безвредным (если его изотоп стабильный), так и радиоактивным (если ядра его изотопа вот-вот разрушатся).

Ученные, которые изучали радиоактивность

Вещества радиоактивные долгое время не считались опасными, и потому из свободно изучали. К сожалению, печальные смерти научили нас тому, что с такими веществами нужна осторожность и повышенный уровень безопасности.

Одним их первых, как уже упоминалось, был Антуан Беккерель. Это великий французский физик, которому и принадлежит слава первооткрывателя радиоактивности. За свои заслуги он удостоился членства в Лондонском королевском обществе. Из-за своего вклада и эту сферу он скончался достаточно молодым, в возрасте 55 лет. Но его труд помнят по сей день. В его честь были названа сама единица радиоактивности, а также кратеры на Луне и Марсе.

радиоактивные вещества примеры

Не менее великим человеком была Мария Склодовская-Кюри, которая работала с радиоактивными веществами вместе со своим мужем Пьером Кюри. Мария также была француженкой, хоть и с польскими корнями. Кроме физики она занималась преподаванием и даже активной общественной деятельностью. Мария Кюри — первая женщина лауреат Нобелевской премии сразу в двух дисциплинах: физика и химия. Открытие таких радиоактивных элементов, как Радий и Полоний, — это заслуга Марии и Пьера Кюри.

Заключение

Как мы видим, радиоактивность — достаточно сложный процесс, который не всегда остается подконтрольным человеку. Это один из тех случаев, когда люди могут оказаться абсолютно бессильными перед лицом опасности. Именно поэтому важно помнить, что действительно опасные вещи могут быть внешне очень обманчивыми.

Узнать вещество радиоактивное или нет, чаще всего можно уже попав под его воздействие. Поэтому будьте осторожны и внимательны. Радиоактивные реакции во многом нам помогают, но также не стоит забывать, что это практически не подконтрольная нам сила.

К тому же стоит помнить вклад великих ученных в изучение радиоактивности. Они передали нам невероятно много полезных знаний, которые теперь спасают жизни, обеспечивают целые страны энергией и помогаю лечить страшные заболевания. Радиоактивные химические вещества — это опасность и благословение для человечества.

Закон радиоактивного распада — Википедия

Зако́н радиоакти́вного распа́да — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и от количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награждён Нобелевской премией. Они обнаружили его экспериментальным путём и опубликовали в 1903 году в работах «Сравнительное изучение радиоактивности радия и тория»[1] и «Радиоактивное превращение»[2], сформулировав следующим образом[3]:

Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии.

из чего с помощью теоремы Бернулли учёные сделали вывод[4]:

Скорость превращения всё время пропорциональна количеству систем, ещё не подвергнувшихся превращению.

Существует несколько формулировок закона, например, в виде дифференциального уравнения:

dNdt=−λN,{\displaystyle {\frac {dN}{dt}}=-\lambda N,}

которое означает, что число распадов −dN, произошедшее за короткий интервал времени dt, пропорционально числу атомов N в образце.

{\frac  {dN}{dt}}=-\lambda N, Экспоненциальная кривая радиоактивного распада: по оси абсцисс («оси x») — время, по оси ординат («оси y») — количество ещё нераспавшихся ядер или скорость распада в единицу времени

В указанном выше математическом выражении неотрицательная константа λ{\displaystyle \lambda } — постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеющая размерность с−1. Знак минус указывает на убыль числа радиоактивных ядер со временем.

