Тела архимеда – Многогранники Архимеда — Mnogogranniki.ru

Содержание

Многогранники Архимеда — Mnogogranniki.ru

Древнегреческому ученому Ахимеду принадлежит открытие 13 многогранников — «архимедовых тел».

Которые так же именуют полуправильными многогранниками.

 

 

Каждое из них ограничено неодноименными правильными многогугольниками и в котором равны многогранные углы и одноименные многоугольники.

Кроме того, в каждой вершине сходится одно и тоже число одинаковых граней.

В одинаковом порядке каждое из этих тел может быть вписано в сферу.

 

Почему все архимедовы тела часто называют полуправильные многогранники?

При этом надо помнить, что далеко не все полуправильные многогранники можно назвать архимедовыми, так как в группу полуправильных многогранников входит гораздо больше геометрических тел, а количество архимедовых многогранников очень мало — всего тринадцать.

 

Впервые увидев эти 13 названий — «голова идет кругом». Всё смешивается. Однако запомнить и разобраться все-таки можно.

Как выглядит каждое из 13-ти Архимедовых тел

 

тринадцать тел архимеда

1. Усечённый тетраэдр

тринадцать тел архимеда

2. Усечённый октаэдр

тринадцать тел архимеда

3. Усечённый куб (гексаэдр)

тринадцать тел архимеда

4. Усечённый додекаэдр

тринадцать тел архимеда

5. Усечённый икосаэдр

тринадцать тел архимеда

6. Кубо-октаэдр

тринадцать тел архимеда

7. Ромбо-кубо-октаэдр

тринадцать тел архимеда

8. Ромбо-усечённый кубо-октаэдр

 

тринадцать тел архимеда

9. Плосконосый куб (другое название курносый куб)

 

тринадцать тел архимеда

10. Икосо-додекаэдр

 

тринадцать тел архимеда

11. Усечённый икосо-додекаэдр

 

тринадцать тел архимеда

12. Ромбо-усечённый икосо-додекаэдр

 

тринадцать тел архимеда

13. Плосконосый додекаэдр (другое название курносый додекаэдр)

 

Какое название лежит в основе

Какое название лежит в основе: Обратите внимание на тот, факт что в названии любого многогранника есть слово-основа. Именно эта основа позволяет определить к какому из пяти правильных многогранников относится текущий.

 Название

  Слово-основа

 Усечённый тетраэдр      тетраэдр

Усечённый октаэдр     

Кубо-октаэдр     

Ромбо-кубо-

октаэдр     

Ромбо-усечённый кубо-октаэдр     

 октаэдр

Усечённый куб     

Плосконосый куб     

куб

Усечённый додекаэдр     

Икосо-додекаэдр     

Усечённый икосо-додекаэдр     

Ромбо-усечённый икосо-додекаэдр     

Плосконосый додекаэдр     

додекаэдр
Усечённый икосаэдр     икосаэдр

 

Какой многогранник лежит в основе

Прародителем каждого из 13-ти полуправильных многогранников является один из пяти Платоновых многогранников.

тетраэдр усеченный тетраэдр
  икосаэдр усеченный икосаэдр  

 

Из каких геометрических фигур можно составить

Все многогранники Архимеда можно представить в виде комбинации правильных многогугольников

Размеры многогранников

Чтобы создать коллекцию многогранников, нам будет необходимо придерживаться определенных условий, так размеры будут сопоставимы и модели можно легко сравнить друг с другом.

Идин из возможных вариантов это создавать модели вписываемые в сферу заданных размеров. Вот как будут выглядеть в этом случае все 13 многогранников.

 

Другой вариант это задать единую длину стороны для всех многоугольников из которых будет собрана модель. Вот каковы пропорции многоугольников имеющих единую длину стороны:

— треугольник;

— квадрат;

— пятиугольник;

— шестиугольник;

— восьмиугольник;

— десятиугольник.

А вот как будет выглядеть коллекция многогранников, собранная из многоугольников с единой длиной стороны:

Где найти развертки Архимедовых тел

Развертки для всех тринадцати многогранников Архимеда вы сможете найти в наборах «Волшебные грани»:

Волшебные грани № 18

Волшебные грани № 18
— усечённый тетраэдр;
— усечённый октаэдр;
— усечённый гексаэдр;
— кубооктаэдр.

   Волшебные грани № 19

Волшебные грани № 19
— усечённый икосаэдр;
— икосо-додекаэдр;
_
_

   Волшебные грани № 21

Волшебные грани № 21
— ромбо-кубо-октаэдр;
— ромбо-усечённый кубо-октаэдр

  Волшебные грани № 27

Волшебные грани № 27
— усечённый додекаэдр;
— усечённый икосо-додекаэдр

  Волшебные грани № 29

Волшебные грани № 29
— плосконосый куб;
— плосконосый додекаэдр

 

 

Готовится к выпуску:

Волшебные грани № 31 (ромбо-усечённый икосо-додекаэдр).

mnogogranniki.ru

Исследовательская работа «Архимедовы тела»

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 59»

Тела Архимеда

(Проект)

Выполнил: Григорьев Иван, Тимофей, ученик 5А класса

МБОУ «СОШ № 59» г.Барнаула

Руководитель:

Захарова Людмила Владимировна,

учитель математики

МБОУ «СОШ № 59» г.Барнаула

г. Барнаул 2018

Содержание

Введение……………………………………………………………….2

  1. Из истории……………………………………………………….3

    1. Биография Архимеда………………………………. 3

    2. Научная деятельность Архимеда………………….. 5

    3. Наследие Архимеда………………………………….6

  2. Архимедовы тела……………………………………………………… 8

  3. Полуправильные многогранники в архитектуре..……………11

Заключение……………………………………………………………13

Список литература…………………………………………………..14

Введение

Такая наука, как геометрия часто встречается в нашей жизни. Мы иногда даже не замечаем, сколько предметов похожих на геометрические фигуры, мы используем в повседневной жизни, в живописи, архитектуре. В начальной школе я встречался с правильными многогранниками, но на уроке математики я узнал, что существуют еще полуправильные многогранники. Я решил выяснить, что же они из себя представляют, а также попробовать найти их в нашем мире, более развитом и продвинутом.

Цель проекта: исследовать историю возникновения полуправильных многогранников.

Задачи исследования:

ответить на вопрос кто из математиков древности впервые исследовал полуправильные многогранники;

— что такое полуправильный многогранник, и где он встречается;

— сколько существует полуправильных многогранников.

Объект исследования: многогранники

Предмет исследования: полуправильные многогранники

Методы исследования:

изучение литературы по данной теме;

обработка полученных данных.

  1. Из истории

Архимед – выдающийся древнегреческий математик, изобретатель и инженер, живший в III веке до н. э. Родился этот человек в 287 году до н. э. в городе Сиракузы на Сицилии. В то время это была колония Древней Греции и именовалась Великой Грецией. Она включала в себя территорию современной Южной Италии и Сицилию.

Дата рождения известна со слов византийского историка Иоанна Цеца. Жил он в Константинополе в XII веке. То есть почти через полторы тысячи лет после Архимеда. Он также написал, что знаменитый древнегреческий математик прожил 75 лет. Столь точная информация вызывает определённые сомнения, но проявим уважение к выдающимся умам древности и примем указанные даты и цифры за истину.

  1. 1. Биография Архимеда

hello_html_4619d9b8.jpg

Родился выдающийся житель Великой Греции в 287 году до н. э., а умер в 212 году до н. э. Его отцом был астроном по имени Фидий, о котором ничего не известно. Также предполагаются родственные узы с тираном Сиракуз Гиероном II. Наиболее подробную биографию Архимеда написал его друг Гераклид. Но данный труд был утерян, а поэтому подробности жизни математика и изобретателя остались неясными. Ничего не известно о его жене и детях, зато не вызывает сомнение учёба в Александрии, где находилась знаменитая Александрийская библиотека.

Там стремящийся к знаниям молодой человек наладил дружеские связи с математиком и астрономом Кононом Самосским и астрономом, математиком и филологом Эрастофеном из Кирен – это были известные учёные того времени. С ними у нашего героя завязалась крепкая дружба. Она продолжалась всю жизнь, а выражалась в переписке.

Именно в стенах Александрийской библиотеки Архимед ознакомился с работами таких известных геометров как Евдокс и Демокрит. Он также почерпнул много других полезных знаний и через несколько лет вернулся на родину в Сиракузы. Там он быстро зарекомендовал себя умным и одарённым человеком, и прожил долгие годы, пользуясь уважением окружающих.

Умерла выдающаяся личность во время Второй Пунической войны, когда римские войска после 2-х лет осады захватили Сиракузы. Командовал римлянами Марк Клавдий Марцелл. Согласно Плутарху, он приказал найти Архимеда и доставить к нему. Римский солдат пришёл в дом к выдающемуся математику, когда тот размышлял над математическими формулами. Солдат потребовал немедленно отправляться с ним и встретиться с Марцеллом.

Но математик отмахнулся от навязчивого римлянина, сказав, что вначале должен завершить работу. Солдат возмутился и заколол умнейшего жителя Сиракуз мечом. Есть также версия, утверждающая, что Архимеда убили прямо на улице, когда он нёс в руках математические инструменты. Римские солдаты решили, что это ценные предметы и зарезали математика. Но как бы там ни было, а смерть этого человека возмутила Марцелла, так как был нарушен его приказ.

hello_html_668bc727.jpg

Архимеда убивает римский солдат

Через 140 лет после этих событий в Сицилию прибыл известный римский оратор Цицерон. Он попытался найти могилу Архимеда, но никто из местных жителей не знал, где она находится. Наконец, могила была найдена в полуразрушенном состоянии в зарослях кустарника на окраине Сиракуз. На могильном камне были изображены шар и вписанный в него цилиндр. Под ними были выбиты стихи. Однако данная версия не имеет никаких документальных доказательств.

В начале 60-х годов XX века во дворе отеля «Панорама» в Сиракузах также была обнаружена древняя могила. Владельцы отеля стали утверждать, что это и есть место захоронения великого математика и изобретателя древности. Но опять же не представили никаких убедительных доказательств. Одним словом, по сей день неизвестно, где похоронен Архимед, и в каком месте находится его могила.

1.2.Научная деятельность Архимеда

hello_html_394af193.jpgЭтот выдающийся человек внёс очень большой вклад в развитие математики. Он сумел найти общий метод при расчётах объёмов и площадей, используя бесконечно малые величины. То есть именно он заложил основу интегральных исчислений. Он также доказал, что отношение длины окружности к диаметру является величиной постоянной. Заложил основу дифференциальных исчислений, то есть сделал всё то, что математики сумели продолжить только в XVII веке. Отсюда можно смело утверждать, что этот человек обогнал математическую науку на 2 тыс. лет.

В механике он разработал рычаг и начал успешно применять его на практике. В порту Сиракуз были сделаны блочно-рычажные механизмы, которые поднимали и опускали тяжёлые грузы. Изобрёл также архимедов винт, с помощью которого вычерпывали воду. Создал теорию об уравновешивании равных тел.

Доказал, что на тело, погружённое в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости. Эта идея пришла ему в голову в ванне. Она своей простотой так потрясла выдающегося математика и изобретателя, что он выскочил из ванны и в костюме Адама побежал по улицам Сиракуз с криком «эврика», что означает «нашёл». Впоследствии данное доказательство получило название закона Архимеда.

hello_html_7798c8c0.jpgВо время долгой осады Сиракуз римлянами Архимед был уже пожилым человеком, но его ум не потерял остроты. Как писал Плутарх, под его руководством были построены метательные машины, забрасывающие римских воинов тяжёлыми камнями. Также были сделаны метательные машины близкого действия. Они уничтожали врагов вблизи стен, сбрасывая на них бочки с кипящей смолой и каменные ядра.

Римские галеры, снующие в порту Сиракуз, подверглись атакам специальных кранов с захватывающими крюками (коготь Архимеда). С помощью этих крюков осаждённые поднимали корабли в воздух и бросали вниз с большой высоты. Суда, ударяясь о воду, разбивались и тонули. Все эти технические достижения напугали захватчиков. Они отказались от штурма города и перешли к длительной осаде.

Существует легенда, что Архимед распорядился отполировать щиты до зеркального блеска, а затем расположил их таким образом, что они, отражая солнечный цвет, фокусировали его в мощные лучи. Их направили на римские корабли, и те сгорели. Уже в наше время греческий учёный Иоаннис Саккас создал каскад из 70 медных зеркал и с его помощью поджёг фанерный макет корабля, который находился на расстоянии 75 метров от зеркал. Так что данная легенда вполне могла иметь под собой практическую основу.

hello_html_28d2cf6.jpg

Сфокусированный солнечный луч поджигает судно

Ну и, конечно, выдающийся изобретатель не мог обойти своим вниманием астрономию, ведь в то далёкое время она была чрезвычайно популярна. Он пытался определить расстояние от Земли до планет, но при этом руководствовался тем, что центром мира является Земля, а Солнце и Луна вращаются вокруг неё. В то же время он предполагал, что Марс, Меркурий и Венера вращаются вокруг Солнца.

    1. Наследие Архимеда

Свои работы Архимед писал на дорическом греческом языке – диалект, на котором говорили в Сиракузах. Но подлинники не сохранились. Они дошли до нас в пересказе других авторов. Всё это систематизировал и собрал в единый сборник византийский архитектор Исидор из Милета, живший в Константинополе в VI веке. Этот сборник в IX веке был переведён на арабский язык, а в XII веке его перевели на латынь.

В эпоху Возрождения труды греческого мыслителя были опубликованы в Базеле на латинском и греческом языках. На основе этих работ Галилео Галилей в конце XVI века изобрёл гидростатические весы.

В 1906 году профессор из Дании Йохан Людвиг Хейберг обнаружил в Константинополе молитвенный сборник из 174 страниц, написанный в XIII веке. Учёный выяснил, что это был палимпсест, то есть текст, написанный поверх старого текста. В то время такое являлось обычной практикой, так как выделанная козлиная кожа, из которой делали страницы, стоила очень дорого. Старый текст соскабливали, а поверх него наносили новый.

Выяснилось, что соскобленная работа являлась копией неизвестного трактата Архимеда. Написана копия была в X веке. С помощью ультрафиолетового и рентгеновского света этот неизвестный доселе труд был прочитан. Это были работы о равновесии, об измерении окружности сферы и цилиндра, о плавучих телах. В настоящее время данный документ хранится в музее города Балтимора (штат Мэриленд, США).

  1. Архимедовы тела

Впервые многогранники такое типа открыл Архимед. Им подробно описаны 13 многогранников, которые позже в честь великого ученого были названы телами Архимеда.

Архимедовы тела частично получаются из Платоновых тел в результате их усечения. Усеченное тело есть не что иное, как тело с отрезанной верхушкой. Так могут быть получены первые пять архимедовых тел: усеченный тетраэдр (рис.1),

усеченный октаэдр (рис.2),

усеченный икосаэдр (рис.3),

усеченный куб (рис.4),

усеченный додекаэдр (рис.5).

Вторая группа архимедовых тел представлена двумя многогранниками, являющимися результатом пересечения двух Платоновых тел подходящих размеров и расположенных так, что их центры совпадают.

Это кубооктаэдр (рис.6) — результат пересечения куба и октаэдра и икос, икосододекаэдр (рис.7) — результат пересечения икосаэдра и додекаэдра.

В результате усечения кубооктаэдра и икосододекаэдра получены следующие два многогранника

ромбокубооктаэдр (рис.8) и

ромбоикосододекаэдр (рис.9).

Дальнейшее видоизменения могут превратить их в два других многогранника:

усеченный кубооктаэдр (рис.10) и

усеченный икосододекаэдр (рис.11).

Последние два архимедовых тел

«курносый» куб (рис.12)

и «курносый» додекаэдр (рис.13).

Термин курносый означает, что каждую грань многогранника окружили треугольники, что каждое ребро заменили парой треугольников, а в каждой вершине добавили еще один многоугольник. Прародителем каждого из 13-ти полуправильных многогранников является один из пяти Платоновых многогранников(рис.14) путем отсечения вершин. При дальнейшем усечении полученных тел мы получаем правильные многогранники, поэтому тел Архимеда только 13.

hello_html_m5483da1.png

Прародителем каждого из 13-ти полуправильных многогранников является один из пяти Платоновых многогранников(рис.14) путем отсечения вершин. При дальнейшем усечении полученных тел мы получаем правильные многогранники, поэтому тел Архимеда только 13. 

hello_html_m71652055.png

  1. Полуправильные многогранники в архитектуре

Национальная библиотека Беларуси(рис.15). Форма книгохранилища — ромбокубооктаэдр. Библиотека — самый крупный из архитектурных ромбокубооктаэдров, возведенных в мире в настоящее время. Его высота составляет 73,6 м (23 этажа), а вес — 115 000 тонн. Повторить в архитектуре сложные многогранники (особенно, архимедовы тела — к которым, в том числе, относится и ромбокубооктаэдр) действительно нелегко. И если случается, то в меньшем масштабе, чем Нацбиблиотека, и усеченной форме. Благодаря оригинальному архитектурному решению в новом здании НББ стало возможным гармонично совмещать искусственные и естественные материалы для отделки интерьеров, создать особый световой колорит во внутреннем пространстве библиотеки за счет сочетания естественного света с искусственным освещением и обеспечить психологический комфорт посетителей и сотрудников

hello_html_m48e1a140.jpg

Рис.16

Музей архитектуры Тойо Ито(рис.16) на острове Омишима (Япония) — в основе дизайна музея лежат геометрические фигуры: октаэдр, тетраэдр и кубооктаэдр.

hello_html_15662bfa.jpg

Рис.17

Здание Международного экономического комитета в Киеве(рис.17), купол конференц-зала своими гранями образует икосододекаэдр.

hello_html_m7412c6ec.jpg

Рис.18

Ботанический сад «Эдем»(рис.18) в Корнуолле (Великобритания) был построен в 2001 году на месте выработанного мелового карьера, а для конструкций сводов использовались формы шестигранных сот. А это еще один вид многогранников — усеченный икосаэдр. Состоит из 12-ти пятиугольников и 20-ти шестиугольников.

hello_html_m1a850a1d.jpg

Рис.19

Усеченная пирамида пользуется популярностью у современных архитекторов. Например, в Индианополисе (США) в 1972 году закончили строительство офисного комплекса из трех зданий, который так и назвали — The Pyramids(рис.19). Сейчас в нем расположен Институт искусства Индианополиса.

Полуправильные многогранники в привычных вещах

Кресло Hedronics разработано известным немецким архитектором Даниелем Дендра (Баухаус) специально для недели российского дизайна Sretenka Design Week. В основе форм кресла лежит многогранник производный от плосконосого куба. Подобно оригами, кресло Hedronics выполняется из цельного листа металла и воплощает математическую гармонию строгих геометрических форм. Кресло может быть выполнено из цельного листа металла или из листа с декоративной перфорацией. Перфорированное кресло весит немного и выглядит наполненным воздушными пузырьками. 

hello_html_m20011f1.jpg

Рис.21

Всемирно известный художник и дизайнер из Дании Олафур Элиассон, выставка которого проходит сейчас в Tate Modern, создал новую световую инсталляцию Your Sound Galaxy (рис.21). Работа состоит из 27 многогранников, свисающих с потолка в виде двух концентрических кругов. Каждая объемная фигура снабжена светодиодом, который освещает пространство сквозь стыки составляющих частей многогранника.  Инсталляцию Your Sound Galaxy нельзя назвать такой прогрессивной и социально важной, однако она, как и многие другие работы Элиассона, выглядит очень загадочно и меняет пространство с помощью света.

hello_html_m420b95f6.png

Рис.22

Сравнение усечённого икосаэдра(слева) с футбольным мячом  Конструкция из этих 32 многоугольников называется усечённый икосаэдр(рис.22) — достаточно близкая к шару геометрическая фигура, компромисс между несферичностью и количеством швов на покрышке. Сферическая форма придаётся мячу за счёт давления воздуха, закачанного внутрь.

Заключение

Без геометрии не было бы ничего, все, что нас окружает- это геометрические фигуры. Сначала – более простые, такие как квадрат, многоугольник, шар. Затем- более сложные: призмы, тетраэдры, пирамиды и т.д. Но мы забываем обращать на это внимание.

Формы многогранников придают зданиям, интерьеру комнат особый вид. И я считаю, что многогранники в архитектуре, интерьере и природе неоходимы. Ведь это не просто красивые и большие здания, изящная мебель, необычные елочные игрушки — это прочные, надежные и уникальные предметы, которые еще много лет будут поражать своей точностью, величественностью и таинственностью людей.

Мне было интересно изучать правильные и полуправильные многогранники так как они взаимосвязаны. По-моему мнению, основная цель работы достигнута, задачи решены. Для себя же я определил цель попробовать сделать некоторые из полуправильных многогранников.

Список литературы

  1. Я познаю мир: Детская энциклопедия: Математика / под ред. О.Г. Хинн.-М. : АСТ. 1995.

  2. В мире многогранников: Кн. Для учащихся.0- М.: Просещение, 1996.

  3. Шишова А. Б. Полуправильные многогранники // Научно-методический электронный журнал «Концепт». – 2015. – Т. 25. – С. 191–195. – URL: http://e-koncept.ru/2015/65341.htm.

infourok.ru

Многогранники Архимеда — Mnogogranniki.ru

Древнегреческому ученому Ахимеду принадлежит открытие 13 многогранников — «архимедовых тел».

Которые так же именуют полуправильными многогранниками.

 

 

Каждое из них ограничено неодноименными правильными многогугольниками и в котором равны многогранные углы и одноименные многоугольники.

Кроме того, в каждой вершине сходится одно и тоже число одинаковых граней.

В одинаковом порядке каждое из этих тел может быть вписано в сферу.

 

Почему все архимедовы тела часто называют полуправильные многогранники?

При этом надо помнить, что далеко не все полуправильные многогранники можно назвать архимедовыми, так как в группу полуправильных многогранников входит гораздо больше геометрических тел, а количество архимедовых многогранников очень мало — всего тринадцать.

 

Впервые увидев эти 13 названий — «голова идет кругом». Всё смешивается. Однако запомнить и разобраться все-таки можно.

Как выглядит каждое из 13-ти Архимедовых тел

 

тринадцать тел архимеда

1. Усечённый тетраэдр

тринадцать тел архимеда

2. Усечённый октаэдр

тринадцать тел архимеда

3. Усечённый куб (гексаэдр)

тринадцать тел архимеда

4. Усечённый додекаэдр

тринадцать тел архимеда

5. Усечённый икосаэдр

тринадцать тел архимеда

6. Кубо-октаэдр

тринадцать тел архимеда

7. Ромбо-кубо-октаэдр

тринадцать тел архимеда

8. Ромбо-усечённый кубо-октаэдр

 

тринадцать тел архимеда

9. Плосконосый куб (другое название курносый куб)

 

тринадцать тел архимеда

10. Икосо-додекаэдр

 

тринадцать тел архимеда

11. Усечённый икосо-додекаэдр

 

тринадцать тел архимеда

12. Ромбо-усечённый икосо-додекаэдр

 

тринадцать тел архимеда

13. Плосконосый додекаэдр (другое название курносый додекаэдр)

 

Какое название лежит в основе

Какое название лежит в основе: Обратите внимание на тот, факт что в названии любого многогранника есть слово-основа. Именно эта основа позволяет определить к какому из пяти правильных многогранников относится текущий.

 Название

  Слово-основа

 Усечённый тетраэдр      тетраэдр

Усечённый октаэдр     

Кубо-октаэдр     

Ромбо-кубо-октаэдр     

Ромбо-усечённый кубо-октаэдр     

 октаэдр

Усечённый куб     

Плосконосый куб     

куб

Усечённый додекаэдр     

Икосо-додекаэдр     

Усечённый икосо-додекаэдр     

Ромбо-усечённый икосо-додекаэдр     

Плосконосый додекаэдр     

додекаэдр
Усечённый икосаэдр     икосаэдр

 

Какой многогранник лежит в основе

Прародителем каждого из 13-ти полуправильных многогранников является один из пяти Платоновых многогранников.

тетраэдр усеченный тетраэдр   икосаэдр усеченный икосаэдр  

 

Из каких геометрических фигур можно составить

Все многогранники Архимеда можно представить в виде комбинации правильных многогугольников

Размеры многогранников

Чтобы создать коллекцию многогранников, нам будет необходимо придерживаться определенных условий, так размеры будут сопоставимы и модели можно легко сравнить друг с другом.

Идин из возможных вариантов это создавать модели вписываемые в сферу заданных размеров. Вот как будут выглядеть в этом случае все 13 многогранников.

 

Другой вариант это задать единую длину стороны для всех многоугольников из которых будет собрана модель. Вот каковы пропорции многоугольников имеющих единую длину стороны:

— треугольник;

— квадрат;

— пятиугольник;

— шестиугольник;

— восьмиугольник;

— десятиугольник.

А вот как будет выглядеть коллекция многогранников, собранная из многоугольников с единой длиной стороны:

Где найти развертки Архимедовых тел

Развертки для всех тринадцати многогранников Архимеда вы сможете найти в наборах «Волшебные грани»:

Волшебные грани № 18

Волшебные грани № 18
— усечённый тетраэдр;
— усечённый октаэдр;
— усечённый гексаэдр;
— кубооктаэдр.

   Волшебные грани № 19

Волшебные грани № 19
— усечённый икосаэдр;
— икосо-додекаэдр;
_
_

   Волшебные грани № 21

Волшебные грани № 21
— ромбо-кубо-октаэдр;
— ромбо-усечённый кубо-октаэдр

  Волшебные грани № 27

Волшебные грани № 27
— усечённый додекаэдр;
— усечённый икосо-додекаэдр

  Волшебные грани № 29

Волшебные грани № 29
— плосконосый куб;
— плосконосый додекаэдр

 

 

Готовится к выпуску:

Волшебные грани № 31 (ромбо-усечённый икосо-додекаэдр).

mnogogranniki.ru

Архимеда тела — это… Что такое Архимеда тела?


Архимеда тела

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Архимеда закон
  • Архимедов винт

Смотреть что такое «Архимеда тела» в других словарях:

  • АРХИМЕДА ТЕЛА — то же, что полу правильные многогранники …   Математическая энциклопедия

  • Архимеда тела — …   Википедия

  • АРХИМЕДА ЗАКОН — закон статики жидкостей и газов, согласно к рому на всякое тело, погружённое в жидкость (или газ), действует со стороны этой жидкости (газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа), направленная по вертикали вверх и… …   Физическая энциклопедия

  • Архимеда закон — Архимеда закон: F выталкивающая сила; P сила тяжести, действующая на тело. АРХИМЕДА ЗАКОН: на всякое тело, погруженное в жидкость, действует выталкивающая сила, направленная вверх, равная весу вытесненной им жидкости и приложенная к центру… …   Иллюстрированный энциклопедический словарь

  • Архимеда закон — на всякое тело, погружённое в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости. В несколько иной формулировке впервые был установлен древнегреческим учёным Архимедом в III в. до н. э. Доказывается на основе уравнений… …   Энциклопедия техники

  • Архимеда — закон так наз. открытый Архимедом важный гидростатическийзакон, согласно которому каждое тело, погруженное в жидкость, теряетстолько своего веса, сколько весит вытесненная им жидкость. Этот законоснован на гидростатическом давлении, вследствие… …   Энциклопедия Брокгауза и Ефрона

  • Архимеда закон —         закон статики жидкостей и газов, согласно которому на всякое тело, погруженное в жидкость (или газ), действует со стороны этой жидкости (газа) поддерживающая сила, равная весу вытесненной телом жидкости (газа), направленная вверх и… …   Большая советская энциклопедия

  • Архимеда закон — Архимеда закон — на всякое тело, погружённое в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости. В несколько иной формулировке впервые был установлен древнегреческим учёным Архимедом в III в. до н. э. Доказывается на… …   Энциклопедия «Авиация»

  • Архимеда закон — Архимеда закон — на всякое тело, погружённое в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости. В несколько иной формулировке впервые был установлен древнегреческим учёным Архимедом в III в. до н. э. Доказывается на… …   Энциклопедия «Авиация»

  • АРХИМЕДА ЗАКОН — [по имени древнегреч. учёного Архимеда (ок. 287 212 до н. э.)] закон гидро и аэростатики. Согласно А. з., на тело, погруж. в жидкость (или газ), действует выталкивающая сила, направленная вертикально вверх, численно равная весу жидкости (или… …   Большой энциклопедический политехнический словарь

Книги

  • Физика. 7 класс. Тесты к учебнику А. В. Перышкина. Вертикаль. ФГОС, Ханнанов Наиль Кутдусович, Ханнанова Татьяна Андреевна. Пособие представляет собой сборник тестов для тематического и рубежного контроля. Может быть использовано как при работе с учебником, соответствующим ФК ГОС, так ипри работе с учебником,… Подробнее  Купить за 237 руб
  • Физика. 7 класс. Рабочая тетрадь к учебнику А. В. Перышкина. Вертикаль. ФГОС, Ханнанова Татьяна Андреевна, Ханнанов Наиль Кутдусович. Пособие является составной частью УМК А. В. Перышкина «Физика. 7-9 классы», который переработан в соответствии с требованиями нового Федерального государственного образовательного стандарта.… Подробнее  Купить за 228 руб
  • Физика 7 класс Тесты к учебнику А В Перышкина, Ханнанов Н., Ханнанова Т.. Пособие представляет собой сборник тестов для тематического и итогового контроля… Тесты для текущего контроля составлены по темам «Введение», «Строение вещества», «Характеристики движения.… Подробнее  Купить за 186 руб
Другие книги по запросу «Архимеда тела» >>

dic.academic.ru

Исследовательская работа по теме Архимедова сила

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №1»

Исследовательская работа на тему:

«Архимедова сила.

Ее значение в жизни человека и окружающей среды.»

Подготовила ученица 8 класса «Б»

Кривова Дарья

Руководитель: учитель физики

Кудинова Марина Александровна

Алексин,2016г.

Содержание стр.

Вступление ………………………………………………………………..………………3

  1. Основная часть ……………………………………………………….………….……6

    1. В царстве Архимеда …………………………………………..……….…………6

    1. Теоретическая часть закона Архимеда ………….……..……………………….7

  1. Исследовательская часть ……………………………………………………………10

    1. Цель исследовательской работы ………………….……………………………10

    1. Первое исследование ……………………………………………………….…..10

    1. Второе исследование ……….……………………………………………..……13

    1. Третье исследование …………………………………………………………….14

    1. Опрос ……………………………………………………………………………..15

  1. Интересные факты ……………………………………………………………………16

    1. Роль выталкивающей силы в жизни живых организмов ………………………16

    1. Мертвое море……………………………………………………………………..18

    1. Воздухоплавание …………………………………………………………………19

Заключение …….…………………………………………………………………………..24

Литература ………….………………………………………………………………………25

Вступление

Актуальность архимедовой силы

Есть сила одна,- вот вам ответ,-

Эту силу обнаружил Архимед.

Когда он опустился в воду,

То «Эврика!» — воскликнул он народу.

От чего зависит сила эта?

Нельзя оставить без ответа:

Если тело в воду бросить

Или просто опустить,

Будет сила Архимеда

Снизу на него давить…

Если внимательно присмотреться к окружающему миру, то можно открыть для себя множество событий, происходящих вокруг. Кто видел такое зрелище, как айсберг или северное сияние? А с другими явлениями мы встречаемся ежедневно, например, кипение чайника, и в силу их привычности и обыденности не обращаем внимание на это. Но за всеми явлениями — и обыденными, и уникальными – человеческий ум разглядел действие удивительных законов природы. Люди, познавшие эти законы, конечно, не могут перехитрить природу, но использовать их в достижении своих целей обязаны.

Об одном из таких законов и пойдет речь в моей исследовательской работе. Это закон о силе Архимеда. Вспомним отрывок из повести Антона Павловича Чехова «Степь»: «Егорушка разбежался и полетел с полутарасаженной вышки (в старину один сажень равнялся 2,134м, а полтора 3,191м). Описав в воздухе дугу, он упал в воду, глубоко погрузился, но дна не достал, какая-то сила холодная и приятная на ощупь, подхватила и понесла его обратно наверх».

Вопрос: Какая сила подняла Егорушку наверх? Ответ: Архимедова сила.

Таким образом, на использовании действия архимедовой силы в жидкостях основано плавание кораблей, подводных лодок по морям и океанам; в газах — положило развитию воздухоплавания — полеты дирижаблей, аэростатов.

Вообще, вода самое распространенное на Земле вещество. Ею заполнены океаны и моря, реки и озера, пары воды есть в воздухе. А в толще воды обитают жители подводного мира. Огромна роль выталкивающей силы в жизни этих организмов.hello_html_7d3b50c5.gif

Моя исследовательская работа направлена на то, чтобы масштабнее охватить вопросы школьной программы, посвященные закону Архимеда, используя полученные знания и факты, с которыми мы сталкиваемся в современной жизни. Все науки связаны между собой. А общий объект изучения всех наук — это человек «плюс» природа.

Гипотеза

Я полагаю, что исследование действия архимедовой силы сегодня является актуальным. Меня волнуют вопросы: Почему человек и животные могут плавать на поверхности воды? Почему железный гвоздь тонет, а железный корабль плавает? В какой воде легче плавать? Почему летают самолеты, а люди не могут летать?

Цель работы:

сконцентрировать внимание на основном законе гидростатики законе Архимеда и уметь анализировать поведение тела внутри жидкости; применить полученные знания школьной программы в конкретной жизненной ситуации; — научиться проводить физический эксперимент, по результатам, которого сделать вывод.

Задачи:

— изучить учебную литературу по вопросу действия архимедовой силы; — провести опрос, проанализировать и обобщить полученные результаты по данной теме.

Основная часть

В «царстве» Архимеда

Архиме́д (Ἀρχιμήδης; 287 до н. э. — 212 до н. э.) — древнегреческий математик, физик и инженер из Сиракуз, греческой колонии на острове Сицилия. Сведения о жизни Архимеда оставили нам Полибий, Тит Ливий, Цицерон, Плутарх, Витрувий и другие. Почти все они жили на много лет позже описываемых событий, и достоверность этих сведений оценить трудно.hello_html_7b3d4333.png

Отцом Архимеда был математик и астроном Фидий, состоявший, как утверждает Плутарх, в близком родстве с Гиероном II, тираном Сиракуз. Отец привил сыну любовь к математике, механике и астрономии. Для обучения Архимед отправился в Александрию Египетскую — научный и культурный центр. Большую часть своей жизни провёл в родном городе Сиракузы. Где и был убит при захвате города воинами Марцелла во время Второй Пунической войны.

Уже при жизни Архимеда вокруг его имени создавались легенды, поводом для которых служили его поразительные изобретения. Известна легенда об Архимеде и золотой короне. Царь Гиерон (250 лет до н. э.) поручил ему проверить честность мастера, изготовившего золотую корону. Хотя корона весила столько, сколько было отпущено на неё золота, царь заподозрил, что она изготовлена из сплава золота с более дешёвыми металлами. Архимеду было поручено узнать есть ли в короне примесь. Много дней мучила Архимеда эта задача. И вот однажды, находясь в бане, он погрузился в наполненную водой ванну, и его внезапно осенила мысль, давшая решение задачи. Ликующий и возбуждённый своим открытием, Архимед воскликнул: «Эврика! Эврика!», что значит: «Нашёл! Нашёл!».hello_html_28871cb9.jpg

Архимед заказал два слитка — один из золота, другой из серебра, равные весу короны. Каждый слиток он погружал поочерёдно в сосуд, доверху наполненный водой. Архимед заметил, что при погружении слитка из серебра воды вытекает больше. Затем он погрузил в воду корону и обнаружил, что воды вылито больше, чем при погружении золотого слитка, а ведь он был равен весу короны. По объёму вытесненной жидкости Архимед определил, что корона была изготовлена не из чистого золота, а с примесью серебра. Тем самым мастер был изобличён в обмане.

Задача о золотой короне побудила Архимеда заняться вопросом о плавании тел. В результате появилось замечательное сочинение «О плавающих телах». В этом сочинении Архимедом сформулировано: Тела, которые тяжелее жидкости, будучи опущены в неё, погружаются всё глубже, пока не достигают дна, и, пребывая в жидкости, теряют в своём весе столько, сколько весит жидкость, взятая в объёме тел. В науку гидростатику это открытие вошло как закон Архимеда.

Теоретическая часть закона Архимеда

Это закон статики жидкостей и газов, согласно которому на тело, погруженное в жидкость (или газ), действует выталкивающая сила (сила Архимеда), равная весу вытесненной этим телом жидкости (или газа).

Архимедова сила направлена всегда противоположно силе тяжести. Она равна нулю, если погруженное в жидкость тело плотно, всем основанием прижато ко дну.
Следует помнить, что в состоянии невесомости закон Архимеда не работает.hello_html_m12801f49.png

Условия плавания тел в жидкостях и газах. hello_html_7ea5fda9.png

Итак, на тело, находящееся а жидкости или газе, в обычных земных условиях действуют две противоположно направленные силы: сила тяжести и архимедова сила: Fт — сила тяжести, FА — сила Архимеда.

Если сила тяжести по модулю больше архимедовой силы (Fт > FА), то тело опускается вниз — тонет.
Если модуль силы тяжести равен модулю архимедовой силы (Fт = FА), то тело может находиться в равновесии на любой глубине ( тело плавает в жидкости или газе). Если архимедова сила больше силы тяжести (Fт < FА), то тело поднимается вверх – всплывает до тех пор, пока не начнет плавать .

Всплывающее тело частично выступает над поверхностью жидкости; объем погруженной части плавающего тела таков, что вес вытесненной жидкости равен весу плавающего тела.

Архимедова сила больше силы тяжести, если плотность жидкости больше плотности погруженного в жидкость тела: ρt — плотность тела, ρs — плотность среды, в которую погрузили тело. ρt = ρs — тело плавает в жидкости или газе,
ρt > ρs — тело тонет,
ρt < ρs — тело всплывает до тех пор, пока не начнет плавать.

Поэтому дерево всплывает в воде, а железный гвоздь тонет. Однако на воде держатся громадные речные и морские суда, изготовленные из стали, плотность которой почти в 8 раз больше плотности воды. Объясняется это тем, что из стали делают лишь сравнительно тонкий корпус судна, а большая часть его объема занята воздухом. Среднее значение плотности судна при этом оказывается значительно меньше плотности воды; поэтому оно не только не тонет, но и может принимать для перевозки большое количество грузов.

Исследовательская часть Цель исследовательской работы

— Обнаружить наличие силы, выталкивающей тело из жидкости; установить, от каких факторов она зависит; установить формулу расчета архимедовой силы.

— Получить ответ на поставленные вопросы из жизненного опыта, наблюдений за окружающей действительностью, из результатов собственных экспериментов, которые позволяют расширить знания по данной теме, готовить и самостоятельно демонстрировать опыты, объяснять их результаты.

— Повысить интерес к изучению физики, развивать умение видеть изучаемые явления в природе, навыки проведения экспериментов, логическое мышление.

Первое исследование

Оборудование: Яйцо сырое, яйцо вареное, вода чистая, вода, насыщенная солью, подсолнечное масло.hello_html_a60ff46.jpg

Ход работы: 1.Опустим яйцо сырое сначала в воду чистую воду (плотность 1000 кг/куб.м), насыщенную солью (плотность 1030 кг/куб.м), потом в подсолнечное масло (плотность 926 кг/куб.м). Какова же в каждом случае архимедова сила?.

hello_html_6b36c742.jpg hello_html_1b365ab6.jpg hello_html_76172f2b.jpg

На первой фотографии я опустила сырое яйцо в стакан с чистой водой. Яйцо утонуло, другими словами «пошло ко дну». На второй фотографии в стакан с чистой водой добавлена столовая ложка поваренной соли. В результате сырое яйцо плавает. На третий фотографии стакан наполнен подсолнечным маслом. Сырое яйцо тоже опустилось на дно.

Объяснение: в первом случае плотность яйца больше плотности воды и поэтому яйцо утонуло. Во втором случае плотность солёной воды больше плотности яйца, поэтому яйцо плавает на поверхности. В третьем случае плотность яйца также больше плотности подсолнечного масла, поэтому яйцо утонуло.

2.Опустим яйцо вареное сначала в воду чистую, воду, насыщенную солью, потом в подсолнечное масло. Что нам показывает в каждом случае архимедова сила.

hello_html_3c7a3d26.jpg hello_html_6396c051.jpg hello_html_m57e1b303.jpg

На первой фотографии я опустила вареное яйцо в стакан с чистой водой. Яйцо утонуло. На второй фотографии в стакан с чистой водой добавлена столовая ложка поваренной соли. В результате вареное яйцо также утонуло. На третий фотографии стакан наполнен подсолнечным маслом. Вареное яйцо утонуло.

Объяснение: Во всех случаях плотность вареного яйца больше плотности и чистой воды, и солёной воды, и подсолнечного масла, поэтому вареное яйцо утонуло.

Вывод: Архимедова сила зависит от объема тела и плотности жидкости, чем больше плотность жидкости, тем архимедова сила больше. Результирующая сила, которая определяет поведение тела в жидкости, зависит от массы, объёма тела и плотности жидкости.

Второе исследованиеhello_html_m798b0021.jpg

Оборудование: маленькое фарфоровое блюдце и большая емкость с водой.

Ход работы: Я опустила маленькое блюдце на воду дном. Блюдце не тонет в воде, оно плавает на поверхности. hello_html_m3ee2a737.jpg

Теперь я опустила блюдце на воду ребром. Блюдце тонет.

hello_html_m51c4cb50.jpghello_html_m1458af5d.jpg

Объяснение: Фарфор обладает большей плотностью, чем вода, поэтому при опускании блюдца ребром оно тонет. При опускании блюдца дном на воду оно погружается в воду на такую глубину, при которой объем вытесненной воды по силе тяжести равен силе тяжести блюдца, что соответствует условию плавания тел на поверхности воды.

Вывод: Одно и то же исследуемое тело при соприкосновении с водой меньшей поверхностью – тонет. Когда поверхность соприкосновения с водой исследуемого тела больше, то данное тело плавает.

Третье исследованиеhello_html_4098e8f4.jpg

Оборудование: виноградинки и стакан с сильногазированным напитком «Sprite».

Ход работы: Я опустила две небольшие виноградинки в стакан с сильногазированным напитком. Виноградинки сначала утонули, а потом быстро поднялись и стали плавать на поверхности. Через пятнадцать минут они опять опустились на дно, а затем поднялись снова. Итак, всплывали и поднимались несколько раз. Прошло около часа и виноградинки снова опустились на дно стакана и больше не всплывали.hello_html_m4a18bb3d.jpghello_html_15eeb502.jpg

Объяснение: Виноградинки немного тяжелее воды, поэтому сначала они опустились на дно. Но на них сразу же будут образовываться пузырьки газа. Вскоре их станет так много, что виноградинки всплывают. На поверхности сильногазированного напитка пузырьки лопаются, и газ улетучивается. Отяжелевшие виноградинки вновь опускаются на дно. Здесь они снова покроются пузырьками газа и снова всплывут. Так будет продолжаться несколько раз, пока не закончиться весь газ в стакане с напитом.

Вывод: Некоторое время тело лежит на дне. За это время на нем начинают скапливаться пузырьки углекислого газа. Углекислый газ легче воды, пузырьки его всплывают вверх. И когда их к телу прикрепится достаточно много, подъемная сила пузырьков будет настолько сильна, что они смогут увлечь тело за собою вверх. И оно всплывет. Но когда тело достигает поверхности, некоторые пузырьки на нем начинают полопаться. И теперь их будет недостаточно, чтобы удерживать тело на плаву — оно снова станет тяжелым и опуститься на дно.

Опрос

Во время проведения исследований по Архимедовой силе мне стало интересно узнать мнение по данной теме у других людей. И тогда я решила провести опрос у взрослых, задавая им вопрос «Нужна ли архимедова сила в жизни?». Результаты оказались такими:

Вывод: Из 100 процентов опрошенных людей более 52 процентов считают, что Архимедова сила нужна, не знаю ответили – 20 процентов, нет ответили – 25 процентов, скорее всего это необразованные люди и только лишь 3 процентам – все равно.

Интересные факты Роль выталкивающей силы в жизни живых организмов

Плотность живых организмов, населяющих водную среду, очень мало отличается от плотности воды, поэтому их вес почти полностью уравновешивается архимедовой силой. Благодаря этому водные животные не нуждаются в столь массивных скелетах, как наземные. Но если эти животные попадают на сушу, то они погибают. Например: кит дышит лёгкими, и регулирует глубину своего погружения за счёт уменьшения и увеличения объёма лёгких, но, попадая случайно на сушу, не проживает и часу. Масса кита достигает 90-100 т. В воде эта масса частично уравновешивается выталкивающей силой. На суше у кита под действием столь огромной массы сжимаются кровеносные сосуды, прекращается дыхание, и он погибает.hello_html_m25cb9b94.jpg

Интересна роль плавательного пузыря у рыб. Это единственная часть тела рыбы, обладающая заметной сжимаемостью; сжимая пузырь усилиями грудных и брюшных мышц, рыба меняет объем своего тела и тем самым среднюю плотность, благодаря чему она может в определенных пределах регулировать глубину своего погружения.

Важным фактором в жизни водоплавающих птиц является наличие толстого слоя перьев и пуха, не пропускающего воды, в котором содержится значительное количество воздуха; благодаря этому своеобразному воздушному пузырю, окружающему все тело птицы, ее средняя плотность оказывается очень малой. Этим объясняется, тот факт, что утки и другие водоплавающие мало погружаются в воду при плавании. hello_html_m43b626c2.jpg

Мертвое море hello_html_m62e8583b.jpg

«Мертвое море» — бессточное солёное озеро между Израилем, Палес-тинской Автономией и Иорданией. Уровень воды в Мёртвом море на 430 м ниже уровня моря и падает со скоростью примерно 1 м в год. Побережье озера является самым низким участком суши на Земле. Мёртвое море — это один из самых солёных водоёмов на Земле, солёность составляет 300—310 %, в некоторые годы до 350 %. Длина моря 67 км, ширина 18 км в самом широком месте, максимальная глубина 306 м.

Впервые это море стали называть «мертвым» древние греки. Жители древней Иудеи звали его «соленым». Арабские авторы упоминали о нем как о «зловонном море».

Из Мертвого моря не вытекает ни единой реки, зато оно само вбирает в себя воды реки Иордан, впадающей в него с севера, и множество маленьких ручьев, стекающих со склонов окружающих холмов. Единственным способом, которым из моря удаляются излишки воды, является ее испарение. В результате этого в его водах создалась необычайно высокая концентрация минеральных солей: поваренная соль, углекислый калий (поташ), хлорид и бромид магния и другие.

В этом море нельзя утонуть. Почему? Потому, что концентрация солей в его воде в 6 раз выше, чем в океанской! Это повышает плотность воды настолько, что человек плавает здесь, как пробка, не прилагая никаких усилий!

В России также есть «мертвые моря». Это озеро Эльтон в Волгоградской области (соленость составляет — 140—200 %), озеро Баскунчак (фото) в Астраханской области (соленость составляет — 300 %), озеро Медвежье в Курганской области (соленость составляет — 350—360%), озеро Развал в Оренбургской области (соленость составляет — 300 %) и другие.

Воздухоплавание

Воздушный шар чтобы поднялся выше наполняют газом, плотность которого меньше воздуха. Для того чтобы определить, какой груз может поднять воздушный шар, надо знать его подъемную силу. Подъемная сила воздушного шара равна разности между архимедовой силой и действующей на шар силой тяжести.

Fпод = Fа — (Fт оболочки + Fт газа внутри + Fт груза)

Плотность воздуха уменьшается с увеличением высоты над уровнем моря. Поэтому по мере поднятия воздушного шара действующая на него архимедова сила становится меньше. Летательные аппараты легче воздуха. Они поддерживаются в воздухе, благодаря подъемной силе заключенного в оболочке аэростата газа с плотностью, меньшей плотности воздуха (водород, гелий, светильный газ). Конструкция аэростата включает оболочку, содержащую легкий газ, гондолу для размещения экипажа и аппаратуры, и подвеску, крепящую гондолу к оболочке. Избыток подъемной силы уравновешивают балластом. Оболочка заполняется лишь частично, и это позволяет защитить ее от перенапряжения. При подъеме по мере уменьшения давления атмосферы легкий газ в оболочке расширяется, однако подъемная сила остается постоянной. Для спуска открывается газовый клапан в верхней части оболочки. Подъемная сила падает, и аэростат опускается. Поскольку давление атмосферы начинает расти, то оболочка снова теряет форму шара. При приземлении масса легкого газа всегда меньше его начальной массы. Чтобы предотвратить удар гондолы о землю из-за падения подъемной силы, необходимо перед посадкой уменьшить массу аэростата. Это достигается сбрасыванием остающегося балласта.

Пионер воздухоплавания — бразилец Бартоломмео Лоренцо. Это его подлинное имя, а в историю воздухоплавания он вошел как португальский священник Лоренцо Гузмао. В 1708 году, перебравшись в Португалию, он поступил в университет в Коимбре и зажегся идеей постройки летательного аппарата. В августе 1709 года модели летательных аппаратов были продемонстрированы высшей королевской знати.hello_html_56b404de.jpg

Одна из них была успешной: тонкая яйцеобразная оболочка с подвешенной под ней маленькой жаровней, нагревающей воздух, оторвалась от земли почти на четыре метра. История не располагает сведениями об испытании придуманных моделей.

В Париже молодому французскому физику профессору Жаку Шарлю было предписано провести демонстрацию своего летательного аппарата. Газ для наполнения был выбран водород. Легкая оболочка, способную длительное время держать летучий газ, была изготовлена братьями Робей из легкой шелковой ткани, покрытой раствором каучука в скипидаре. 27 августа 1783 года на Марсовом поле в Париже стартовал летательный аппарат Шарля. На глазах 300 тысяч зрителей он устремился ввысь. Когда кто-то из присутствовавших воскликнул: «Какой же во всем этом смысл?!» — известный американский ученый и государственный деятель Бенджамин Франклин, находившийся среди зрителей, заметил: «А какой смысл в появлении на свет новорожденного?» Замечание оказалось пророческим. hello_html_m5b8ca122.jpg

Братья Монгольфье также решили продемонстрировать в Париже аэростат собственной конструкции. Его оболочка высотой более 20 метров имела бочкообразную форму, и была разукрашена снаружи вензелями и красочными орнаментами. Воздушный шар вызвал у представителей Академии наук восхищение. И уже в присутствии королевского двора демонстрация состоялась в Версале (под Парижем) 19 сентября 1783 года.hello_html_4d426925.jpg

Правда, оболочка воздушного шара, размыло дождем, и он пришел в негодность. Однако, работая день и ночь, братья Монгольфье построили новый красивый шар. Они прицепили к нему клетку с бараном, уткой и петухом. Это были первые пассажиры воздухоплавания. Воздушный шар устремился ввысь, а через восемь минут, пролетев четыре километра, опустился на землю. Братья Монгольфье были удостоены наград, а все воздушные шары, в которых для создания подъемной силы использовался дымный воздух, стали с того дня именоваться монгольфьерами.hello_html_2603c9f.jpg

Цель братьев Монгольфье – это полет человека. Построенный ими новый шар был крупнее: высота 22,7 метра, диаметр 15 метров. В нижней его части крепилась кольцевая галерея, рассчитанная на двух человек. В середине галереи был подвешен очаг для сжигания крошеной соломы. Находясь под отверстием в оболочке, он излучал тепло, подогревавшее воздух внутри оболочки во время полета. Это позволяло сделать полет более длительным и в какой-то мере управляемым. В полете участвовал Пилатр де Розье, активный участник постройки монгольфьера. Другим «пилотом» стал поклонник воздухоплавания маркиз д’Арланд. И вот 21 ноября 1783 года человек наконец-то смог оторваться от земли и совершить воздушный полет. Монгольфьер продержался в воздухе 25 минут, пролетев около девяти километров.

Стремясь доказать, что будущее воздухоплавания принадлежит шарльерам (аэростаты с оболочками, наполненными водородом) профессор Шарль осуществил полет людей на нем. Сетка, обтягивала верхнюю полусферу оболочки аэростата, и имела стропы, с помощью которых подвешивалась гондола для людей. В оболочке была сделана отдушина для выхода водорода при падении наружного давления. Для управления высотой полета использовался клапан в оболочке и балласт, хранящийся в гондоле. Был предусмотрен и якорь для посадки на землю. 1 декабря 1783 года шарльер диаметром более девяти метров взял старт в парке Тюильри. На нем отправились профессор Шарль и один из братьев Робер, принимавших участие в работах по постройке. Пролетев 40 километров, они благополучно опустились возле небольшой деревеньки. hello_html_m5194b11.jpg

Жизнь французского механика Жана Пьера Бланшара является яркой иллюстрацией переломного момента в развитии воздухоплавания конца XVIII века. Бланшар начал с осуществления идеи машущего полета. В 1781 году он построил аппарат, крылья которого приводились в движение усилием рук и ног. Хотя первое путешествие Бланшара на аэростате с крыльчатыми веслами окончилось неудачно, он не оставил своих попыток. Бланшар начал выступать с публичными демонстрациями полетов. Тогда-то он и задумал перелететь на аэростате через Ла-Манш. Этот исторический перелет, в котором участвовали Бланшар и его друг американский доктор Джеффри, состоялся 7 января 1785 года.

Заключение

Проделанная работа позволяет не только лучше понять закон Архимеда, но и научиться, на опытах определять архимедову силу, проверять правильность закона Архимеда. В результате проделанных опытов был сделан вывод, что архимедова сила зависит только от плотности жидкости и объема тела, погруженного в эту жидкость. Мы поняли, что не всегда удовлетворяет то, что ответ на поставленный вопрос есть в учебнике. Появляется потребность получить этот ответ из жизненного опыта, наблюдений за окружающей действительностью, из результатов собственных экспериментов, которые позволяют расширить знания по данной теме, готовить и самостоятельно демонстрировать опыты, объяснять их результаты.

Также мы поняли, что многие задачи на закон Архимеда можно решить не только теоретически, но и практически.

Помимо проделанных экспериментов, была изучена дополнительная литература об Архимеде, о плавании тел, воздухоплавании.

Список литературы

  1. А.П. Перышкин. Физика. 7 класс. Москва «Дрофа», 2006 г.

  2. Л. Гальперштейн. «Забавная физика». Москва «Детская литература», 1993 г.

  3. И. Г. Антипин. Экспериментальные задачи по физике. Москва «Просвещение», 1994 г.

  4. А.А. Пинский, В.Г. Разумовский. Физика и астрономия. Москва «Просвещение», 1993 г.

  5. Л.П. Родина. Архимедова сила и киты. Журнал «Квант» №8, Москва 1982 г.

  6. О.Ф. Кабардин. Физика. Справочные материалы. Учебное пособие для учащихся. Москва «Просвещение», 1991 г.

  7. Интернет ресурсы.

infourok.ru

Архимед – биография, фото, личная жизнь и законы

Биография

Древнегреческий физик, математик и инженер Архимед сделал множество геометрических открытий, заложил основы гидростатики и механики, создал изобретения, послужившие отправной точкой для дальнейшего развития науки. Легенды об Архимеде создавались еще при его жизни. Несколько лет ученый провел в Александрии, где он познакомился и сдружился со многими другими великими научными деятелями своего времени.

Биография Архимеда известна из трудов Тита, Цицерона, Полибия, Ливия, Витрувия и других авторов, которые жили позже самого ученого. Оценить степень достоверности этих данных сложно. Известно, что родился Архимед в греческой колонии Сиракузы, расположенной на острове Сицилия. Его отцом, предположительно, стал астроном и математик Фидий. Плутарх также утверждал, что ученый был близким родственником доброго и искусного правителя Сиракуз Гиерона II.

Портрет АрхимедаПортрет Архимеда

Вероятно, детские годы Архимед провел в Сиракузах, а в юном возрасте для получения образования направился в Александрию Египетскую. На протяжении нескольких столетий этот город был культурным и научным центром цивилизованного Древнего Мира. Начальное образование ученый, предположительно, получил у отца. Прожив несколько лет в Александрии, Архимед вернулся в Сиракузы и жил там до конца жизни.

Инженерия

Научный деятель активно разрабатывал механические конструкции. Он изложил подробную теорию рычага и эффективно пользовался этой теорией на практике, хотя непосредственно само изобретение было известно еще до него. В том числе, на основе знаний в этой области он смастерил ряд блочно-рычажных механизмов в порту Сиракуз. Эти приспособления упрощали подъем и перемещение тяжелых грузов, позволяя ускорить и оптимизировать работу порта. А «архимедов винт», предназначенный для вычерпывания воды, до сих пор применяется в Египте.

Изобретения Архимеда: винт, спираль или "червяк"Изобретения Архимеда: архимедов винт

Большое значение имеют теоретические изыскания ученого в сфере механики. Опираясь на доказательство закона рычага, он начал писать труд «О равновесии плоских фигур». Доказательство базируется на аксиоме о том, что на равных плечах равные тела по необходимости уравновесятся. Такой же принцип построения книги – начинающийся с доказательства собственного закона – Архимед соблюдал и при написании произведения «О плавании тел». Эта книга начинается с описания хорошо известного закона Архимеда.

Математика и физика

Открытия в области математики были настоящей страстью ученого. Согласно утверждениям Плутарха, Архимед забывал о пище и уходе за собой, когда стоял на пороге очередного изобретения в этой сфере. Главным направлением его математических изысканий стали проблемы математического анализа.

Изобретения Архимеда: водяные часыИзобретения Архимеда: водяные часы

Еще до Архимеда были изобретены формулы для вычисления площадей круга и многоугольников, объемов пирамиды, конуса и призмы. Но опыт ученого позволил ему разработать общие приемы для вычисления объемов и площадей. С этой целью он усовершенствовал метод исчерпывания, придуманный Евдоксом Книдским, и довел умение применять его до виртуозного уровня. Архимед не стал создателем теории интегрального исчисления, но его работы впоследствии стали основой для этой теории.

Изобретения Архимеда: механическая птичкаИзобретения Архимеда: механическая птичка

Также математик заложил основы дифференциального исчисления. С геометрической точки зрения он изучал возможности определения касательной к кривой линии, с физической точки зрения – скорость тела в любой момент времени. Ученый исследовал плоскую кривую, известную как архимедова спираль. Он нашел первый обобщенный способ поиска касательных к гиперболе, параболе и эллипсу. Только в семнадцатом веке ученые смогли в полной мере осознать и раскрыть все идеи Архимеда, которые дошли до тех времен в его сохранившихся трудах. Ученый часто отказывался описывать изобретения в книгах, из-за чего далеко не каждая написанная им формула дошла до наших дней.

Изобретения Архимеда: зеркалаИзобретения Архимеда: «солнечные» зеркала

Достойным открытием ученый считал изобретение формул для вычисления площади поверхности и объема шара. Если в предыдущих из описанных случаев Архимед дорабатывал и усовершенствовал чужие теории, либо создавал быстрые методы расчета как альтернативу уже существующим формулам, то в случае с определением объема и поверхности шара он был первым. До него ни один ученый не справился с этой задачей. Поэтому математик попросил выбить на своем могильном камне шар, вписанный в цилиндр.

Закон Архимеда

Открытием ученого в области физики стало утверждение, которое известно как закон Архимеда. Он определил, что на всякое тело, погруженное в жидкость, оказывает давление выталкивающая сила. Она направлена вверх, а по величине равна весу жидкости, которая была вытеснена при помещении тела в жидкость, вне зависимости от того, какова плотность этой жидкости.

Закон Архимеда

Есть легенда, связанная с этим открытием. Однажды к ученому якобы обратился Гиерон II, который засомневался в том, что вес изготовленной для него короны соответствует весу золота, которое было предоставлено для ее создания. Архимед сделал два слитка такого же веса, как и корона: серебряный и золотой. Далее он по очереди поместил эти слитки в сосуд с водой и отметил, насколько повысился ее уровень. Затем ученый положил в сосуд корону и обнаружил, что вода поднялась не до того уровня, до которого она поднималась при помещении в сосуд каждого из слитков. Таким образом было обнаружено, что мастер оставил часть золота себе.

Архимед в ваннеАрхимед в ванне

Есть  миф о том, что сделать ключевое открытие в физике Архимеду помогла ванна. Во время купания ученый якобы слегка приподнял ногу в воде, обнаружил, что в воде она весит меньше, и испытал озарение. Подобная ситуация имела место быть, однако с ее помощью ученый открыл не закон Архимеда, а закон удельного веса металлов.

Астрономия

Архимед стал изобретателем первого планетария. При движении этого прибора наблюдают:

  • восход Луны и Солнца;
  • движение пяти планет;
  • исчезновение Луны и Солнца за линией горизонта;
  • фазы и затмения Луны.
Планетарий АрхимедаИзобретения Архимеда: планетарий

Ученый также пытался создать формулы для вычисления расстояний до небесных тел. Современные исследователи предполагают, что Архимед считал центром мира Землю. Он считал, что Венера, Марс и Меркурий вращаются вокруг Солнца, и вся эта система вращается вокруг Земли.

Личная жизнь

О личной жизни ученого известно значительно меньше, чем о его науке. Еще его современники сочиняли многочисленные легенды об одаренном математике, физике и инженере. Легенда рассказывает, что однажды Гиерон II решил преподнести в подарок Птолемею, царю Египта, многопалубный корабль. Водное судно было решено назвать «Сиракузия», однако его никак не получалось спустить на воду.

Архимед был готов перевернуть ЗемлюАрхимед был готов перевернуть Землю

В этой ситуации правитель вновь обратился к Архимеду. Из нескольких блоков он соорудил систему, при помощи которой спуск тяжелого судна удалось сделать при помощи одного движения руки. Если верить преданиям, во время этого движения Архимед сказал: 

«Дайте мне точку опоры, и я переверну мир».

Смерть

В 212 году до нашей эры во время Второй Пунической войны Сиракузы были осаждены римлянами. Архимед активно использовал инженерные знания, чтобы помочь своему народу одержать победу. Так, он сконструировал метательные машины, с помощью которых воины Сиракуз забрасывали противников тяжелыми камнями. Когда римляне бросились к стенам города, надеясь, что там они не попадут под обстрел, другое изобретение Архимеда – легкие метательные устройства близкого действа – помогли грекам забросать их ядрами.

Катапульта АрхимедаИзобретения Архимеда: катапульта

Ученый помог своим соотечественникам и в морских сражениях. Разработанные им краны захватывали вражеские судна железными крюками, слегка приподнимали их, а затем резко бросали обратно. Из-за этого корабли переворачивались и терпели крушение. Долгое время эти краны считались чем-то вроде легенды, однако в 2005 году группа исследователей доказала работоспособность таких устройств, реконструировав их по сохранившимся описаниям.

Подъемная машина АрхимедаИзобретения Архимеда: подъемная машина

Благодаря стараниям Архимеда надежда римлян на штурм города провалилась. Тогда они решили перейти к осаде. Осенью 212 года до нашей эры колония была взята римлянами в результате измены. Архимед в ходе этого происшествия был убит. Согласно одной версии, его зарубил римский воин, на которого ученый набросился за то, что тот наступил на его чертеж.

Изобретатель АрхимедИзобретатель Архимед

Другие исследователи утверждают, что местом гибели Архимеда стала его лаборатория. Ученый якобы настолько сильно увлекся исследованиями, что отказался сразу последовать за римским солдатом, которому было велено проводить Архимеда к военачальнику. Тот в гневе пронзил старика своим мечом.

Памятник АрхимедуПамятник Архимеду

Есть еще вариации этой истории, однако они сходятся на том, что древнеримский политический деятель и военачальник Марцелл был крайне огорчен гибелью ученого и, объединившись и с гражданами Сиракуз, и с собственными поданными, устроил Архимеду пышные похороны. Цицерон, обнаруживший разрушенную могилу ученого через 137 лет после его гибели, увидел на ней шар, вписанный в цилиндр.

Сочинения

  • Квадратура параболы
  • О шаре и цилиндре
  • О спиралях
  • О коноидах и сфероидах
  • О равновесии плоских фигур
  • Послание к Эратосфену о методе
  • О плавающих телах
  • Измерение круга
  • Псаммит
  • Стомахион
  • Задача Архимеда о быках
  • Трактат о построении около шара телесной фигуры с четырнадцатью основаниями
  • Книга лемм
  • Книга о построении круга, разделенного на семь равных частей
  • Книга о касающихся кругах

24smi.org

Закон Архимеда — это… Что такое Закон Архимеда?

Зако́н Архиме́да — один из главных законов гидростатики и статики газов.

Формулировка и пояснения

Закон Архимеда формулируется следующим образом[1]: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа). Сила называется силой Архимеда:

где  — плотность жидкости (газа),  — ускорение свободного падения, а  — объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

V Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела.

где PA, PB — давления в точках A и B, ρ — плотность жидкости, h — разница уровней между точками A и B, S — площадь горизонтального поперечного сечения тела, V — объём погружённой части тела.

В теоретической физике также применяют закон Архимеда в интегральной форме:

,

где  — площадь поверхности,  — давление в произвольной точке, интегрирование производится по всей поверхности тела.

В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами.

Обобщения

Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: проводящее тело вытесняется из области магнитного поля большей интенсивности в область с меньшей.

Вывод закона Архимеда для тела произвольной формы

Гидростатическое давление жидкости на глубине есть . При этом считаем давление жидкости и напряжённость гравитационного поля постоянными величинами, а  — параметром. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат , причём выберем направление оси z совпадающим с направлением вектора . Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку . На неё будет действовать сила давления жидкости направленная внутрь тела, . Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.

Получаем, что модуль силы Архимеда равен , а направлена она в сторону, противоположную направлению вектора напряжённости гравитационного поля.

Условие плавания тел

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести и силы Архимеда , которые действуют на это тело. Возможны следующие три случая:

  •  — тело тонет;
  •  — тело плавает в жидкости или газе;
  •  — тело всплывает до тех пор, пока не начнет плавать.

Другая формулировка (где  — плотность тела,  — плотность среды, в которую оно погружено):

  •  — тело тонет;
  •  — тело плавает в жидкости или газе;
  •  — тело всплывает до тех пор, пока не начнет плавать.

См. также

Примечания

  1. Всё написанное ниже, если не оговорено иное, относится к однородному полю силы тяжести (например, вблизи поверхности планеты).

Ссылки

biograf.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *