Таблица со степенями: Таблица степеней | Онлайн калькуляторы, расчеты и формулы на GELEOT.RU – Таблица степеней натуральных чисел от 2 до 25 (включая от «2 до 10» и от «2 до 20»). Степени от 2 до 10. Таблица степеней.

📝Таблица чисел от 1 до 25 в степени от 1 до 10

При решении разных математических упражнений часто приходится заниматься возведением числа степень, в основном от 1 до 10. И для того, что бы быстрее находить эти значения и нами создана таблицу степеней по алгебре, которую я опубликую на этой странице.

Также у нас вы можете посмотреть таблицы квадратов и кубов.

Для начала рассмотрим числа от 1 до 6. Результаты здесь ещё не очень большие все из них вы можете проверить на обычном калькуляторе.

  • 1 и 2 в степени от 1 до 10
    11= 1
    12= 1
    13= 1
    14= 1
    15= 1
    16= 1
    17= 1
    18= 1
    19= 1
    110= 1
    21= 2
    22= 4
    23= 8
    24= 16
    25= 32
    26= 64
    27= 128
    28= 256
    29= 512
    210= 1 024
  • 3 и 4 в степени от 1 до 10
    3 1 = 3
    3 2 = 9
    3 3 = 27
    3 4 = 81
    3 5 = 243
    3 6 = 729
    3 7 = 2 187
    3 8 = 6 561
    3 9 = 19 683
    3 10 = 59 049
    4 1 = 4
    4 2 = 16
    4 3 = 64
    4 4 = 256
    4 5 = 1 024
    4 6 = 4 096
    4 7 = 16 384
    4 8 = 65 536
    4 9 = 262 144
    4 10 = 1 048 576
  • 5 и 6 в степени от 1 до 10
    5 1 = 5
    5 2 = 25
    5 3 = 125
    5 4 = 625
    5 5 = 3 125
    5 6 = 15 625
    5 7 = 78 125
    5 8 = 390 625
    5 9 = 1 953 125
    5 10 = 9 765 625
    6 1 = 6
    6 2 = 36
    6 3 = 216
    6 4 = 1 296
    6 5 = 7 776
    6 6 = 46 656
    6 7 = 279 936
    6 8 = 1 679 616
    6 9 = 10 077 696
    6 10 = 60 466 176
  • 7 и 8 в степени от 1 до 10
    7 1 = 7
    7 2 = 49
    7 3 = 343
    7 4 = 2 401
    7 5 = 16 807
    7 6 = 117 649
    7 7 = 823 543
    7 8 = 5 764 801
    7 9 = 40 353 607
    7 10 = 282 475 249
    8 1 = 8
    8 2 = 64
    8 3 = 512
    8 4 = 4 096
    8 5 = 32 768
    8 6 = 262 144
    8 7 = 2 097 152
    8 8 = 16 777 216
    8 9 = 134 217 728
    8 10 = 1 073 741 824
  • 9 и 10 в степени от 1 до 10
    9 1 = 9
    9 2 = 81
    9 3 = 729
    9 4 = 6 561
    9 5 = 59 049
    9 6 = 531 441
    9 7 = 4 782 969
    9 8 = 43 046 721
    9 9 = 387 420 489
    9 10 = 3 486 784 401
    10 1 = 10
    10 2 = 100
    10 3 = 1 000
    10 4 = 10 000
    10 5 = 100 000
    10 6 = 1 000 000
    10 7 = 10 000 000
    10 8 = 100 000 000
    10 9 = 1 000 000 000
    10 10 = 10 000 000 000
  • 11 и 12 в степени от 1 до 10
    11 1 = 11
    11 2 = 121
    11 3 = 1 331
    11 4 = 14 641
    11 5 = 161 051
    11 6 = 1 771 561
    11 7 = 19 487 171
    11 8 = 214 358 881
    11 9 = 2 357 947 691
    11 10 = 25 937 424 601
    12 1 = 12
    12 2 = 144
    12 3 = 1 728
    12 4 = 20 736
    12 5 = 248 832
    12 6 = 2 985 984
    12 7 = 35 831 808
    12 8 = 429 981 696
    12 9 = 5 159 780 352
    12 10 = 61 917 364 224
  • 13 и 14 в степени от 1 до 10
    13 1 = 13
    13 2 = 169
    13 3 = 2 197
    13 4 = 28 561
    13 5 = 371 293
    13 6 = 4 826 809
    13 7 = 62 748 517
    13 8 = 815 730 721
    13 9 = 10 604 499 373
    13 10 = 137 858 491 849
    14 1 = 14
    14 2
    = 196
    14 3 = 2 744
    14 4 = 38 416
    14 5 = 537 824
    14 6 = 7 529 536
    14 7 = 105 413 504
    14 8 = 1 475 789 056
    14 9 = 20 661 046 784
    14 10 = 289 254 654 976
  • 15 и 16 в степени от 1 до 10
    15 1 = 15
    15 2 = 225
    15 3 = 3 375
    15 4 = 50 625
    15 5 = 759 375
    15 6 = 11 390 625
    15 7 = 170 859 375
    15 8 = 2 562 890 625
    15 9 = 38 443 359 375
    15 10 = 576 650 390 625
    16 1 = 16
    16 2 = 256
    16 3 = 4 096
    16 4 = 65 536
    16 5 = 1 048 576
    16 6 = 16 777 216
    16 7 = 268 435 456
    16 8 = 4 294 967 296
    16 9
    = 68 719 476 736
    16 10 = 1 099 511 627 776
  • 17 и 18 в степени от 1 до 10
    17 1 = 17
    17 2 = 289
    17 3 = 4 913
    17 4 = 83 521
    17 5 = 1 419 857
    17 6 = 24 137 569
    17 7 = 410 338 673
    17 8 = 6 975 757 441
    17 9 = 118 587 876 497
    17 10 = 2 015 993 900 449
    18 1 = 18
    18 2 = 324
    18 3 = 5 832
    18 4 = 104 976
    18 5 = 1 889 568
    18 6 = 34 012 224
    18 7 = 612 220 032
    18 8 = 11 019 960 576
    18 9 = 198 359 290 368
    18 10 = 3 570 467 226 624
  • 19 и 20 в степени от 1 до 10
    19 1 = 19
    19 2 = 361
    19 3
    = 6 859
    19 4 = 130 321
    19 5 = 2 476 099
    19 6 = 47 045 881
    19 7 = 893 871 739
    19 8 = 16 983 563 041
    19 9 = 322 687 697 779
    19 10 = 6 131 066 257 801
    20 1 = 20
    20 2 = 400
    20 3 = 8 000
    20 4 = 160 000
    20 5 = 3 200 000
    20 6 = 64 000 000
    20 7 = 1 280 000 000
    20 8 = 25 600 000 000
    20 9 = 512 000 000 000
    20 10 = 10 240 000 000 000
  • 21 и 22 в степени от 1 до 10
    21 1 = 21
    21 2 = 441
    21 3 = 9 261
    21 4 = 194 481
    21 5 = 4 084 101
    21 6 = 85 766 121
    21 7 = 1 801 088 541
    21 8 = 37 822 859 361
    21 9
    = 794 280 046 581
    21 10 = 16 679 880 978 201
    22 1 = 22
    22 2 = 484
    22 3 = 10 648
    22 4 = 234 256
    22 5 = 5 153 632
    22 6 = 113 379 904
    22 7 = 2 494 357 888
    22 8 = 54 875 873 536
    22 9 = 1 207 269 217 792
    22 10 = 26 559 922 791 424
  • 23 и 24 в степени от 1 до 10
    23 1 = 23
    23 2 = 529
    23 3 = 12 167
    23 4 = 279 841
    23 5 = 6 436 343
    23 6 = 148 035 889
    23 7 = 3 404 825 447
    23 8 = 78 310 985 281
    23 9 = 1 801 152 661 463
    23 10 = 41 426 511 213 649
    24 1 = 24
    24 2 = 576
    24 3 = 13 824
    24 4 = 331 776
    24 5
    = 7 962 624
    24 6 = 191 102 976
    24 7 = 4 586 471 424
    24 8 = 110 075 314 176
    24 9 = 2 641 807 540 224
    24 10 = 63 403 380 965 376
  • 25 в степени от 1 до 10
    25 1 = 25
    25 2 = 625
    25 3 = 15 625
    25 4 = 390 625
    25 5 = 9 765 625
    25 6 = 244 140 625
    25 7 = 6 103 515 625
    25 8 = 152 587 890 625
    25 9 = 3 814 697 265 625
    25 10 = 95 367 431 640 625

Хочу напомнить:

Для того, что бы возвести число «a» в степень «b» надо «a» умножить само на себя «b» раз!

Вот, например, в начале изучения компьютера мы рассматриваем двоичный код – то есть язык, на котором «разговаривает» компьютер. И там часто используются разные степени двойки, которые надо знать. От вы знаете, сколько будет два в восьмой?

Материалы по теме:

Поделиться с друзьями:

Загрузка…

Таблица степеней от 1 до 10 / Блог :: Бингоскул

Таблица степеней от 1 до 10 по алгебре

11=1

12=1

13=1

14=1

15=1

16=1

17=1

18=1

19=1

110=1

21=2

22=4

23=8

24=16

25=32

26=64

27=128

28=256

29=512

210=1024

31=3

32=9

33=27

34=81

35=243

36=729

37=2187

38=6561

39=19683

310=59049

41=4

42=16

43=64

44=256

45=1024

46=4096

47=16384

48=65536

49=262144

410=1048576

51=5

52=25

53=125

54=625

55=3125

56=15625

57=78125

58=390625

59=1953125

510=9765625

61=6

62=36

63=216

64=1296

65=7776

66=46656

67=279936

68=1679616

69=10077696

610=60466176

71=7

72=49

73=343

74=2401

75=16807

76=117649

77=823543

78=5764801

79=40353607

710=282475249

81=8

82=64

83=512

84=4096

85=32768

86=262144

87=2097152

88=16777216

89=134217728

810=1073741824

91=9

92=81

93=729

94=6561

95=59049

96=531441

97=4782969

98=43046721

99=387420489

910=3486784401

101=10

102=100

103=1000

104=10000

105=100000

106=1000000

107=10000000

108=100000000

109=1000000000

1010=1000000000

В таблице степеней натуральных чисел содержатся значения чисел от 1 до 10.

Степень числа – это сокращенная запись операции многократного умножения числа самого на себя.


Смотри также: Основные формулы по математике

Решай с ответами:

Таблица степеней | Таблица умножения

Что такое степень числа? Это в общем смысле некое число, умноженное само на себя несколько раз.

Вместо записи а ∙ а ∙ а ∙ а ∙ а можно использовать равнозначную запись a5.

Почему рядом с «a» именно пятая степень? Потому, что число «а» мы умножаем пять раз на него же.

Теперь рассмотрим на конкретном примере возведение в четвертую степень. Запись 5х5х5х5 удобно было бы представить покороче, на сегодняшний день в большинстве книг коротко она будет записана как 54. Исторически предлагались и другие способы записи, но наиболее распространенным на сегодня является вышеприведенный, где для 5результатом вычислений будет число 625, но нужно понимать, что это условное обозначение, за которым на самом деле имеется ввиду вполне конкретный смысл, и на сегодняшний день эти вполне определнные действия именно так обозначают на бумаге. Озвучивают такую запись обычно как «пять в четвертой степени». Если бы не было такой короткой записи, а также не использовали бы короткую запись для обозначения многократного сложения одинаковых слагаемых (т.е.умножения), и мы использовали бы только знак + для обозначения сложения (суммирования), то даже вместо короткого 5

2 или 5*5 пришлось бы писать 5+5+5+5+5.

Вместо 53 или 5*5*5 пришлось бы писать (5+5+5+5+5) + (5+5+5+5+5)+ (5+5+5+5+5) + (5+5+5+5+5) + ( 5+5+5+5+5),

вместо 54 или 5*5*5*5* пришлось бы писать

(5+5+5+5+5) + (5+5+5+5+5)+ (5+5+5+5+5) + (5+5+5+5+5) + ( 5+5+5+5+5) +

(5+5+5+5+5) + (5+5+5+5+5)+ (5+5+5+5+5) + (5+5+5+5+5) + ( 5+5+5+5+5) +

(5+5+5+5+5) + (5+5+5+5+5)+ (5+5+5+5+5) + (5+5+5+5+5) + ( 5+5+5+5+5) +

(5+5+5+5+5) + (5+5+5+5+5)+ (5+5+5+5+5) + (5+5+5+5+5) + ( 5+5+5+5+5) +

(5+5+5+5+5) + (5+5+5+5+5)+ (5+5+5+5+5) + (5+5+5+5+5) + ( 5+5+5+5+5).

Все это вышеприведенное выражение можно заменить короткой записью с помощью обозначения возведения в степень. На сегодняшний день чаще всего применяют такую запись 54 при письме. Если Вы встретите литературу с другими обозначениями, то главное не путать между собой разные способы и вне зависимости от способа записи помнить, что на самом деле имеется ввиду. Если для обозначения возведения в степень используется вышеуказанный способ, то в записи «54» : число 5 – основание степени, 4 – показатель степени. Для общего случая эта запись выглядит так
 tablica-stepeney

При наборе на клавиатуре есть разные способы, в том числе:

1) между числом и его степенью ставят знак «циркумфлекс». Например 125 в седьмой степени будет выглядеть как 125^7;

2) с помощью специальных кнопок в редакторах;

3) при создании страниц сайтов и использовании языка программирования HTML с помощью помещения показателя степени между специальными тегами.

Возведение в степень — Википедия

Графики четырёх функций вида y=ax{\displaystyle y=a^{x}}, a{\displaystyle a} указано рядом с графиком функции

Возведе́ние в сте́пень — арифметическая операция, первоначально определяемая как результат многократного умножения числа на себя. Степень с основанием a{\displaystyle a} и натуральным показателем b{\displaystyle b} обозначается как

ab=a⋅a⋅…⋅a⏟b,{\displaystyle a^{b}=\underbrace {a\cdot a\cdot \ldots \cdot a} _{b},}

где b{\displaystyle b} — количество множителей (умножаемых чисел)[1][К 1].

Например, 32=3⋅3=9;24=2⋅2⋅2⋅2=16{\displaystyle 3^{2}=3\cdot 3=9;\quad 2^{4}=2\cdot 2\cdot 2\cdot 2=16}

В языках программирования, где написание ab{\displaystyle a^{b}} невозможно, применяются альтернативные обозначения[⇨].

Возведение в степень может быть определено также для отрицательных[⇨], рациональных[⇨], вещественных[⇨] и комплексных[⇨] степеней[1].

Извлечение корня — одна из операций, обратных возведению в степень, она по известным значениям степени c=ab{\displaystyle c=a^{b}} и показателя b{\displaystyle b} находит неизвестное основание a=cb{\displaystyle a={\sqrt[{b}]{c}}}. Вторая обратная операция — логарифмирование, она по известным значениям степени c=ab{\displaystyle c=a^{b}} и основания a{\displaystyle a} находит неизвестный показатель b=loga⁡c{\displaystyle b=\log _{a}c}. Задача нахождения числа по известному его логарифму (потенцирование, антилогарифм) решается с помощью операции возведения в степень[⇨]).

Существует алгоритм быстрого возведения в степень, выполняющий возведение в степень за меньшее, чем в определении, число умножений.

Запись an{\displaystyle a^{n}} обычно читается как «a в n{\displaystyle n}-й степени» или «a в степени n». Например, 104{\displaystyle 10^{4}} читается как «десять в четвёртой степени», 103/2{\displaystyle 10^{3/2}} читается как «десять в степени три вторых (или: полтора)».

Для второй и третьей степени существуют специальные названия: возведение в квадрат и в куб соответственно. Так, например, 102{\displaystyle 10^{2}} читается как «десять в квадрате», 103{\displaystyle 10^{3}} читается как «десять в кубе». Такая терминология возникла из древнегреческой математики. Древние греки формулировали алгебраические конструкции на языке геометрической алгебры. В частности, вместо употребления слова «умножение» они говорили о площади прямоугольника или об объёме параллелепипеда: вместо a2{\displaystyle a^{2}}, a3{\displaystyle a^{3}} древние греки говорили «квадрат на отрезке a», «куб на a». По этой причине четвёртую степень и выше древние греки избегали[2].

Основные свойства[править | править код]

Все приведенные ниже основные свойства возведения в степень выполняются для натуральных, целых, рациональных и вещественных чисел[3]. Для комплексных чисел, в силу многозначности комплексной операции, они выполняются только в случае натурального показателя степени[⇨].

Запись anm{\displaystyle a^{n^{m}}} не обладает свойством ассоциативности (сочетательности), то есть, в общем случае,(an)m≠a(nm){\displaystyle (a^{n})^{m}\neq a^{\left({n^{m}}\right)}} Например, (22)3=43=64{\displaystyle (2^{2})^{3}=4^{3}=64}, а 2(23)=28=256{\displaystyle 2^{\left({2^{3}}\right)}=2^{8}=256}. В математике принято считать запись anm{\displaystyle a^{n^{m}}} равнозначной a(nm){\displaystyle a^{\left({n^{m}}\right)}}, а вместо (an)m{\displaystyle (a^{n})^{m}} можно писать просто anm{\displaystyle a^{nm}}, пользуясь предыдущим свойством. Впрочем, некоторые языки программирования не придерживаются этого соглашения.

Возведение в степень не обладает свойством коммутативности (переместительности): вообще говоря, ab≠ba{\displaystyle a^{b}\neq b^{a}}, например, 25=32{\displaystyle 2^{5}=32}, но 52=25.{\displaystyle 5^{2}=25.}

Таблица натуральных степеней небольших чисел[править | править код]

nn2n3n4n5n6n7n8n9n10
2481632641282565121024
3927812437292 1876 56119 68359 049
4166425610244 09616 38465 536262 1441 048 576
525125625312515 62578 125390 6251 953 1259 765 625
63621612967 77646 656279 9361 679 61610 077 69660 466 176
749343240116 807117 649823 5435 764 80140 353 607282 475 249
864512409632 768262 1442 097 15216 777 216134 217 7281 073 741 824
981729656159 049531 4414 782 96943 046 721387 420 4893 486 784 401
10100100010 000100 0001 000 00010 000 000100 000 0001 000 000 00010 000 000 000

Целая степень[править | править код]

Операция обобщается на произвольные целые числа, включая отрицательные и ноль[4]::

az={az,z>01,z=0,a≠01a|z|,z<0,a≠0{\displaystyle a^{z}={\begin{cases}a^{z},&z>0\\1,&z=0,a\neq \;0\\{\frac {1}{a^{|z|}}},&z<0,a\neq \;0\end{cases}}}

Результат не определён при a=0{\displaystyle a=0} и z⩽0{\displaystyle z\leqslant 0}.

Рациональная степень[править | править код]

Возведение в рациональную степени p/q,{\displaystyle p/q,} где p{\displaystyle p} — целое число, а q{\displaystyle q} — натуральное, определяется следующим образом[4]:

apq=(aq)p{\displaystyle a^{p \over q}=({\sqrt[{q}]{a}})^{p}}.

Результат не определён при a=0{\displaystyle a=0} и p/q⩽0.{\displaystyle p/q\leqslant 0.} Для отрицательных a{\displaystyle a} в случае нечётного p{\displaystyle p} и чётного q{\displaystyle q} в результате вычисления степени получаются комплексные числа.

Следствие: an=a1/n.{\displaystyle {\sqrt[{n}]{a}}=a^{1/n}.} Таким образом, понятие рациональной степени объединяет возведение в целочисленную степень и извлечение корня в единую операцию.

Вещественная степень[править | править код]

Если a⩾0,r{\displaystyle a\geqslant 0,r} — вещественные числа, причём r{\displaystyle r} — иррациональное число, возможно определить ar{\displaystyle a^{r}} следующим образом: поскольку любое вещественное число можно приблизить, сверху и снизу, двумя рациональными числами, то есть можно подобрать для r{\displaystyle r} рациональный интервал [p,q]{\displaystyle [p,q]} с любой степенью точности, то общая часть всех соответствующих интервалов [ap,aq]{\displaystyle [a^{p},a^{q}]} состоит из одной точки, которая и принимается за ar{\displaystyle a^{r}}.

Полезные формулы:

xy=ayloga⁡x{\displaystyle x^{y}=a^{y\log _{a}x}}
xy=eyln⁡x{\displaystyle x^{y}=e^{y\ln x}}
xy=10ylg⁡x{\displaystyle x^{y}=10^{y\lg x}}

Последние две формулы используют для возведения положительных чисел в произвольную степень на электронных калькуляторах (включая компьютерные программы), не имеющих встроенной функции xy{\displaystyle x^{y}}, и для приближённого возведения в нецелую степень или для целочисленного возведения в степень, когда числа слишком велики для того, чтобы записать результат полностью.

Комплексная степень[править | править код]

Возведение комплексного числа в натуральную степень выполняется обычным умножением, и результат однозначен (см. формулу Муавра). Основой для более общего определения комплексной степени служит экспонента ez{\displaystyle e^{z}}, где e{\displaystyle e} — число Эйлера, z=x+iy{\displaystyle z=x+iy} — произвольное комплексное число[5].

Определим комплексную экспоненту с помощью такого же ряда, как и вещественную:

ez=1+z+z22!+z33!+z44!+⋯.{\displaystyle e^{z}=1+z+{\frac {z^{2}}{2!}}+{\frac {z^{3}}{3!}}+{\frac {z^{4}}{4!}}+\cdots .}

Этот ряд абсолютно сходится для любого комплексного z,{\displaystyle z,} поэтому его члены можно как угодно перегруппировывать. В частности, отделим от него часть для eiy{\displaystyle e^{iy}}:

eiy=1+iy+(iy)22!+(iy)33!+(iy)44!+⋯=(1−y22!+y44!−y66!+⋯)+i(y−y33!+y55!−⋯).{\displaystyle e^{iy}=1+iy+{\frac {(iy)^{2}}{2!}}+{\frac {(iy)^{3}}{3!}}+{\frac {(iy)^{4}}{4!}}+\cdots =\left(1-{\frac {y^{2}}{2!}}+{\frac {y^{4}}{4!}}-{\frac {y^{6}}{6!}}+\cdots \right)+i\left(y-{\frac {y^{3}}{3!}}+{\frac {y^{5}}{5!}}-\cdots \right).}

В скобках получились известные из вещественного анализа ряды для косинуса и синуса, и мы получили формулу Эйлера:

ez=exeyi=ex(cos⁡y+isin⁡y){\displaystyle e^{z}=e^{x}e^{yi}=e^{x}(\cos y+i\sin y)}

Общий случай ab{\displaystyle a^{b}}, где a,b{\displaystyle a,b} — комплексные числа, определяется через представление a{\displaystyle a} в показательной форме: a=rei(θ+2πk){\displaystyle a=re^{i(\theta +2\pi k)}} согласно определяющей формуле[5]:

ab=(eLn⁡(a))b=(eln⁡(r)+i(θ+2πk))b=eb(ln⁡(r)+i(θ+2πk)).{\displaystyle a^{b}=(e^{\operatorname {Ln} (a)})^{b}=(e^{\operatorname {ln} (r)+i(\theta +2\pi k)})^{b}=e^{b(\operatorname {ln} (r)+i(\theta +2\pi k))}.}

Здесь Ln{\displaystyle \operatorname {Ln} } — комплексный логарифм, ln{\displaystyle \ln } — его главное значение.

При этом комплексный логарифм — многозначная функция, так что, вообще говоря, комплексная степень определена неоднозначно[5]. Неучёт этого обстоятельства может привести к ошибкам. Пример: возведём известное тождество e2πi=1{\displaystyle e^{2\pi i}=1} в степень i.{\displaystyle i.} Слева получится e−2π,{\displaystyle e^{-2\pi },} справа, очевидно, 1. В итоге: e−2π=1,{\displaystyle e^{-2\pi }=1,} что, как легко проверить, неверно. Причина ошибки: возведение в степень i{\displaystyle i} даёт и слева, и справа бесконечное множество значений (при разных k{\displaystyle k}), поэтому правило (ab)c=abc{\displaystyle \left(a^{b}\right)^{c}=a^{bc}} здесь неприменимо. Аккуратное применение формул определения комплексной степени даёт слева и справа e−2πk;{\displaystyle e^{-2\pi k};} отсюда видно, что корень ошибки — путаница значений этого выражения при k=0{\displaystyle k=0} и при k=1.{\displaystyle k=1.}

Потенцирование (от нем. potenzieren[К 2]) — нахождение числа по известному значению его логарифма, то есть решение уравнения loga⁡x=b{\displaystyle \log _{a}x=b}. Из определения логарифма вытекает, что x=ab{\displaystyle x=a^{b}}, таким образом, возведение a{\displaystyle a} в степень b{\displaystyle b} может быть названо другими словами «потенцированием b{\displaystyle b} по основанию a{\displaystyle a}».

Антилогарифм — результат потенцирования, то есть нахождения числа по известному значению его логарифма[6]. Как самостоятельное понятие используется в логарифмических таблицах, логарифмических линейках, микрокалькуляторах.

Согласно сказанному выше, антилогарифм по основанию a{\displaystyle a} для числа b{\displaystyle b} равен ab{\displaystyle a^{b}}:

ant⁡loga⁡b=ab.{\displaystyle \operatorname {ant} \log _{a}{b}=a^{b}.}

Разновидности[править | править код]

Поскольку в выражении xy{\displaystyle x^{y}} используются два символа (x{\displaystyle x}

Таблица степеней 2 (двойки)

Приведенная таблица кроме степени двойки показывает максимальные числа, которые может хранить компьютер для заданного числа бит. Причем как для целых так и чисел со знаком.

Исторически сложилось, что компьютеры используют двоичную систему счисления, а, соответственно, и хранения данных. Таким образом, любое число можно представить как последовательность нулей и единиц (бит информации). Существует несколько способов представления чисел в виде двоичной последовательности. 

Рассмотрим наиболее простой из них — это целое положительное число. Тогда чем больше число нам нужно записать, тем более длинная последовательность бит нам необходима.

Ниже представлена таблица степеней числа 2. Она даст нам представление необходимого числа бит, которое нам необходимо для хранения чисел.

Как пользоваться таблицей степеней числа два

Первый столбец — это степень двойки, который одновременно, обозначает число бит, которое представляет число.

Второй столбец — значение двойки в соответствующей степени (n)

Пример нахождения степени числа 2. Находим в первом столбце число 7. Смотрим по строке вправо и находим значение два в седьмой степени (27) — это 128

Третий столбец — максимальное число, которое можно представить с помощью заданного числа бит (в первом столбце). 

Пример определения максимального целого числа без знака. Если использовать данные из предыдущего примера, мы знаем, что 27 = 128. Это верно, если мы хотим понять, какое количество чисел, можно представить с помощью семи бит. Но, поскольку первое число — это ноль, то максимальное число, которое можно представить с помощью семи бит 128 — 1 = 127 . Это и есть значение третьего столбца.


Степень двойки (n) Значение степени двойки
2n
Максимальное число без знака,

записанное с помощью n бит

Максимальное число со знаком, 

записанное с помощью n бит
0 1 - -
1 2 1 -
2 4 3 1
3 8 7 3
4 16 15 7
5 32 31 15
6 64 63 31
7 128 127 63
8 256 255 127
9 512 511 255
10 1 024 1 023 511
11 2 048 2 047 1023
12 40 96 4 095 2047
13 8 192 8 191 4095
14 16 384 16 383 8191
15 32 768 32 767 16383
16 65 536 65 535 32767
17 131 072 131 071 65 535
18 262 144 262 143 131 071
19 524 288 524 287 262 143
20 1 048 576 1 048 575 524 287
21 2 097 152 2 097 151 1 048 575
22 4 194 304 4 194 303 2 097 151
23 8 388 608 8 388 607 4 194 303
24 16 777 216 16 777 215 8 388 607
25 33 554 432 33 554 431 16 777 215
26 67 108 864 67 108 863 33 554 431
27 134 217 728 134 217 727 67 108 863
28 268 435 456 268 435 455 134 217 727
29 536 870 912 536 870 911 268 435 455
30 1 073 741 824 1 073 741 823 536 870 911
31 2 147 483 648 2 147 483 647 1 073 741 823
32 4 294 967 296 4 294 967 295 2 147 483 647

Необходимо принять во внимание, что не все числа в компьютере представлены таким образом. Существуют и другие способы представления данных. Например, если мы хотим записывать не только положительные, но и отрицательные числа, то нам потребуется еще один бит для хранения значения «плюс/минус». Таким образом, количество бит, предназначенных для хранения чисел у нас уменьшилось на один. Какое максимальное число может быть записано в виде целого числа со знаком можно посмотреть в четвертом столбце.

Для этого же самого примера ( 27 ) семью битами можно записать максимум число +63, поскольку один бит занят знаком «плюс». Но мы можем хранить и число «-63», что было бы невозможно, если бы все биты были бы зарезервированы под хранение числа.

Примеры использования таблицы степеней числа два

Например, нам необходимо узнать, в какую степень нужно возвести число 2, чтобы получить 256. Во втором столбце находим число 256 и считываем, что 256 это два в степени восемь.

Аналогично, 2 в 11 степени равно 2048.
2 в 13 степени равно 8,192.
2 в 15 степени равно 32,768
2 в 17 степени равно 131,072


 Хранение и кодирование информации | Описание курса | Использование электронных таблиц Excel 

   

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *