Точка и отрезок являются примерами каких фигур – Attention Required! | Cloudflare

§3. Отрезок. Длина отрезка — Ответы (ГДЗ) рабочая тетрадь (Мерзляк Полонский Якир) 5 класс часть 1

ПОВТОРЯЕМ ТЕОРИЮ

16. Заполните пропуски.

1) Точка и отрезок являются примерами геометрических фигур.
2) Измерить отрезок означает подсчитать, сколько единых отрезков в нем помещается.
3) Если на отрезке АВ ометить точку С, то длинна отрезка АВ равна сумме длин отрезков АС +СВ
4) Два отрезка называют равными, если они совпадают при наложении.
5) Равные отрезки имеют равные длины.
6) Расстоянием между точками А и В называют длину отрезка АВ.




РЕШАЕМ ЗАДАЧИ

17. Обозначьте отрезки, изображенные на рисунке, и измерьте их длины.

§3. Отрезок. Длина отрезка

18. Проведите все возможные отрезки с концами в точках A, B, C и D. Запишите обозначения всех проведенных отрезков.

§3. Отрезок. Длина отрезка

AB, ВC, СD, АD, АС, ВD

19. Запишите все отрезки, изображенные на рисунке.

§3. Отрезок. Длина отрезка

20. Начертите отрезки СК и АD так, чтобы СК=4 см 6 мм, АD=2 см 5 мм.

§3. Отрезок. Длина отрезка

21. Начертите отрезок ВЕ, длина которого равна 5 см 3 мм. Отметьте на нем точку А так, чтобы ВА = 3 см 8 мм. Какова длина отрезка АЕ?

§3. Отрезок. Длина отрезка

АЕ=ВЕ-ВА= 5 см 3 мм — 3см 8мм = 1 см 5мм

22. Выразите данную величину в указанных единицах измерения.

§3. Отрезок. Длина отрезка

23. Запишите звенья ломаной и измерьте их длины (в миллиметрах). Вычислите длину ломаной.

§3. Отрезок. Длина отрезка

§3. Отрезок. Длина отрезка

24. Отметьте точку В, расположенную на 6 клеток левее и на 1 клетку ниже точки А; точку С, расположенную на 3 клетки правее и на 3 клетки ниже точки В; точку D, расположенную на 7 клеток правее и на 2 клетки выше точки С. Соедините последовательно отрезками точки А, В, С и D.

Образовалась ломаная АВСD, состоящая из 3 звеньев.

§3. Отрезок. Длина отрезка

25. Вычислите длину ломаной, изображенной на рисунке.

§3. Отрезок. Длина отрезка

а) 5*36 = 180 мм
б) 3*28 = 84 мм
в) 10*10+15*4 = 160 мм

26. Постройте ломаную DСЕК так, чтобы DС=18 мм, СЕ=37 мм, ЕК=26 мм. Вычислите длину ломаной.

§3. Отрезок. Длина отрезка

27. Известно, что АС=17 см, ВD=9см, ВС=3 см. Вычислите длину отрезка АD.

§3. Отрезок. Длина отрезка

28. Известно, что МК=KN=NP=PR=RT=3 см. Какие еще равные отрезки есть на этом рисунке? Найдите их длины.

§3. Отрезок. Длина отрезка

29. На прямой отметили точки так, что расстояние между двумя любыми соседними точками равно 4 см, а между крайними точками — 36 см. Сколько точек отмечено?

§3. Отрезок. Длина отрезка

10 точек

30. Начертите, не отрывая карандаша от бумаги, фигуры, изображенные на рисунке. По каждой линии можно проводить карандашом только один раз.

§3. Отрезок. Длина отрезка


matem-gdz.ru

Отрезок. Длина отрезка

Если вы хорошо заточенным карандашом прикоснетесь к тетрадному листу, то останется след, который дает представление о точке. (рис. 3).

Отметим на листе бумаги две точки A и B. Эти точки можно соединить различными линиями (рис. 4). А как соединить точки A и B самой короткой линией? Это можно сделать с помощь линейки (рис. 5). Полученную линию называют отрезком

Точка и отрезок − примеры геометрических фигур.

Точки A и B называют концами отрезка

.

Существует единственный отрезок, концами которого являются точки A и B. Поэтому отрезок обозначают, записывая точки, которые являются его концами. Например, отрезок на рисунке 5 обозначают одним из двух способов: AB или BA. Читают: «отрезок AB» или «отрезок BA».

На рисунке 6 изображены три отрезка. Длина отрезка AB равна 1 см. Он помещается в отрезке MN ровно три раза, а в отрезке EF − ровно 4 раза. Будем говорить, что длина отрезка MN равна 3 см, а длина отрезка EF − 4 см.

Также принято говорить: «отрезок MN равен  3 см», «отрезок EF равен 4 см». Пишут: MN = 3 см, EF = 4 см.

Длины отрезков MN и EF мы измерили единичным отрезком, длина которого равна 1 см. Для измерения отрезков можно выбрать и другие единицы длины, например: 1 мм, 1 дм, 1 км. На рисунке 7 длина отрезка равна 17 мм. Он измерен единичным отрезком, длина которого равна 1 мм, с помощью линейки с делениями. Также с помощью линейки можно построить (начертить) отрезок заданной длины (см. рис. 7).

Вообще, измерить отрезок означает подсчитать, сколько единичных отрезков в нем помещается.

 Длина отрезка обладает следующим свойством.

Если на отрезке AB отметить точку C, то длина отрезка AB равна сумме длин отрезков AC и CB (рис. 8).

Пишут: AB = AC + CB.

На рисунке 9 изображены два отрезка AB и CD. Эти отрезки при наложении совпадут.

Два отрезка называют равными, если они совпадут при наложении.

Следовательно отрезки AB и CD равны. Пишут: AB = CD.

Равные отрезки имеют равные длины.

Из двух неравных отрезков бОльшим будем считать тот, у уоторого длина больше. Например, на рисунке 6 отрезок EF больше отрезка MN.

Длину отрезка AB называют расстоянием между точками A и B.

Если несколько отрезков расположить так, как показано на рисунке 10, то получится геометрическая фигура, которую называют 

ломаная. Заметим, что все отрезки на рисунке 11 ломаную не образуют. Считают, что отрезки, образуют ломаную, если конец первого отрезка совпадает с концом второго, а другой конец второго отрезка − с концом третьего и т. д.

Точки A, B, C, D, E − вершины ломаной ABCDE, точки A и E − концы ломаной, а отрезки AB, BC, CD, DE − ее звенья (см. рис. 10).

Длиной ломаной называют сумму длин всех ее звеньев.

На рисунке 12 изображены две ломаные, концы которых совпадают. Такие ломаные называют замкнутыми

Пример 1. Отрезок BC на 3 см меньше отрезка AB, длина которого равна 8 см (рис. 13). Найдите длину отрезка AC.

Решение. Имеем: BC = 8 − 3 = 5 (см).

Воспользовавшись свойством длины отрезка, можно записать AC = AB + BC. Отсюда AC = 8 + 5 = 13 (см).

 Ответ: 13 см.

Пример 2

. Известно, что MK = 24 см, NP = 32 см, MP = 50 см (рис. 14). Найдите длину отрезка NK.

Решение. Имеем: MN = MP − NP.

Отсюда MN = 50 − 32 = 18 (см).

Имеем: NK = MK − MN.

Отсюда NK = 24 − 18 = 6 (см).

 Ответ: 6 см.

reshalka.com

А.В. Погорелов. Геометрия. 7 класс. §1. Контрольные вопросы, ответы

Подробности
Родительская категория: Математика
Категория: Геометрия, 7 класс, контрольные вопросы, ответы

Страница 1 из 3

§1. Контрольные вопросы
Вопрос 1. Приведите примеры геометрических фигур.
Ответ. Примеры геометрических фигур: треугольник, квадрат, окружность.

Вопрос 2. Назовите основные геометрические фигуры на плоскости.
Ответ.

Основными геометрическими фигурами на плоскости являются точка и прямая.

Вопрос 3. Как обозначаются точки и прямые?
Ответ. Точки обозначаются прописными латинскими буквами: A, B, C, D, … . Прямые обозначаются строчными латинскими буквами: a, b, c, d, … .
Прямую можно обозначать двумя точками, лежащими на ней. Например, прямую a на рисунке 4 можно обозначить AC, а прямую b можно обозначить BC.

Рис.4

Вопрос 4. Сформулируйте основные свойства принадлежности точек и прямых.
Ответ. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.
Через любые две точки можно провести прямую, и только одну.
Вопрос 5. Объясните, что такое отрезок с концами в данных точках.
Ответ.Отрезком называется часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными её точками. Эти точки называются концами отрезка. Отрезок обозначается указанием его концов. Когда говорят или пишут: «отрезок AB», то подразумевают отрезок с концами в точках A и B.


Вопрос 6. Сформулируйте основное свойство расположения точек на прямой.
Ответ. Из трёх точек на прямой одна и только одна лежит между двумя другими.
Вопрос 7. Сформулируйте основные свойства измерения отрезков.
Ответ. Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
Вопрос 8. Что называется расстоянием между двумя данными точками?
Ответ. Длину отрезка AB называют расстоянием между точками A и B.
Вопрос 9. Какими свойствами обладает разбиение плоскости на две полуплоскости?
Ответ. Разбиение плоскости на две полуплоскости обладает следующим свойством. Если концы какого-нибудь отрезка принадлежат одной полуплоскости, то отрезок не пересекает прямую. Если концы отрезка принадлежат разным полуплоскостям, то отрезок пересекает прямую.

Вопрос 10. Сформулируйте основное свойство расположения точек относительно прямой на плоскости.
Ответ. Прямая разбивает плоскость на две полуплоскости.

oftob.ru

Прямоугольник, ромб и квадрат. Осевая и центральная симметрии

Данный урок посвящён осевой и центральной симметрии.

Определение

Две точки  и  называются симметричными относительно прямой , если:

1.      прямая  проходит через середину отрезка ;

2.      прямая  перпендикулярна отрезку.

На Рис. 1 изображены примеры симметричных относительно прямой  точек  и ,  и .

Рис. 1

Отметим также тот факт, что любая точка прямой симметрична сама себе относительно этой прямой.

Симметричными относительно прямой могут быть и фигуры.

Сформулируем строгое определение.

Определение

Фигура называется симметричной относительно прямой , если для каждой точки фигуры симметричная ей относительно этой прямой точка также принадлежит фигуре. В этом случае прямая  называется осью симметрии. Фигура при этом обладает осевой симметрией.

Рассмотрим несколько примеров фигур, обладающих осевой симметрией, и их оси симметрии.

Пример 1

Угол обладает осевой симметрией. Осью симметрии угла является биссектриса. Действительно: опустим из любой точки угла перпендикуляр к биссектрисе и продлим его до пересечения с другой стороной угла (см. Рис. 2).

Рис. 2

 (так как  – общая сторона,  (свойство биссектрисы), а треугольники – прямоугольные). Значит, . Поэтому точки  и  симметричны относительно биссектрисы угла.

Из этого следует, что и равнобедренный треугольник обладает осевой симметрии относительно биссектрисы (высоты, медианы), проведённой к снованию.

Пример 2

Равносторонний треугольник обладает тремя осями симметрии (биссектрисы/медианы/высоты каждого из трёх углов (см. Рис. 3).

Рис. 3

Пример 3

Прямоугольник обладает двумя осями симметрии, каждая из которых проходит через середины двух его противоположных сторон (см. Рис. 4).

Рис. 4

Пример 4

Ромб также обладает двумя осями симметрии: прямые, которые содержат его диагонали (см. Рис. 5).

Рис. 5

Пример 5

Квадрат, являющийся одновременно ромбом и прямоугольником, обладает 4 осями симметрии (см. Рис. 6).

Рис. 6

Пример 6

У окружности осью симметрии является любая прямая, проходящая через её центр (то есть содержащая диаметр окружности). Поэтому окружность имеет бесконечно много осей симметрии (см. Рис. 7).

Рис. 7

Рассмотрим теперь понятие центральной симметрии.

Определение

Точки  и  называются симметричными относительно точки , если:  – середина отрезка .

Рассмотрим несколько примеров: на Рис. 8 изображены точки  и , а также  и , которые являются симметричными относительно точки , а точки  и  не являются симметричными относительно этой точки.

Рис. 8

Некоторые  фигуры являются симметричными относительно некоторой точки. Сформулируем строгое определение.

Определение

Фигура называется симметричной относительно точки , если для любой точки фигуры точка, симметричная ей, также принадлежит данной фигуре. Точка  называется центром симметрии, а фигура обладает центральной симметрией.

Рассмотрим примеры фигур, обладающих центральной симметрией.

Пример 7

У окружности центром симметрии является центр окружности (это легко доказать, вспомнив свойства диаметра и радиуса окружности) (см. Рис. 9).

Рис. 9

Пример 8

У параллелограмма центром симметрии является точка пересечения диагоналей (см. Рис. 10). 

Рис. 10

Решим несколько задач на осевую и центральную симметрию.

Задача 1.

Сколько осей симметрии имеет отрезок ?

Решение:

Отрезок имеет две оси симметрии. Первая из них – это прямая, содержащая отрезок (так как любая точка прямой симметрична сама себе относительно этой прямой). Вторая – серединный перпендикуляр к отрезку, то есть прямая, перпендикулярная отрезку и проходящая через его середину.

Ответ: 2 оси симметрии.

Задача 2.

Сколько осей симметрии имеет прямая ?

Решение:

Прямая имеет бесконечно много осей симметрии. Одна из них – это сама прямая (так как любая точка прямой симметрична сама себе относительно этой прямой). А также осями симметрии являются любые прямые, перпендикулярные данной прямой.

Ответ: бесконечно много осей симметрии.

Задача 3.

Сколько осей симметрии имеет луч ?

Решение:

Луч имеет одну ось симметрии, которая совпадает с прямой, содержащей луч (так как любая точка прямой симметрична сама себе относительно этой прямой).

Ответ: одна ось симметрии.

Задача 4.

Доказать, что прямые, содержащие диагонали ромба, являются его осями симметрии.

Доказательство:

Рассмотрим ромб . Докажем, к примеру, что прямая  является его осью симметрии. Очевидно, что точки  и  являются симметричными сами себе, так как лежат на этой прямой. Кроме того, точки  и  симметричны относительно этой прямой, так как . Выберем теперь произвольную точку  и докажем, что симметричная ей относительно  точка также принадлежит ромбу (см. Рис. 11).

Рис. 11

Проведём через точку  перпендикуляр к прямой  и продлим его до пересечения с . Рассмотрим треугольники  и . Эти треугольники прямоугольные (по построению), кроме того, в них:  – общий катет, а  (так как диагонали ромба являются его биссектрисами). Значит, эти треугольники равны: . Значит, равны и все их соответствующие элементы, поэтому: . Из равенства этих отрезков следует то, что точки  и  являются симметричными относительно прямой . Это означает, что  является осью симметрии ромба. Аналогично можно доказать этот факт и для второй диагонали.

Доказано.

Задача 5.

Доказать, что точка пересечения диагоналей параллелограмма является его центром симметрии.

Доказательство:

Рассмотрим параллелограмм . Докажем, что точка  является его центром симметрии. Очевидно, что точки  и ,  и  являются попарно симметричными относительно точки , так как диагонали параллелограмма точкой пересечения делятся пополам. Выберем теперь произвольную точку  и докажем, что симметричная ей относительно  точка также принадлежит параллелограмму (см. Рис. 12).

Рис. 12

Соединим точку  с точкой  и продлим линию до пересечения с противоположной стороной. Рассмотрим треугольники  и . Эти треугольники равны по второму признаку равенства треугольников (сторона и два угла). Действительно:  (так как диагонали параллелограмма точкой пересечения делятся пополам),  (как внутренние накрест лежащие при параллельных прямых),  (как вертикальные углы). Значит, эти треугольники равны: . Значит, равны и все их соответствующие элементы, поэтому: . Из равенства этих отрезков следует то, что точки  и  являются симметричными относительно точки . Это означает, что  является центром симметрии параллелограмма.

Доказано.

На этом уроке мы заканчиваем изучение темы «виды четырёхугольников» (параллелограмм, трапеция, прямоугольник, ромб, квадрат). Мы рассмотрели осевую и центральную симметрию и её примеры для различных геометрических фигур. Кроме того, были решены несколько задач на эту тему.

На следующих уроках мы перейдём к изучению новой темы: «Площадь».

 

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Фестиваль педагогических наук «Открытый урок» (Источник).
  2. Docme.ru (Источник).
  3. Ikt.oblcit.ru (Источник).

 

Домашнее задание

  1. № 59, 60. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  2. Дан угол  и точка , которая лежит внутри него. Построить угол, симметричный углу  относительно точки .
  3. Постройте окружность радиусом . Проведите прямую, которая не проходит через центр окружности. Постройте окружность, симметричную данной относительно этой прямой.

interneturok.ru

Осевая и центральная симметрия — урок. Математика, 6 класс.

Симметрия — слово греческого происхождения, как и многие другие слова, которые связаны с математикой. Оно означает соразмерность, наличие определённого порядка, закономерности в расположении частей. Смотря на объекты вокруг, мы не раз восклицаем: «Какая симметрия!»


Aksiala9.jpg 


Люди с давних времён использовали симметрию в рисунках, орнаментах, предметах быта, в архитектуре, художестве, строительстве.


Но симметрия широко распространена и в природе, где не было вмешательства человеческой руки. Её можно наблюдать в форме листьев и цветов растений, в расположении различных органов животных, в форме кристаллических тел, в порхающей бабочке, загадочной снежинке, морской звезде.

 

111.jpg

 

Пока рассмотрим две симметрии на плоскости: относительно точки и прямой.

Центральная  симметрия

Симметрию относительно точки называют центральной симметрией.

Точки M и M1 симметричны относительно некоторой точки  \(O\), если точка \(O\) является серединой отрезка MM1.

Simetrija_c_punkti.png
Точка \(O\) называется центром симметрии.

 

Алгоритм построения центрально-симметричных фигур.

Simetrija_c.png

Построим треугольник A1B1C1, симметричный треугольнику \(ABC\) относительно центра (точки) \(O\):

 

1. для этого соединим точки \(A\), \(B\), \(C\) с центром \(O\) и продолжим эти отрезки;
2. измерим отрезки \(AO\), \(BO\), \(CO\) и отложим с другой стороны от точки \(O\) равные им отрезки AO=OA1;BO=OB1;CO=OC1;
3. соединим получившиеся точки отрезками и получим треугольник A1B1C1, симметричный данному треугольнику \(ABC\).

Фигуры, симметричные относительно некоторой точки, равны.

Фигура симметрична относительно центра симметрии, если для каждой этой точки фигуры симметричная ей точка также лежит на этой фигуре. Такая фигура имеет центр симметрии (фигура с центральной симметрией).

Есть фигуры с центральной симметрией, это, например, окружность и параллелограмм. У окружности центр симметрии — это её центр, у параллелограмма центр симметрии — это точка, в которой пересекаются его диагонали. Есть очень много фигур, у которых нет центра симметрии.

Осевая симметрия

Осевая симметрия — это симметрия относительно проведённой прямой (оси).

Точки M и M1 симметричны относительно некоторой прямой (оси симметрии), если эти точки лежат на прямой, перпендикулярной данной, и на одинаковом расстоянии от оси симметрии.

Simetrija_ass_punkti.png


 

Алгоритм построения фигуры, симметричной относительно некоторой прямой.


Simetrija_ass.png

 

Построим треугольник A1B1C1, симметричный треугольнику \(ABC\) относительно красной прямой:

 

1. для этого проведём из вершин треугольника \(ABC\) прямые, перпендикулярные оси симметрии, и продолжим их дальше на другой стороне оси.
2. Измерим расстояния от вершин треугольника до получившихся точек на прямой и отложим с другой стороны прямой такие же расстояния.
3. Соединим получившиеся точки отрезками и получим треугольник A1B1C1, симметричный данному треугольнику \(ABC\).

Фигуры, симметричные относительно прямой, равны.


Фигура считается симметричной относительно прямой, если для каждой точки рассматриваемой фигуры симметричная для неё точка относительно данной прямой также находится на этой фигуре. Прямая является в этом случае осью симметрии фигуры.

Иногда у фигур несколько осей симметрии:

  • для неразвёрнутого угла существует единственная ось симметрии — это биссектриса данного угла.
  • Для равнобедренного треугольника есть единственная ось симметрии.
  • Для равностороннего треугольника — три оси.
  • Для прямоугольника и ромба существуют две оси симметрии.
  • Для квадрата — целых четыре.
  • Для окружности осей симметрии бесчисленное множество — это каждая прямая, которая проходит через центр этой фигуры.
  • Есть фигуры без осей симметрии — это параллелограмм и треугольник, все стороны которого различны.

www.yaklass.ru

понятие отрезка и их свойства

 

В геометрии основными геометрическими фигурами являются точка и прямая. Для обозначения точек принято использовать прописные латинские буквы: A, B, C, D, E, F … . Для обозначения прямых используют строчные латинские буквы: a, b, c, d, e, f … .  На рисунке ниже представлена прямая а, и несколько точек A, B, C, D.

Для изображения на рисунке прямой мы пользуемся линейкой, но мы изображаем не всю прямую, а только лишь её кусок. Так как прямая в нашем представлении простирается до бесконечности в обе стороны, то прямая есть бесконечна.

На рисунке представленном выше мы видим, что точки А и С расположены на прямой а. В таких случаях говорят, что точки А и С принадлежат прямой а. Либо говорят, что прямая проходит через точки А и С. При записи принадлежность точки к прямой обозначают специальным значком. А тот факт, что точка не принадлежит прямой, отмечают таким же значком, только зачеркнутым.

В нашем случае точки B и D не принадлежат прямой а.

Как уже отмечалось выше, на рисунке точки А и С принадлежат прямой а. Часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными точками называется отрезком. Другими словами, отрезком называется часть прямой, ограниченная двумя точками.

В нашем случае мы имеем отрезок АB. Точки А и B называются концами отрезка. Для того, чтобы обозначить отрезок указывают его концы, в нашем случае АB. Одним из основных свойств принадлежности точек и прямых является следующее свойство: через любые две точки можно провести прямую, и притом только одну.

Если две прямые имеют общую точку, то говорят, что эти две прямые пересекаются. На рисунке прямые a и b пересекаются в точке A. Прямые а и с не пересекаются.  

Любые две прямые имеют только одну общую точку либо не имеют общих точек. Если предположить обратное, что две прямые имеют две общих точки, тогда через них проходили бы две прямые. А это невозможно, так как через две точки можно провести лишь одну прямую.  

Нужна помощь в учебе?



Предыдущая тема: Понятие о дифференциальных уравнениях: примеры использования уравнений
Следующая тема:&nbsp&nbsp&nbspПровешивание прямой на местности: примеры и картинки

Все неприличные комментарии будут удаляться.

www.nado5.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *