Типы кристаллическая решетка: Типы кристаллических решеток и свойства веществ

Содержание

Типы кристаллических решеток и свойства веществ

По характеру структуры кристаллические решетки всех веществ относят к одному из четырех основных типов:

а) молекулярная решетка,

б) атомная,

в) ионная,

г) металлическая.

В основу этой классификации положен род структурных частиц (молекулы-атомы-ионы), находящихся в узлах кристаллической решетки.

Молекулярная решетка

В узлах молекулярной решетки находятся полярные или неполярные молекулы, связанные между собой слабыми силами межмолекулярного взаимодействия (силами Ван-дер-Ваальса). Молекулы в кристалле способны совершать незначительные колебания различного характера. Вещества с молекулярным типом решетки, например, органические вещества, кристаллы инертных газов и большинства неметаллов, сухой лед (СО2 тверд.) обладают малой твердостью, низкими температурами плавления и кипения. Эти характеристики объясняются тем, что при приложении незначительной  энергии межмолекулярные связи разрываются и кристалл разрушается с образованием отдельных молекул, что и наблюдается  при плавлении и при испарении кристаллов.

Внутри отдельных молекул атомы связаны значительно более прочными связями (ковалентными полярными или неполярными). Эти связи разрушаются при более высокой температуре, и молекулы распадаются на составляющие их атомы (происходит термическая диссоциация).

Атомная решетка

В узлах атомной кристаллической решетки находятся атомы. Роль сил межмолекулярного взаимодействия здесь играют достаточно прочные ковалентные связи. Выделить из общей массы атомов один невозможно. Вещества с атомным типом кристаллической решетки (алмаз, бор, кремний, карборунд SiC, нитрид алюминия и другие) характеризуются очень большой твердостью, иногда сочетающейся с хрупкостью, нерастворимостью в обычных растворителях, очень высокими температурами плавления и кипения. Все связи в кристалле равноценны. При разрыве этих связей, достигаемом лишь при высокой температуре, кристалл диссоциирует на отдельные атомы: плавление, кипение и термическая диссоциация практически совпадают.

Ионная (координационная) решетка

В узлах ионной кристаллической решетки находятся чередующиеся положительные и отрицательные ионы, связанные между собой силами кулоновского взаимодействия. Особенностью этих сил является их ненасыщаемость. Это приводит к тому, что отдельный ион координирует вокруг себя несколько ионов противоположного заряда. Ионы в кристаллах совершают упорядоченные колебания. Энергия связей между противоположно заряженными ионами очень велика, и такие кристаллы, казалось бы, должны обладать наиболее высокой твердостью и высокими температурами плавления и кипения. На самом деле эти свойства у них ниже, чем у кристаллов с атомной структурой. Причина заключается в том, что наряду с силами притяжения в кристалле действуют силы отталкивания между одноименно заряженными ионами, причем соотношение этих сил приводит к определенному равновесному состоянию. Вещества с ионной решеткой растворимы в той или иной степени в полярных растворителях.

Металлическая решетка

В узлах металлической решетки находятся положительно заряженные ионы металлов, окруженные электронами. Эти электроны, связанные отчасти с ионами силами электростатического взаимодействия, являются «полусвободными», иначе говоря «не прикреплены» к отдельным ионам, а более или менее свободно перемещаются между ними. Этот «электронный газ» обусловливает типичные для металлов свойства: тепло- и электропроводность, серовато-серебристый (у большинства металлов) цвет, металлический блеск (отражательную способность), способность отражать радиоволны, пластичность, ковкость и в то же время достаточную прочность (результат обволакивания ионов «электронным газом»). Подходя к катиону металла, электроны образуют с ним на мгновение электронейтральную частицу, которая быстро разрушается и через мгновение такой же непрочный «атом» образуется с этим или другим электроном и другим ионом металла. Между «атомами» возникают мгновенные ковалентные связи. Это и приводит к возникновению особой металлической связи, промежуточной по характеру между ионной и ковалентной, качественно отличающейся от той и другой и наблюдаемой лишь в куске металла. Энергия электронов в металле недостаточна, чтобы они могли «оторваться» от катионов металла и самопроизвольно покинуть металлическую решетку. Но при подведении энергии извне выход электронов наблюдается: фотоэлектрический эффект, термоэлектронная эмиссия.

Прочность и температуры плавления и кипения у металлов не всегда имеют промежуточные значения между этими же свойствами у веществ с атомными и ионными решетками. Это зависит от природы металла. Интересно, что заряд ионов в металлах не всегда отвечает номеру группы периодической системы, в которой металл находится. Например, в кристаллической решетке алюминия ионы имеют средний заряд +2. Это можно объяснить двумя способами:

а) все атомы алюминия отдали по два электрона в «электронный газ»;

б) все атомы отдали по три электрона, но в среднем одна треть образовавшихся ионов Al+3 снова образует «атомы», поэтому средний заряд всех структурных частиц +2.

Таким образом, металлическое состояние в упрощенном представлении подобно атомарному ввиду его суммарной электронейтральности; это сосуществование и взаимосвязь «атомов»-ионов-электронов.

Типы кристаллических решеток и свойства веществ

Тип кристаллической решетки

Структурные частицы кристалла

Характер связи между структурными частицами кристалла

Характер связи в молекулах

Примеры кристаллических веществ

Характерные свойства

1.

Молекулярная

Полярные молекулы – диполи

1. Электростатическое взаимодействие диполей.
2. Силы Ван-дер-Ваальса (средние)

Ковалентные полярные

HF, H2O, HCl, H2S, PCl3, NH3 (твердые)

Межмолекулярное взаимодействие средней силы.
Растворимы в полярных растворителях, малая термическая устойчивость, слабая электропроводность, летучесть средняя, слабые механические свойства.

Неполярные молекулы Силы Ван-дер-Ваальса (слабые) Ковалентные неполярные и ковалентные полярные H2, Cl2, O2, N2, F2, СО2, SO3 (образованы молекулами симметричного строения) Межмолекулярное взаимодействие слабое.
Растворимы в неполярных растворителях, очень малая термическая устойчивость, очень слабая электропроводность, легкая летучесть (очень низкие температуры плавления и кипения), очень слабые механические свойства.

2.

Атомная

Атомы

Ковалентные связи

C, Si, SiC, AlN, ВеО (образованы элементами, среднее арифметическое номеров групп которых равно 4)

Нерастворимы в обычных растворителях, термически устойчивы, неэлектропроводны, температуры плавления и кипения очень высокие; твердые, но хрупкие, прочность связей между частицами очень высокая.

3.

Ионная

Ионы: катионы, анионы

1. Электростатическое взаимодействие.
2. Значительные силы Ван-дер-Ваальса.

CsF, KCl, CaF2, CsH, NaF,  ВаCl2

Растворимы в полярных растворителях, термическая устойчивость высокая, большая электропроводность в растворах и расплавах, высокие температуры плавления; вещества твердые, но хрупкие, прочность связей между частицами высокая.

4.

Металлическая

Катионы, «атомы», электроны

1. Электростатическое притяжение ионов и электронов.
2. Мгновенные ковалентные связи между «атомами».

Na, K, Cu, Zn, Fe, Pt, Pb

Растворимы в расплавленных металлах, термическая устойчивость различная, электропроводность высокая, температуры плавления и кипения лежат в широких пределах; вещества пластичные, твердость, как и прочность связей между частицами, различная.

Типы кристаллических решёток

Для определения типа кристаллической решётки поступают следующим образом.

Если связь в соединении ионная, то кристаллическая решётка всегда ионного типа: хлорид калия, нитрат калия, нитрид кальция, карбид кальция, оксид алюминия.

Если связь металлическая, то и кристаллическая решётка всегда металлическая: латунь, железо, медь, натрий.

Если связь ковалентная, то решётка может быть, как атомной, так и молекулярной. Веществами с атомной кристаллической решёткой являются: карборунд, оксид кремния четыре, бор, кремний, алмаз, графит, чёрный и красный фосфор.

У веществ с молекулярной кристаллической решёткой в узлах кристаллической решётки расположены молекулы, прочность данной связи слабая.

Для веществ с молекулярной кристаллической решёткой характерны низкие температуры плавления, то есть они легкоплавки и летучи, значительная сжимаемость, иногда запах, а также явление сублимации, или возгонки, как для йода и твёрдого углекислого газа.

Для веществ с молекулярной кристаллической решёткой характерна небольшая твёрдость, большинство этих веществ хорошо растворимы в воде. Молекулярную кристаллическую решётку имеют газы и жидкости в твёрдом агрегатном состоянии. Например, кристаллический йод, сера, белый фосфор, углекислый газ, большинство органических соединений.

У веществ с атомной кристаллической решёткой в узлах расположены атомы. Связь между атомами в кристаллические решёткиковалентная, очень прочная. Для этих веществ характерны высокие температуры кипения и плавления, то есть они тугоплавки и нелетучий, очень твёрдые, практически не растворимы в воде и не имеют запаха.

Примером веществ с таким типом кристаллических решёток являются алмаз и графит.

Как известно, твёрдость алмаза оценивается по шкале Мооса самым высоким значением – 10. Благодаря высокой твёрдости алмаз используют для изготовления буров, свёрл, шлифовальных инструментов, стеклорезов. Алмаз является камнем ювелиров, они используют отшлифованные алмазы – бриллианты.

Графит также является веществом с атомной кристаллической решёткой, но несмотря на это, он мягкий, так как имеет слоистую структуру. В кристаллической решётке графита атомы углерода, лежащие в одной плоскости, связаны в правильные шестиугольники. Связи между слоями непрочные, за счёт этого графит мягкий. Графит, как и алмаз, тугоплавкий. Из него изготавливают электроды, твёрдые смазки, стержни для карандашей, замедлители нейтронов в ядерных реакторах.

Атомные кристаллические решётки имеют не только простые, но и сложные вещества. Например, все разновидности оксида алюминия. Такие, как наждак, корунд, рубин, сапфир.

Наиболее распространённое соединение кремния – это оксид кремния четыре, который также имеет атомную кристаллическую решётку. Почти чистым оксидом кремния четыре является минерал кварц.

У веществ с ионным типом связи в узлах кристаллической решётки расположены ионы, связь между частицами – ионная, она прочная.

Для веществ с ионным типом связи характерны следующие свойства: высокие температуры плавления и кипения, они тугоплавки и нелетучи, они твёрдые, хрупкие, многие растворимы в воде. Их хрупкость объясняется тем, что если попробовать деформировать такую кристаллическую решётку, то один из её слоёв будет двигаться относительно другого слоя до тех пор, пока одинаково заряженные ионы не будут друг против друга. Эти ионы начнут отталкиваться друг от друга, и кристаллическая решётка разрушиться.

Вещества с ионным типом связи плохо проводят электрический ток и тепло. Но их растворы и расплавы проводят электрический ток. Вещества с ионным типом связи не имеют запаха.

Ионное соединение представляет собой гигантскую ассоциацию ионов, расположенных в пространстве благодаря равновесию сил притяжения и отталкивания.

Например, кристалл хлорида натрия состоит из катионов натрия и анионов хлора. Каждый катион натрия окружён шестью анионами хлора, а каждый анион хлора – шестью катионами натрия. Наименьшей структурной единицей кристалла является элементарная ячейка. Строение элементарной ячейки зависит от соотношения размеров катиона и аниона.

У веществ с металлическим типом связи в узлах кристаллической решётки расположены атом-ионы, связь между ними металлическая. Связь может быть различной по прочности.

Металлическая кристаллическая решётка определяет свойства металлов: ковкость, пластичность, электро-и теплопроводность, металлический блеск, способность образовывать сплавы.

Пластичность выражается в способности металлов деформироваться под действием механической нагрузки. Это свойство лежит в основе ковки, прокатки металлов, их способности вытягиваться в проволоку. Пластичность объясняется тем, что под воздействием силы слои перемещаются относительно друг друга без разрыва связи между ними.

Например, если двумя плоскими стеклянными пластинками поместить несколько капель воды, то пластинки будут свободно скользить относительно друг друга, но вот разъединить их будет достаточно сложно. Таким образом, в данном опыте вода играла роль свободных электронов, которые находятся в металлической кристаллической решётке.

Наиболее пластичными металлами являются золото, серебро и медь. Именно из золота можно сделать самую тонкую фольгу толщиной три тысячных миллиметра. Такую тонкую фольгу использую для золочения. Примером может служить Янтарная комната в Большом Екатерининском дворце.

Высокая электропроводность металлов обусловлена наличием свободных электронов, которые под действием электрического тока приобретают направленное движение.

Лучшими проводниками электрического ока являются серебро и медь, немного худшим – алюминий. Однако в большинстве случаев в качестве электропроводов используют алюминий, а не медь.

Теплопроводность металлов также объясняется движением свободных электронов, которые сталкиваются с атом-ионами в узлах кристаллической решётки и обмениваются с ними энергией. Благодаря этому свойству металлическая посуда равномерно нагревается.

Вещества с металлическим типом кристаллической решётки имеют металлический блеск из-за отражения световых лучей.

Высокой светоотражающей способностью обладают ртуть, серебро, палладий и алюминий. Из серебра, палладия и алюминия изготавливают зеркала, прожектора и фары. В порошкообразном состоянии металлы теряют свой блеск, только магний и алюминий сохраняют его.

Большинство металлов имеет серебристо-белый цвет. Только золото окрашено в жёлтый цвет, а медь в красный.

Металлическая кристаллическая решётка характерна не только для металлов, но и для сплавов. Это отличает металлические сплавы от других сплавов: стекла, фарфора, керамики, базальтов, гранитов, гнейсов.

Типы кристаллических решеток — ХИМИЧЕСКАЯ СВЯЗЬ

Часть И. ОБЩАЯ ХИМИЯ

Раздел 3. ХИМИЧЕСКИЙ СВЯЗЬ

§ 3.7. Типы кристаллических решеток

 

Твердые вещества, как правило, имеют кристаллическое строение. Она характеризуется правильным расположением частиц в четко определенных точках пространства. При мысленном соединении этих точек прямыми линиями, которые пересекаются, образуется пространственный каркас, который называют кристаллической решеткой. Точки, в которых размещены частицы, называются узлами кристаллической решетки. В узлах воображаемой решетки Могут находиться ионы, атомы или молекулы. Они совершают колебательное движение. С повышением температуры амплитуда колебаний увеличивается, что проявляется в тепловом расширении тел.

В зависимости от вида частиц и характера связи между ними различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Кристаллические решетки, состоящие из ионов, называются іонними. их образуют вещества с ионными связями. Примером может быть кристалл хлорида натрия, в котором, как уже отмечалось, каждый ион натрия окружен шестью хлорид-ионами, а каждый хлорид-ион — шестью ионами натрия. Такому размещению отвечает самая плотная упаковка, если ионы представить в виде шаров, размещенных в кристалле (рис. 3.15). Очень часто кристаллические решетки изображают так, как показано на рис. 3.16, где указано лишь взаимное размещение частиц, но не их размеры.

Число ближайших соседних частиц, плотно присоединяются к данной частицы в кристалле или в отдельной молекуле, называется координационным числом.

В решетке хлорида натрия координационные числа обоих ионов равны 6. Следовательно, в кристалле хлорида натрия невозможно выделить отдельные молекулы соли. их нет. Весь кристалл следует рассматривать как гігантськумакромолекулу, состоящая из одинакового числа ионов Na+ и Сl , NanCln, где n — большое число (см. рис. 3.15). Связи между ионами в таком кристалле достаточно прочные. Поэтому вещества с ионной решеткой имеют сравнительно высокую твердость. Они тугоплавкие и малолеткі.

Плавления ионных кристаллов вызывает в нарушение геометрически правильной ориентации ионов относительно друг друга и уменьшение прочности связи между ними. Поэтому их расплавы проводят электрический ток. Ионные соединения, как правило, легко растворяются в жидкостях, состоящих из полярных молекул, например в воде.

Рис. 3.15. Пространственное размещение ионов в ионной решетке NaCl (мелкие шарики — ионы натрия)

Рис. 3.16. Кристаллическая решетка NaCl

Кристаллические решетки,в узлах которых размещаются отдельные атомы, называются атомными. Атомы в таких решетках соединенные между собой прочными ковалентними связями. Примером может служить алмаз — одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе — 4. Структура алмаза представлена на рис. 11.1. В решетке алмаза, как и в решетке хлорида натрия, молекул нет. Весь кристалл следует рассматривать как гигантскую молекулу. В неорганической химии известная значительное количество веществ с атомной кристаллической решеткой. Они имеют высокие температуры плавления (для алмаза свыше 500°С), крепкие и твердые, практически не растворимые в жидкостях. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с карбоном и силіцієм. Кристаллические решетки, состоящие из молекул (полярных и неполярных), называются молекулярными. Молекулы в таких решетках соединены между собой сравнительно слабыми межмолекулярными силами. Поэтому вещества с молекулярной решеткой имеют малую твердость, низкие температуры плавления, нерастворимые или малорастворимые в воде, их растворы почти не проводят электрического тока. Число неорганических веществ с молекулярной решеткой незначительное. Примерами их являются лед, твердый оксид углерода(ИV) (“сухой лед”), твердые галогеноводні, твердые простые вещества, образованные одно- (благородные газы), двух- (F2, Сl2, r2, l2, Н2, О2, N2), трех- (О3), четырех- (Г4), восьми- (S8) атомными молекулами. Молекулярная кристаллическая решетка йода представлена на рис. 3.17. Большинство кристаллических органических соединений имеют молекулярную решетку.

 

 

Рис. 3.17. Кристаллическая решетка йода

Рис. 3.18. Схематическое изображение металлической решетки

 

В твердом состоянии металлы образуют металлические кристаллические решетки. Последние обычно описывают как сочетание катионов металла, соединенных в одно целое валентными электронами, то есть негативно заряженным “электронным газом”. Электроны электростатически притягиваются катионами, что обеспечивает стабильность решетки. На рис. 3.18 представлено схематическое изображение металлической решетки. На рис. 3.18 представлено схематическое изображение металлической решетки (свободные электроны изображены точками). Сравните ее с другими типами кристаллических решеток.

Кристаллические решетки

Как мы уже знаем, вещество может существовать в трех агрегатных состояниях: газообразном, твердом и жидком. Кислород, который при обычных условиях находится в газообразном состоянии, при температуре -194° С преобразуется в жидкость голубоватого цвета, а при температуре -218,8° С превращается в снегообразную массу с кристаллами синего цвета.

Температурный интервал существования вещества в твердом состоянии определяется температурами кипения и плавления. Твердые вещества бывают кристаллическими и аморфными.

У аморфных веществ нет фиксированной температуры плавления – при нагревании они постепенно размягчаются и переходят в текучее состояние. В таком состоянии, например, находятся различные смолы, пластилин.

Кристаллические вещества отличаются закономерным расположением частиц, из которых они состоят: атомов, молекул и ионов, – в строго определенных точках пространства. Когда эти точки соединяются прямыми линиями, создается пространственный каркас, его называют кристаллической решеткой. Точки, в которых находятся частицы кристалла, называют узлами решетки.  

В узлах воображаемой нами решетки могут находиться ионы, атомы и молекулы. Эти частицы совершают колебательные движения. Когда температура увеличивается, размах этих колебаний тоже возрастает, что приводит к тепловому расширению тел.

В зависимости от разновидности частиц, находящихся в узлах кристаллической решетки, и характера связи между ними различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Ионными называют такие кристаллические решетки, в узлах которых расположены ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na+, Cl- , так и сложные SO24-, OH-. Таким образом, ионные кристаллические решетки имеют соли, некоторые оксиды и гидроксилы металлов, т. е. те вещества, в которых существует ионная химическая связь. Рассмотрим кристалл хлорида натрия, он состоит из положительно чередующихся ионов Na+ и отрицательных CL-, вместе они образуют решетку в виде куба. Связи между ионами в таком кристалле чрезвычайно устойчивы. Из-за этого вещества с ионной решеткой обладают сравнительно высокой прочностью и твердостью, они тугоплавки и нелетучи.

Атомными кристаллическими решетками называют такие кристаллические решетки, в узлах которых находятся отдельные атомы. В подобных решетках атомы соединяются между собой очень крепкими ковалентными связями. К примеру, алмаз – одно из аллотропных видоизменений углерода.

Вещества с атомной кристаллической решеткой не сильно распространены в природе. К ним относятся кристаллический бор, кремний и германий, а также сложные вещества, например такие, в составе которых есть оксид кремния (IV) – SiO2: кремнезем, кварц, песок, горный хрусталь.

Подавляющее большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (у алмаза она превышает 3500° С), такие вещества прочны и тверды, практически не растворимы.

Молекулярными называют такие кристаллические решетки, в узлах которых расположены молекулы. Химические связи в этих молекулах могут быть также, как полярными (HCl, H20), так и неполярными (N2, O3). И хотя атомы внутри молекукл связаны очень крепкими ковалентными связями, между самими молекулами действует слабые силы межмолекулярного притяжения. Именно поэтому вещества с молекулярными кристаллическими решетками характеризуются малой твердостью, низкой температурой плавления, летучестью.

Примерами таких веществ могут послужить твердая вода – лед, твердый оксид углерода (IV) – «сухой лед», твердые хлороводород и сероводород, твердые простые вещества, образованные одно – (благородные газы), двух – (H2, O2, CL2, N2, I2), трех – (O3), четырех – (P4), восьмиатомными (S8) молекулами. Подавляющее большинство твердых органических соединений обладают молекулярными кристаллическими решетками (нафталин, глюкоза, сахар).                           

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Конспект урока «Типы кристаллических решеток». (11 класс, химия)

Урок химии в 11 классе.                                «_____» ______________ 20 ___ г. Типы кристаллических решеток. Цель. Расширить знания о типах кристаллических решеток. Задачи: Образовательная: сформировать понятия о кристаллическом  состоянии твердых тел,  ознакомить учащихся с различными типами кристаллических решеток, установить  зависимость физических свойств кристалла от характера химической связи в кристалле и  типа кристаллической решетки, дать учащимся основные представления о влиянии  природы химической связи и типов кристаллических решеток на свойства вещества. Воспитательная: воспитывать умения организовать свой учебный труд, соблюдать  правила работы в коллективе. Развивающая: развивать познавательный интерес школьников, используя проблемные  ситуации; совершенствовать умения учащихся устанавливать причинно­следственную  зависимость физических свойств веществ от химической связи и типа кристаллической  решетки, предсказывать тип кристаллической решетки на основе физических свойств  вещества. Ход урока. 1. Орг. момент. 2. Повторение изученного материала. Определите вид химической связи в следующих соединениях: h3, HI, KCl, h3O, Ca, HF, h3S, Na2O, Ba, O2, K2O, S, C, MgO, Nh4, BaS, Al, MgCl2,  Ph4, N2. 3. Изучение новой темы. Вещества находятся в различных агрегатных состояниях. Приведите примеры веществ,  которые при различных температурах могут существовать во всех трех агрегатных  состояниях. Ответ: Вода. При обычных условиях вода находится в жидком состоянии, при понижении температуры ниже 00С вода переходит в твердое состояние ­ лед, а при повышении  температуры до 1000С мы получим водяной пар (газообразное состояние). Любое вещество можно получить в твердом, жидком и газообразном виде.  Кроме воды –  это металлы, которые при нормальных условиях находятся в твердом состоянии, при  нагревании начинают размягчаться, и при определенной температуре(tпл) переходят в  жидкое состояние ­ плавятся. При дальнейшем нагревании, до температуры кипения,  металлы начинают испаряться, т.е. переходить в газообразное состояние. Любой газ можно  перевести в жидкое и твердое состояние, понижая температуру: например, кислород,  который при температуре (­1940С) превращается в жидкость голубого цвета, а при  температуре (­218,80С) затвердевает в снегообразную массу, состоящую из кристаллов  синего цвета. Сегодня на уроке мы будем рассматривать твердое состояние вещества. Кристаллические вещества имеют строго определенную температуру плавления и, главное, характеризуются правильным расположением частиц, из которых они построены. Кристаллическая решетка – пространственный каркас вещества Свойства веществ в твердом состоянии зависят от типа кристаллической решетки (прежде  всего от того, какие частицы находятся в ее узлах), что, в свою очередь, обусловлено  типом химической связи в данном веществе. В зависимости от вида частиц и от характера связи между ними различают четыре типа  кристаллических решеток: ионные, молекулярные, атомные и металлические. Кристаллические решетки. Тип решетки Вид химической связи Что в узлах Физические  свойства Схема строения. примеры.  стр. 26, 33, 34, 38 Беседа по таблице. 1. Какие должны быть отличительные свойства веществ с молекулярной решеткой? 2. Каково их агрегатное состояние? 3. Приведите примеры веществ с молекулярной кристаллической решеткой? 4. Какие должны быть отличительные свойства веществ с ионной решеткой? 5. Каково их агрегатное состояние? 6. Приведите примеры веществ с ионной кристаллической решеткой? 7. Какие должны быть отличительные свойства веществ с атомной решеткой? 8. Каково их агрегатное состояние? 9. Приведите примеры веществ с атомной кристаллической решеткой? 10. Какие должны быть отличительные свойства веществ с металлической  решеткой? 11. Каково их агрегатное состояние? 12. Приведите примеры веществ с металлической решеткой? 4. Закрепление. в) молекулы г) атом­ионы 1. Вид частиц в ионной решетке:  а) ионы  б) атомы  2. Характер химической связи в атомной решетке: а) металлическая  б) ковалентная  в) ионная г) сила межмолекул. взаимодействия в) слабая  г) разной прочности в) жидкое в) атомной г) ионной 3. Прочность связи в молекулярной решетке а) очень прочная  б) прочная  4. Агрегатное  состояние у веществ с ионной решеткой: а) твердое  б) газообразное  5. Очень тугоплавкими являются вещества с решеткой: а) металлической  б) молекулярной  6. Пластичностью обладают вещества с: а) металлической  б) ионной  7. Кремний имеет решетку: а) молекулярную  в) ионную б) атомную  б) металлическую 8. Щелочи имеют решетку: а) молекулярную б) металлическую 9. Вода имеет решетку: а) молекулярную  в) ионную б) атомную  б) металлическую в) молекулярной  г) атомной в) ионную 5. Домашнее задание. §3,4,5 упр.9 стр. 29

Кристаллические решетки | himiyaklas.ru

Поговорим о твердых телах. Твердые тела можно разделить на две большие группы: аморфные и кристаллические. Разделять мы их будем по принципу есть порядок или нет.

В аморфных веществах молекулы располагаются хаотично. В их пространственном расположении нет никаких закономерностей. По сути, аморфные вещества – это очень вязкие жидкости, настолько вязкие, что твердые.

Отсюда и название: «а-» – отрицательная частица, «morphe» – форма. К аморфным веществам относятся: стекла, смолы, воск, парафин, мыло.

Отсутствие порядка в расположении частиц обусловливает физические свойства аморфных тел: они не имеют фиксированных температур плавления. По мере нагревания их вязкость постепенно снижается, и они также постепенно переходят в жидкое состояние.

В противоположность аморфным веществам существуют кристаллические. Частицы кристаллического вещества пространственно упорядочены. Это правильная структура пространственного расположения частиц в кристаллическом веществе называется кристаллической решеткой.

В отличии от аморфных тел, кристаллические вещества имеют фиксированные температуры плавления.

В зависимости от того какие частицы находятся в узлах решетки, и от того какие связи удерживают их различают: молекулярную, атомную, ионную и металлическую решетки.

Для чего принципиально важно знать, какая у вещества кристаллическая решетка? Что она определяет? Все. Структура определяет, как химические и физические свойства вещества.

Самый простой пример: ДНК. У всех организмов на земле она построена из одинакового набора структурных компонентов: нуклеотидов четырех видов. А какое многообразие жизни. Это все определяется структурой: порядком, в котором эти нуклеотиды расположены.

Молекулярная кристаллическая решетка.

Типичный пример вода – в твердом состоянии (лед). В узлах решетки находятся целые молекулы. И удерживают их вместе межмолекулярные взаимодействия: водородные связи, силы Ван-дер-Ваальса.

Связи эти слабые, поэтому молекулярная решетка – самая непрочная, температура плавления таких веществ низкая.

Хороший диагностический признак: если вещество имеет при нормальных условиях жидкое или газообразное состояние и/или имеет запах – то скорее всего у этого вещества молекулярная кристаллическая решетка. Ведь жидкое и газообразное состояния – это следствие того, что молекулы на поверхности кристалла плохо держатся (связи то слабые). И их «сдувает». Это свойство называется летучестью. А сдутые молекулы, диффундируя в воздухе доходят до наших органов обоняния, что субъективно ощущается как запах.

Молекулярную кристаллическую решетку имеют:

  1. Некоторые простые вещества неметаллов: I2, P, S (то есть все неметаллы, у которых не атомная решетка).
  2. Почти все органические вещества (кроме солей).
  3. И как уже говорилось ранее, вещества при нормальных условиях жидкие, либо газообразные (будучи замороженными) и/или имеющие запах (NH3, O2, H2O, кислоты, CO2).

Атомная кристаллическая решетка.

В узлах атомной кристаллической решетки, в отличие от молекулярной, располагаются отдельные атомы. Получается, что удерживают решетку ковалентные связи (ведь именно они связывают нейтральные атомы).

Классический пример – эталон прочности твердости – алмаз (по химической природе – это простое вещество углерод). Связи: ковалентные неполярные, так как решетку образуют только атомы углерода.

А вот, например, в кристалле кварца (химическая формула которого SiO2) есть атомы Si и O. Поэтому связи ковалентные полярные.

Физические свойства веществ с атомной кристаллической решеткой:

  1. прочность, твердость
  2. высокие температуры плавления (тугоплавкость)
  3. нелетучие вещества
  4. нерастворимы (ни в воде, ни в других растворителях)

Все эти свойства обусловлены прочностью ковалентных связей.

Веществ в атомной кристаллической решеткой немного. Особой закономерности нет, поэтому их нужно просто запомнить:

  1. Аллотропные модификации углерода (C): алмаз, графит.
  2. Бор (B), кремний (Si), германий (Ge).
  3. Только две аллотропные модификации фосфора имеют атомную кристаллическую решетку: красный фосфор и черный фосфор. (у белого фосфора – молекулярная кристаллическая решетка).
  4. SiC – карборунд (карбид кремния).
  5. BN – нитрид бора.
  6. Кремнезем, горный хрусталь, кварц, речной песок – все эти вещества имеют состав SiO2.
  7. Корунд, рубин, сапфир – у этих веществ состав Al2O3.

Наверняка возникает вопрос: С – это и алмаз, и графит. Но они же совершенно разные: графит непрозрачный, пачкает, проводит электрический ток, а алмаз прозрачный, не пачкает и ток не проводит. Отличаются они структурой.

И то, и то – атомная решетка, но разная. Поэтому и свойства разные.

Ионная кристаллическая решетка.

Классический пример: поваренная соль: NaCl. В узлах решетки располагаются отдельные ионы: Na+ и Cl. Удерживает решетку электростатические силы притяжения между ионами («плюс» притягивается к «минусу»), то есть ионная связь.

Ионные кристаллические решетки довольно прочные, но хрупкие, температуры плавления таких веществ довольно высокие (выше, чем у представителей металлической, но ниже чем у веществ с атомной решеткой). Многие растворимы в воде.

С определением ионной кристаллической решетки, как правило, проблем не возникает: там, где ионная связь – там ионная кристаллическая решетка. Это: все соли, оксиды металлов, щелочи (и другие основные гидроксиды).

Металлическая кристаллическая решетка.

Металлическая решетка реализуется в простых веществах металлах. Ранее мы говорили, что все великолепие металлической связи можно понять лишь вместе с металлической кристаллической решеткой. Час настал.

Главное свойство металлов: электроны на внешнем энергетическом уровне плохо удерживаются, поэтому легко отдаются. Потеряв электрон металл превращается в положительно заряженный ион – катион:

Na0 – 1e → Na+

В металлической кристаллической решетке постоянно протекают процессы отдачи, и присоединения электронов: от атома металла в одном узле решетки отрывается электрон. Образуется катион. Оторвавшийся электрон притягивается другим катионом (или этим же): вновь образуется нейтральный атом.

В узлах металлической кристаллической решетки находятся как нейтральные атомы, так и катионы металла. А между узлами путешествуют свободные электроны:

Эти свободные электроны называются электронным газом. Именно они обусловливают физические свойства простых веществ металлов:

  1. тепло- и электропроводность
  2. металлический блеск
  3. ковкость, пластичность

Это и есть металлическая связь: катионы металлов притягиваются к нейтральным атомам и все это «склеивают» склеивают свободные электроны.

Как определить тип кристаллической решетки.

P.S. Есть кое-что в школьной программе и программе ЕГЭ по этой теме то, с чем мы не совсем согласны. А именно: обобщение, о том, что любая связь металл-неметалл – это ионная связь. Это допущение, намеренно сделано, видимо, для упрощения программы. Но это ведет к искажению. Граница между ионной и ковалентной связью условная. У каждой связи есть свой процент «ионности» и «ковалентности». Связь с малоактивным металлом имеет малый процент «ионности», она больше похожа на ковалентную. Но по программе ЕГЭ, она «округляется» в сторону ионной. Это порождает, порой абсурдные вещи. Например, Al2O3 – вещество с атомной кристаллической решеткой. О какой ионности здесь может идти речь. Только ковалентная связь может удерживать таким образом атомы. Но по стандарту «металл-неметалл» мы квалифицируем эту связь как ионную. И получается противоречие: решетка атомная, а связь ионная. Вот к чему приводит, излишнее упрощение.

Онлайн урок: Кристаллическое состояние веществ по предмету Химия 8 класс

Кристаллические решётки бывают:

  • молекулярные
  • атомные (атомно- ковалентные)
  • ионные
  • металлические (атомно- металлические)

 

Остановимся на характеристике основных типов кристаллических решеток и установим зависимость от них свойств веществ.

Молекулярные кристаллические решетки– это решетки, в узлах которых расположены молекулы, связанные между собой слабыми силами межмолекулярного взаимодействия.

 

Примером вещества с молекулярной кристаллической решеткой может служить кристаллический оксид углерода (IV) CO– «сухой лед».

С помощь сухого льда кулинары делают забавные представления, ведь он совершенно безопасен для здоровья!

Рассмотрим модель его кристаллической решетки.

В ее узлах находятся молекулы.

Многие вещества в твердом состоянии имеют молекулярную кристаллическую решетку, особенно органические (например, белки, углеводы, полимеры).

Атомы в их молекулах связаны прочными ковалентными связями.

Молекулы же в кристаллах стянуты слабыми межмолекулярными силами, которые легко разорвать.

Поэтому кристаллы с молекулярной решеткой обладают малой твердостью, легкоплавкие, летучие.

Молекулярные вещества легко переходят из одного агрегатного состояния в другое.

Примером может служить сублимация йода.

Сублимация – возгонка, переход из твердого состояния не в жидкое, а сразу в газообразное.

Йод – это твёрдый (при нормальных условиях) неметалл темно-фиолетового цвета.

При нагревании йод не плавится, а возгоняется: сразу переходит в газообразное состояние.

У меня есть дополнительная информация к этой части урока!

Закрыть