Решение этого дифференциального уравнения имеет вид:

N(t)=N0e−λt,{\displaystyle N(t)=N_{0}e^{-\lambda t},}

где N0{\displaystyle N_{0}} — начальное число атомов, то есть число атомов для t=0.{\displaystyle t=0.}

Таким образом, число радиоактивных атомов уменьшается со временем по экспоненциальному закону. Скорость распада, то есть число распадов в единицу времени

I(t)=−dNdt,{\displaystyle \mathrm {I} (t)=-{\frac {dN}{dt}},}

также падает экспоненциально. Дифференцируя выражение для зависимости числа атомов от времени, получаем:

I(t)=−ddt(N0e−λt)=λN0e−λt=I0e−λt,{\displaystyle \mathrm {I} (t)=-{\frac {d}{dt}}(N_{0}e^{-\lambda t})=\lambda N_{0}e^{-\lambda t}=\mathrm {I} _{0}e^{-\lambda t},}

где I0{\displaystyle \mathrm {I} _{0}} — скорость распада в начальный момент времени t=0.{\displaystyle t=0.}

Таким образом, зависимость от времени числа нераспавшихся радиоактивных атомов и скорости распада описывается одной и той же постоянной λ{\displaystyle \lambda }[4][5][6][7].

\lambda Наглядная демонстрация закона.

Кроме константы распада λ,{\displaystyle \lambda ,} радиоактивный распад характеризуют ещё двумя производными от неё константами, рассмотренными ниже.

Среднее время жизни[править | править код]

Из закона радиоактивного распада можно получить выражение для среднего времени жизни радиоактивного атома. Число атомов, в момент времени t{\displaystyle t} претерпевших распад в пределах интервала dt{\displaystyle dt} равно −dN,{\displaystyle -dN,} их время жизни равно −tdN.{\displaystyle -tdN.} Среднее время жизни получаем интегрированием по всему периоду распада:

τ=−1N0∫N00tdN=λ∫0∞te−λtdt=1λ.{\displaystyle \tau =-{\frac {1}{N_{0}}}\int _{N_{0}}^{0}tdN=\lambda \int _{0}^{\infty }te^{-\lambda t}dt={\frac {1}{\lambda }}.}

Подставляя эту величину в экспоненциальные временные зависимости для N(t){\displaystyle N(t)} и I(t),{\displaystyle \mathrm {I} (t),} легко видеть, что за время τ{\displaystyle \tau } число радиоактивных атомов и активность образца (количество распадов в секунду) уменьшаются в e раз[4].

Период полураспада[править | править код]

На практике получила большее распространение другая временная характеристика — период полураспада T1/2,{\displaystyle T_{1/2},} равная времени, в течение которого число радиоактивных атомов или активность образца уменьшаются в 2 раза[4].

Связь этой величины с постоянной распада можно вывести из соотношения N(T1/2)N0=e−λT1/2=1/2,{\displaystyle {\frac {N(T_{1/2})}{N_{0}}}=e^{-\lambda T_{1/2}}=1/2,} откуда:

T1/2=ln⁡2λ=τln⁡2≈0,693τ.{\displaystyle T_{1/2}={\frac {\ln 2}{\lambda }}=\tau \ln 2\approx 0,693\tau .}

Существующие в природе радиоактивные изотопы в основном возникают в сложных цепочках распадов урана и тория и имеют периоды полураспада в очень широкой области значений: от 3⋅10−7 секунды для 212Po до 1,4⋅1010 лет для 232Th. Наибольший экспериментально измеренный период полураспада имеет изотоп теллура 128Te — 2,2⋅1024 лет. Само существование в настоящее время многих естественных радиоактивных элементов несмотря на то, что с момента образования этих элементов при звёздном нуклеосинтезе прошло более 4,5 млрд лет, является следствием очень больших периодов полураспада 235U, 238U, 232Th и других природных радионуклидов. К примеру, изотоп 238U стоит в начале длинной цепочки (так называемый ряд радия), состоящей из 20 изотопов, каждый из которых возникает при α-распаде или β-распаде предыдущего элемента. Период полураспада 238U (4,5⋅109 лет) много больше, чем период полураспада любого из последующих элементов радиоактивного ряда, поэтому распад в целом всей цепочки происходит за то же время, что и распад 238U, её родоначальника, в таких случаях говорят, что цепочка находится в состоянии секулярного (или векового) равновесия[7]. Примеры характеристик распада некоторых веществ[8]:

Вещество238U235U234U210Bi210Tl
Период полураспада, T1/2{\displaystyle T_{1/2}}4,5⋅109 лет7,13⋅108 лет2,48⋅105 лет4,97 дня1,32 минуты
Постоянная распада, λ{\displaystyle \lambda }4,84⋅10−18 с−18,17⋅10−14 с−11,61⋅10−6с−18,75⋅10−3 с−1
Частицаαααββ
Полная энергия распада, МэВ[9][10]4,26994,67804,85751,16125,482

Один из открывших закон, Фредерик Содди, в своей научно-популярной книге «The story of atomic energy», изданной в 1949 году, видимо из скромности, ничего не пишет о своём (но и чьём-либо ещё тоже) вкладе в создание этой теории, зато довольно оригинально отзывается о ней[11][12]:

Следует отметить, что закон превращений одинаков для всех радиоэлементов, являясь самым простым и в то же время практически необъяснимым. Этот закон имеет вероятностную природу. Его можно представить в виде духа разрушения, который в каждый данный момент наугад расщепляет определённое количество существующих атомов, не заботясь об отборе тех из них, которые близки к своему распаду.

  1. Rutherford E. and Soddy F. A comparative study of the radioactivity of radium and thorium (англ.) // Philosophical Magazine Series 6 : journal. — 1903. — Vol. 5, no. 28. — P. 445—457. — DOI:10.1080/14786440309462943.
  2. Rutherford E. and Soddy F. Radioactive change (неопр.) // Philosophical Magazine Series 6. — 1903. — Т. 5, № 29. — С. 576—591. — DOI:10.1080/14786440309462960.
  3. Кудрявцев П. С. Открытие радиоактивных преврещений. Идея атомной энергии // Курс истории физики. — 1982.
  4. 1 2 3 4 Климов А. Н. Ядерная физика и ядерные реакторы. — М.: Энергоатомиздат, 1985. — С. 74-75. — 352 с.
  5. Бартоломей Г. Г., Байбаков В. Д., Алхутов М. С., Бать Г. А. Основы теории и методы расчета ядерных энергетических реакторов. — М.: Энергоатомиздат, 1982.
  6. Cameron I. R. Nuclear fission reactors. — Canada, New Brunswick: Plenum Press, 1982.
  7. 1 2 Камерон И. Ядерные реакторы. — М.: Энергоатомиздат, 1987. — С. 320.
  8. ↑ Пособие по физике реактора ВВЭР-1000. — БАЭС, ЦПП, 2003.
  9. Wang M., Audi G., Kondev F. G., Huang W. J., Naimi S., Xu X. The Ame2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures (англ.) // Chinese Physics C. — 2016. — Vol. 41, iss. 3. — P. 030002-1—030002-344. — DOI:10.1088/1674-1137/41/3/030002.
  10. Wang M., Audi G., Kondev F. G., Huang W. J., Naimi S., Xu X. The Ame2016 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Chinese Physics C. — 2016. — Vol. 41, iss. 3. — P. 030003-1—030003-442. — DOI:10.1088/1674-1137/41/3/030003.
  11. Frederick Soddy, F.R.S. The story of atomic energy. — London: Nova Atlantis, 1949.
  12. Содди Ф. История атомной энергии. — М.: Атомиздат, 1979. — С. 288.

Наведённая радиоактивность — Википедия

Наведённая радиоактивность — это радиоактивность веществ, возникающая под действием облучения их ионизирующим излучением, особенно нейтронами.

При облучении частицами (нейтронами, протонами, гамма-квантами) стабильные ядра могут превращаться в радиоактивные ядра с различным периодом полураспада, которые продолжают излучать длительное время после прекращения облучения. Особенно сильна радиоактивность, наведённая нейтронным облучением. Это объясняется следующими свойствами этих частиц: для того, чтобы вызвать ядерную реакцию с образованием радиоактивных ядер, гамма-кванты и заряженные частицы должны иметь большую энергию (не меньше нескольких МэВ). Однако они взаимодействуют с электронными оболочками атомов намного интенсивнее, чем с ядрами, и быстро теряют при этом энергию. Кроме того, положительно заряженные частицы (протоны, альфа-частицы) быстро теряют энергию, упруго рассеиваясь на ядрах. Поэтому вероятность гамма-кванта или заряженной частицы вызвать ядерную реакцию ничтожно мала. Например, при бомбардировке бериллия альфа-частицами лишь одна из нескольких тысяч или десятков тысяч (в зависимости от энергии альфа-частиц) вызывает (α, n)-реакцию, а для других веществ эта вероятность ещё меньше.

Нейтроны же, наоборот, захватываются ядрами при любой энергии, более того, максимальна вероятность захвата именно нейтронов с низкой энергией. Поэтому, распространяясь в веществе, нейтрон может попадать в множество ядер последовательно, пока не будет захвачен очередным ядром, и вероятность захвата нейтрона практически равна единице.

Следует заметить, что поглощение нейтронов не обязательно ведёт к появлению наведённой радиоактивности. Многие ядра могут захватывать нейтрон с образованием стабильных ядер, например бор-10 может превратиться в стабильный бор-11 (если захват нейтрона ядром не приведёт к образованию лития и альфа-частицы), лёгкий водород (протий) — в стабильный дейтерий. В таких случаях наведённая радиоактивность не возникает.

Процесс превращения нерадиоактивных ядер в радиоактивные и образования в веществе радиоактивных изотопов под действием облучения называется активацией.

На эффекте наведённой радиоактивности основан мощный метод определения состава вещества, называемый активационным анализом. Образец облучается потоком нейтронов (нейтронно-активационный анализ) или гамма-квантов (гамма-активационный анализ). При этом в образце наводится радиоактивность, характер которой, при одинаковом характере облучения, полностью определяется изотопным составом образца. Изучая гамма-спектр излучения образца, можно с очень высокой точностью определить его состав. Предел обнаружения различных элементов зависит от интенсивности облучения и составляет до 10−4−10−7 % для гамма-активационного анализа и до 10−5−10−10 % для нейтронно-активационного анализа.[1]

Наведённая радиоактивность при ядерных взрывах[править | править код]

Изменение атмосферной концентрации радиоуглерода 14C, вызванное ядерными испытаниями. Синим показана естественная концентрация

Одним из поражающих факторов ядерного взрыва является радиоактивное загрязнение. Основной вклад в радиоактивное загрязнение вносят осколки деления ядер урана или плутония, но частично радиоактивное загрязнение обеспечивается наведённой радиоактивностью. Особенно сильна наведённая радиоактивность при взрыве термоядерных (в том числе и нейтронных) зарядов, так как выход нейтронов на единицу энергии в них в несколько раз выше, чем у ядерных зарядов, и средняя энергия нейтронов тоже выше, что делает возможными пороговые реакции. Утверждается[2], например, что взрыв нейтронной бомбы мощностью в 1 кт в 700 метрах от танка не только убивает экипаж нейтронным излучением, но и создает в броне наведённую радиоактивность, достаточную для получения новым экипажем смертельной дозы в течение суток.

При атмосферных ядерных испытаниях особенно большое значение имеет реакция нейтронов с атмосферным азотом-14  01n+ 714N→ 614C+ 11H,{\displaystyle \mathrm {~_{0}^{1}n} +\mathrm {~_{7}^{14}N} \rightarrow \mathrm {~_{6}^{14}C} +\mathrm {~_{1}^{1}H} ,} обладающая довольно высоким сечением (1,75 барн). Общее количество углерода-14, выброшенное в атмосферу во время ядерных испытаний, весьма велико и сравнимо с общим содержанием природного радиоуглерода в атмосфере.

Принцип наведённой радиоактивности положен в основу идеи т. н. кобальтовой бомбы. Это вид ядерного оружия, в котором основным поражающим фактором является радиоактивное загрязнение. Она представляет собой термоядерную бомбу с оболочкой из кобальта, в которой под действием нейтронного излучения взрыва создается изотоп кобальт-60 — сильнейший источник гамма-излучения с периодом полураспада 5,27 лет. Будучи распылённым ядерным взрывом по большой территории, кобальт-60 сделал бы их надолго непригодными для проживания.

Активация конструкционных материалов ядерных реакторов[править | править код]

Ядерные реакторы длительное время (десятки лет) работают в условиях сильнейшего нейтронного облучения (интенсивность потока нейтронов в некоторых энергетических реакторах достигает 1016 см−2·c−1, а в некоторых экспериментальных реакторах — даже 1019 см−2·c−1), а полный флюенс за все время — 1023 см−2. Ещё интенсивнее будут нейтронные потоки в проектируемых термоядерных реакторах. Это создает проблемы с утилизацией конструкций реакторов, отработавших свой срок, так как интенсивность наведённой радиоактивности в конструкциях реактора заставляет отнести их к радиоактивным отходам, причём масса этих отходов сравнима или даже больше массы отработанного ядерного топлива (ОЯТ). Например, реактор ВВЭР-1000 весит 324,4 т. (без воды и топлива) и даёт за 30 лет службы около 750 т ОЯТ — всего вдвое больше массы самого реактора. Ещё больше весят конструкции реактора РБМК — 1850 т.

Для решения проблемы с утилизацией элементов конструкции реакторов проводятся исследования по созданию материалов и сплавов, в которых наведённая радиоактивность спадает относительно быстро. Это достигается подбором материалов, которые при облучении нейтронами не дают долгоживущих изотопов (с T½ от десятков до миллионов лет). Характер спада радиоактивности определяется изотопным составом облучаемого вещества, а также спектром нейтронов.

Например, нежелательно содержание в таких сплавах никеля, молибдена, ниобия, серебра, висмута: они при облучении нейтронами дают изотопы с длительным временем жизни, например 59Ni (T½ = 100 тыс. лет), 94Nb (T½=20 тыс. лет), 91Nb (T½=680 лет), 93Mo (T½=4 тыс. лет). В термоядерных реакторах нежелательным материалом является также алюминий, в котором под действием быстрых нейтронов нарабатывается долгоживущий изотоп 26Al (T½=700 тыс. лет). В то же время такие материалы, как ванадий, хром, марганец, титан, вольфрам не создают изотопов с длительным временем жизни, поэтому после выдержки в течение нескольких десятков лет активность их падает до уровня, допускающего работу с ними персонала без специальной защиты. Например, сплав 79 % ванадия и 21 % титана, облучённый нейтронами спектра термоядерного реактора DEMO с флюенсом 2·1023 см−2, за 30 лет выдержки уменьшает активность до безопасного уровня (25 мкЗв/ч), а малоактивируемая сталь марки Fe12Cr20MnW только за 100 лет. Однако даже небольшая примесь никеля, ниобия или молибдена может увеличить это время до десятков тысяч лет.

Ещё одним способом уменьшения наведённой радиоактивности является изотопное обогащение. Например, при облучении железа нейтронами основной вклад в наведённую радиоактивность вносит изотоп 55Fe с периодом полураспада 2,7 лет в 55Mn (К-захват с излучением гамма-квантов с энергией 0,0065 МэВ), он образуется из лёгкого изотопа 54Fe, поэтому обогащение природного железа тяжёлыми изотопами может существенно снизить наведённую радиоактивность. Аналогично, существенно снижает наведённую радиоактивность молибдена обогащение тяжёлыми изотопами, а циркония или свинца — напротив, лёгкими. Однако изотопное разделение обходится очень дорого, поэтому экономическая целесообразность его под вопросом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *