Усеченная треугольная пирамида – Усечённая 3-х угольная пирамида — Mnogogranniki.ru

Содержание

Формулы и свойства правильной треугольной пирамиды. Усеченная треугольная пирамида

Объемной фигурой, которая часто появляется в геометрических задачах, является пирамида. Самая простая из всех фигур этого класса - треугольная. В данной статье разберем подробно основные формулы и свойства правильной пирамиды треугольной.

Геометрические представления о фигуре

Прежде чем переходить к рассмотрению свойств правильной пирамиды треугольной, разберемся подробнее, о какой фигуре идет речь.

Предположим, что имеется произвольный треугольник в трехмерном пространстве. Выберем в этом пространстве любую точку, которая в плоскости треугольника не лежит, и соединим ее с тремя вершинами треугольника. Мы получили треугольную пирамиду.

Она состоит из 4-х сторон, причем все они являются треугольниками. Точки, в которых соединяются три грани, называются вершинами. Их у фигуры также четыре. Линии пересечения двух граней - это ребра. Ребер у рассматриваемой пирамиды 6. Рисунок ниже демонстрирует пример этой фигуры.

Треугольная пирамида

Поскольку фигура образована четырьмя сторонами, ее также называют тетраэдром.

Правильная пирамида

Выше была рассмотрена произвольная фигура с треугольным основанием. Теперь предположим, что мы провели перпендикулярный отрезок из вершины пирамиды к ее основанию. Этот отрезок называется высотой. Очевидно, что можно провести 4 разные высоты для фигуры. Если высота пересекает в геометрическом центре треугольное основание, то такая пирамида называется прямой.

Прямая пирамида, основанием которой будет треугольник равносторонний, называется правильной. Для нее все три треугольника, образующих боковую поверхность фигуры, являются равнобедренными и равны друг другу. Частным случаем правильной пирамиды является ситуация, когда все четыре стороны являются равносторонними одинаковыми треугольниками.

Рассмотрим свойства правильной пирамиды треугольной и приведем соответствующие формулы для вычисления ее параметров.

Правильная треугольная пирамида

Сторона основания, высота, боковое ребро и апотема

Любые два из перечисленных параметров однозначно определяют остальные две характеристики. Приведем формулы, которые связывают названные величины.

Предположим, что сторона основания треугольной пирамиды правильной равна a. Длина ее бокового ребра равна b. Чему будут равны высота правильной пирамиды треугольной и ее апотема.

Для высоты h получаем выражение:

h = √(b2 - a2/3)

Эта формула следует из теоремы Пифагора для прямоугольного треугольника, сторонами которого являются боковое ребро, высота и 2/3 высоты основания.

Апотемой пирамиды называется высота для любого бокового треугольника. Длина апотемы ab равна:

ab = √(b2 - a2/4)

Из этих формул видно, что какими бы ни были сторона основания пирамиды треугольной правильной и длина ее бокового ребра, апотема всегда будет больше высоты пирамиды.

Представленные две формулы содержат все четыре линейные характеристики рассматриваемой фигуры. Поэтому по известным двум из них можно найти остальные, решая систему из записанных равенств.

Объем фигуры

Молекула метана - треугольная пирамида

Для абсолютно любой пирамиды (в том числе наклонной) значение объема пространства, ограниченного ею, можно определить, зная высоту фигуры и площадь ее основания. Соответствующая формула имеет вид:

V = 1/3*So*h

Применяя это выражение для рассматриваемой фигуры, получим следующую формулу:

V3 = √3/12*a2*h

Где высота правильной треугольной пирамиды равна h, а ее сторона основания - a.

Не сложно получить формулу для объема тетраэдра, у которого все стороны равны между собой и представляют равносторонние треугольники. В таком случае объем фигуры определится по формуле:

V = √2/12*a3

То есть он определяется длиной стороны a однозначно.

Площадь поверхности

Продолжим рассматривать свойства пирамиды треугольной правильной. Общая площадь всех граней фигуры называется площадью ее поверхности. Последнюю удобно изучать, рассматривая соответствующую развертку. На рисунке ниже показано, как выглядит развертка правильной пирамиды треугольной.

Развертка правильной треугольной пирамиды

Предположим, что нам известны высота h и сторона основания a фигуры. Тогда площадь ее основания будет равна:

So = √3/4*a2

Получить это выражение может каждый школьник, если вспомнит, как находить площадь треугольника, а также учтет, что высота равностороннего треугольника также является биссектрисой и медианой.

Площадь боковой поверхности, образованной тремя одинаковыми равнобедренными треугольниками, составляет:

Sb = 3/2*√(a2/12+h2)*a

Данное равенство следует из выражения апотемы пирамиды через высоту и длину основания.

Полная площадь поверхности фигуры равна:

S = So + Sb = √3/4*a2 + 3/2*√(a2/12+h2)*a

Заметим, что для тетраэдра, у которого все четыре стороны являются одинаковыми равносторонними треугольниками, площадь S будет равна:

S = √3*a2

Свойства правильной усеченной пирамиды треугольной

Если у рассмотренной треугольной пирамиды плоскостью, параллельной основанию, срезать верх, то оставшаяся нижняя часть будет называться усеченной пирамидой.

В случае правильной пирамиды с треугольным основанием в результате описанного метода сечения получается новый треугольник, который также является равносторонним, но имеет меньшую длину стороны, чем сторона основания. Усеченная треугольная пирамида показана ниже.

Усеченная треугольная пирамида

Мы видим, что эта фигура уже ограничена двумя треугольными основаниями и тремя равнобедренными трапециями.

Предположим, что высота полученной фигуры равна h, длины сторон нижнего и верхнего оснований составляют a1 и a2 соответственно, а апотема (высота трапеции) равна ab. Тогда площадь поверхности усеченной пирамиды можно вычислить по формуле:

S = 3/2*(a1+a2)*ab + √3/4*(a12 + a22)

Здесь первое слагаемое - это площадь боковой поверхности, второе слагаемое - площадь треугольных оснований.

Объем фигуры рассчитывается следующим образом:

V = √3/12*h*(a

12 + a22 + a1*a2)

Для однозначного определения характеристик усеченной пирамиды необходимо знать три ее параметра, что демонстрируют приведенные формулы.

fb.ru

Формулы и свойства правильной четырехугольной пирамиды. Усеченная пирамида — OneKu

Содержание статьи:

Когда человек слышит слово "пирамида", то сразу вспоминает величественные египетские сооружения. Тем не менее древние каменные гиганты являются лишь одним из представителей класса пирамид. В данной статье рассмотрим с геометрической точки зрения свойства правильной четырехугольной пирамиды .

Что такое пирамида в общем случае?

В геометрии под ней понимают объемную фигуру, получить которую можно, если соединить все вершины плоского многоугольника с одной единственной точкой, лежащей в другой плоскости, чем этот многоугольник. Рисунок ниже показывает 4 фигуры, которые удовлетворяют данному определению.

Вам будет интересно:Литовские статуты: даты и история изданий, регламент, хронология принятия статутов

Мы видим что первая фигура имеет треугольное основание, вторая - четырехугольное. Две последние представлены пяти- и шестиугольным основанием. Однако боковая поверхность всех пирамид образована треугольниками. Их число точно равно количеству сторон или вершин многоугольника в основании.

Особым типом пирамид, которые от остальных представительниц класса отличаются идеальной симметрией, являются правильные пирамиды. Чтобы фигура была правильной, должны выполняться следующие два обязательных условия:

  • в основании должен находиться правильный многоугольник;
  • боковая поверхность фигуры должна состоять из равных равнобедренных треугольников.

Отметим, что второе обязательное условие можно заменить иным: перпендикуляр, проведенный к основанию из вершины пирамиды (точка пересечения боковых треугольников), должен пересекать это основание в его геометрическом центре.

Правильная четырехугольная пирамида

Теперь перейдем к теме статьи и рассмотрим, какие свойства правильной четырехугольной пирамиды характеризуют ее. Сначала покажем на рисунке, как выглядит эта фигура.

Ее основание является квадратом. Боковые стороны представляют 4 одинаковых равнобедренных треугольника (они также могут быть равносторонними при определенном соотношении длины стороны квадрата и высоты фигуры). Опущенная из вершины пирамиды высота пересечет квадрат в его центре (точка пересечения диагоналей).

Эта пирамида имеет 5 граней (квадрат и четыре треугольника), 5 вершин (четыре из них принадлежат основанию) и 8 ребер. Ось симметрии четвертого порядка, проходящая через высоту пирамиды, переводит ее в саму себя путем поворота на 90o.

Египетские пирамиды в Гизе являются правильными четырехугольными.

Далее приведем формулы, позволяющие определить все характеристики этой фигуры.

Четыре основных линейных параметра

Начнем рассмотрение математических свойств правильной четырехугольной пирамиды с формул высоты, длины стороны основания, бокового ребра и апофемы. Сразу скажем, что все эти величины связаны друг с другом, поэтому достаточно знать только две из них, чтобы однозначно вычислить оставшиеся две.

Предположим, что известна высота h пирамиды и длина a стороны квадратного основания, тогда боковое ребро b будет равно:

b = √(a2 / 2 + h3)

Теперь приведем формулу для длины ab апофемы (высота треугольника, опущенная на сторону основания):

ab = √(a2 / 4 + h3)

Очевидно, что боковое ребро b всегда больше апофемы ab.

Оба выражения можно применять для определения всех четырех линейных характеристик, если известны другие два параметра, например ab и h.

Площадь и объем фигуры

Это еще два важных свойства правильной четырехугольной пирамиды . Основание фигуры имеет следующую площадь:

So = a2

Эту формулу знает каждый школьник. Площадь боковой поверхности, которая образована четырьмя одинаковыми треугольниками, можно определить через апофему ab пирамиды так:

Sb = 2 × a × ab

Если ab является неизвестной, то можно ее определить по формулам из предыдущего пункта через высоту h или ребро b.

Общая площадь поверхности рассматриваемой фигуры складывается из площадей So и Sb:

S = So + Sb = a2 + 2 × a × ab = a (a + 2 × ab)

Рассчитанная площадь всех граней пирамиды показана на рисунке ниже в виде ее развертки.

Описание свойств правильной четырехугольной пирамиды не будет полным, если не рассмотреть формулу для определения ее объема. Эта величина для рассматриваемой пирамиды вычисляется следующим образом:

V = 1/3 × h × a2

То есть V равен третьей части произведения высоты фигуры на площадь ее основания.

Свойства правильной усеченной четырехугольной пирамиды

Получить эту фигуру можно из исходной пирамиды. Для этого необходимо срезать верхнюю часть пирамиды плоскостью. Оставшаяся под плоскостью среза фигура будет называться пирамидой усеченной.

Удобнее всего изучать характеристики усеченной пирамиды, если ее основания параллельны друг другу. В этом случае нижнее и верхнее основания будут подобными многоугольниками. Поскольку в четырехугольной правильной пирамиде основание - это квадрат, то образованное при срезе сечение тоже будет представлять квадрат, но уже меньшего размера.

Боковая поверхность усеченной фигуры образована не треугольниками, а равнобедренными трапециями.

Одним из важных свойств этой пирамиды является ее объем, который рассчитывается по формуле:

V = 1/3 × h × (So1 + So2 + √(So1 × So2))

Здесь h - расстояние между основаниями фигуры, So1, So2 - площади нижнего и верхнего оснований.

Источник

1ku.ru

Формулы и свойства правильной треугольной пирамиды. Усеченная треугольная пирамида

Содержание статьи:

Объемной фигурой, которая часто появляется в геометрических задачах, является пирамида. Самая простая из всех фигур этого класса - треугольная. В данной статье разберем подробно основные формулы и свойства правильной пирамиды треугольной.

Геометрические представления о фигуре

Прежде чем переходить к рассмотрению свойств правильной пирамиды треугольной, разберемся подробнее, о какой фигуре идет речь.

Предположим, что имеется произвольный треугольник в трехмерном пространстве. Выберем в этом пространстве любую точку, которая в плоскости треугольника не лежит, и соединим ее с тремя вершинами треугольника. Мы получили треугольную пирамиду.

Вам будет интересно:Лихой - это: значение и синонимы

Она состоит из 4-х сторон, причем все они являются треугольниками. Точки, в которых соединяются три грани, называются вершинами. Их у фигуры также четыре. Линии пересечения двух граней - это ребра. Ребер у рассматриваемой пирамиды 6. Рисунок ниже демонстрирует пример этой фигуры.

Поскольку фигура образована четырьмя сторонами, ее также называют тетраэдром.

Правильная пирамида

Выше была рассмотрена произвольная фигура с треугольным основанием. Теперь предположим, что мы провели перпендикулярный отрезок из вершины пирамиды к ее основанию. Этот отрезок называется высотой. Очевидно, что можно провести 4 разные высоты для фигуры. Если высота пересекает в геометрическом центре треугольное основание, то такая пирамида называется прямой.

Прямая пирамида, основанием которой будет треугольник равносторонний, называется правильной. Для нее все три треугольника, образующих боковую поверхность фигуры, являются равнобедренными и равны друг другу. Частным случаем правильной пирамиды является ситуация, когда все четыре стороны являются равносторонними одинаковыми треугольниками.

Рассмотрим свойства правильной пирамиды треугольной и приведем соответствующие формулы для вычисления ее параметров.

Сторона основания, высота, боковое ребро и апотема

Любые два из перечисленных параметров однозначно определяют остальные две характеристики. Приведем формулы, которые связывают названные величины.

Предположим, что сторона основания треугольной пирамиды правильной равна a. Длина ее бокового ребра равна b. Чему будут равны высота правильной пирамиды треугольной и ее апотема.

Для высоты h получаем выражение:

h = √(b2 - a2/3)

Эта формула следует из теоремы Пифагора для прямоугольного треугольника, сторонами которого являются боковое ребро, высота и 2/3 высоты основания.

Апотемой пирамиды называется высота для любого бокового треугольника. Длина апотемы ab равна:

ab = √(b2 - a2/4)

Из этих формул видно, что какими бы ни были сторона основания пирамиды треугольной правильной и длина ее бокового ребра, апотема всегда будет больше высоты пирамиды.

Представленные две формулы содержат все четыре линейные характеристики рассматриваемой фигуры. Поэтому по известным двум из них можно найти остальные, решая систему из записанных равенств.

Объем фигуры

Для абсолютно любой пирамиды (в том числе наклонной) значение объема пространства, ограниченного ею, можно определить, зная высоту фигуры и площадь ее основания. Соответствующая формула имеет вид:

V = 1/3*So*h

Применяя это выражение для рассматриваемой фигуры, получим следующую формулу:

V3 = √3/12*a2*h

Где высота правильной треугольной пирамиды равна h, а ее сторона основания - a.

Не сложно получить формулу для объема тетраэдра, у которого все стороны равны между собой и представляют равносторонние треугольники. В таком случае объем фигуры определится по формуле:

V = √2/12*a3

То есть он определяется длиной стороны a однозначно.

Площадь поверхности

Продолжим рассматривать свойства пирамиды треугольной правильной. Общая площадь всех граней фигуры называется площадью ее поверхности. Последнюю удобно изучать, рассматривая соответствующую развертку. На рисунке ниже показано, как выглядит развертка правильной пирамиды треугольной.

Предположим, что нам известны высота h и сторона основания a фигуры. Тогда площадь ее основания будет равна:

So = √3/4*a2

Получить это выражение может каждый школьник, если вспомнит, как находить площадь треугольника, а также учтет, что высота равностороннего треугольника также является биссектрисой и медианой.

Площадь боковой поверхности, образованной тремя одинаковыми равнобедренными треугольниками, составляет:

Sb = 3/2*√(a2/12+h3)*a

Данное равенство следует из выражения апотемы пирамиды через высоту и длину основания.

Полная площадь поверхности фигуры равна:

S = So + Sb = √3/4*a2 + 3/2*√(a2/12+h3)*a

Заметим, что для тетраэдра, у которого все четыре стороны являются одинаковыми равносторонними треугольниками, площадь S будет равна:

S = √3*a2

Свойства правильной усеченной пирамиды треугольной

Если у рассмотренной треугольной пирамиды плоскостью, параллельной основанию, срезать верх, то оставшаяся нижняя часть будет называться усеченной пирамидой.

В случае правильной пирамиды с треугольным основанием в результате описанного метода сечения получается новый треугольник, который также является равносторонним, но имеет меньшую длину стороны, чем сторона основания. Усеченная треугольная пирамида показана ниже.

Мы видим, что эта фигура уже ограничена двумя треугольными основаниями и тремя равнобедренными трапециями.

Предположим, что высота полученной фигуры равна h, длины сторон нижнего и верхнего оснований составляют a1 и a2 соответственно, а апотема (высота трапеции) равна ab. Тогда площадь поверхности усеченной пирамиды можно вычислить по формуле:

S = 3/2*(a1+a2)*ab + √3/4*(a12 + a22)

Здесь первое слагаемое - это площадь боковой поверхности, второе слагаемое - площадь треугольных оснований.

Объем фигуры рассчитывается следующим образом:

V = √3/12*h*(a12 + a22 + a1*a2)

Для однозначного определения характеристик усеченной пирамиды необходимо знать три ее параметра, что демонстрируют приведенные формулы.

Источник

1ku.ru

Конспект лекции по математике на тему «Пирамида, её сечения и симметрии. Правильная пирамида. Усеченная пирамида. Тетраэдр.»

ГАПОУ КО «Калужский базовый медицинский колледж»

Методическая разработка

лекции по математике

Лекция №5 (2 семестр)

Тема: «Пирамида, её сечения и симметрии. Правильная пирамида. Усеченная пирамида. Тетраэдр.»

Специальность:

лабораторная диагностика,

фармация,

сестринское дело (1 курс)

2016-2017 уч. год

Лекция

Тема: Пирамида, её сечения и симметрии. Правильная пирамида. Усеченная пирамида. Тетраэдр.

Цели:

Образовательная: Обеспечить в ходе занятия усвоение следующих знаний:

Развивающая: развивать логическое мышление и пространственное воображение при построении геометрических тел и их элементов, умение анализировать, сравнивать, делать выводы относительно площади пространственных тел и их поверхностей.

Воспитательная: воспитывать познавательный интерес, внимательность при построении пространственных тел, культуру труда, дисциплинированность на занятии.

Вид лекции: лекция – информация.

Метод обучения: объяснительно – иллюстративный.

Наглядность: презентация по данной теме, макеты многогранников, плакат с формулами площадей многогранников.

ВПС: «Геометрические тела и поверхности. Решение задач». «Тела вращения», «Объемы геометрических тел».

МПС: физика – площадь тела, поверхности; МКЛИ, биохимия – занятия при работе на ФЭК (фотоэлектроколориметре).

Структура занятия и режим времени:

I. Организационный момент 2 мин.

II. Вступительное слово преподавателя 5 мин.

III. Изложение нового материала 70 мин.

IV. Подведение итогов, задание на дом 3 мин.

Приложение № 1 Конспект лекции

  1. Организационный момент.

Принять рапорт дежурного, отметить отсутствующих, обратить внимание на внешний вид студентов и на состояние аудитории.

  1. Вступительное слово преподавателя.

Сегодня продолжим изучение многогранников и познакомимся с новыми телами, которые наряду с призмой, кубом, параллелепипедом, также встречаются нам в повседневной жизни.

Итак, тема сегодняшней лекции: «Пирамида, её сечения и симметрии. Правильная пирамида. Усеченная пирамида. Тетраэдр».

План:

  1. Пирамида. Правильная пирамида. Усеченная пирамида.

  2. Тетраэдр. Симметрии и сечения тетраэдра.

  3. Правильные многогранники.

  4. Площади и объемымногогранников.

  1. Изложение нового материала.

Преподаватель объясняет новый материал (Приложение 1), сопровождая изложение презентацией по данной теме, макетами многогранников, показывает расположение формул на плакате с формулами площадей и объемов многогранников.

  1. Подведение итогов, домашнее задание.

  • Что нового вы узнали?

  • В чем заключается это новое?

  • Достигли ли мы постепенных целей?

Подводя итог сегодняшнего занятия можно отметить, что мы достигли с Вами целей, поставленных в начале занятия.

Литература для подготовки:

Атанасян «Геометрия 10-11 кл.» стр. 25, 57 – 70, стр. 73 (вопросы к главе III),

конспект лекции.

Приложение 1.

Конспект лекции

Пирамида.

Рассмотрим многоугольник А1А2 … Аn и точку Р, не лежащую в плоскости этого многоугольника. Соединив точку Р отрезками с вершиной многоугольника, получим n треугольников (рисунок 1): РА1А2, РА2А3 …, РАnА1.

Многогранник, состоящий из n-угольника А1А2 … Аn и n треугольников РА1А2, РА2А3 …, РАnА1, называется пирамидой.

Многоугольник А1А2 … Аnоснование, треугольники РА1А2, РА2А3 …, РАnА1боковые грани. Точка Р – вершина, отрезки РА1, РА2 , …, РАnбоковые ребра.

Обозначение: РА1А2 … Аn – n-угольная пирамида.

hello_html_m3b1d0778.gifP вершина

hello_html_m42060b85.gif

Bn

B1 С

β B2

An

H

A1

α Е

A2

РИС. 1

Перпендикуляр, проведенный из вершины пирамиды к плоскости основания – высота (РН).

PE – апофема (высота боковой грани для правильной пирамиды)

Пирамида называется правильной, если её основание правильный многоугольник, а отрезок соединяющий вершину пирамиды с центром основания, является её высотой.

Все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренными треугольниками.

Высота боковой грани правильной пирамиды, проведенная из вершины, называется апофемой (РЕ)

Усеченная пирамида.

Проведем в пирамиде РА1А2 … Аn секущую плоскость , параллельную плоскости  основания пирамиды и пересекающую боковые ребра в точках В1В2,…, Вn (рисунок 1).

Плоскость  разбивает пирамиду на 2 многогранника.

Многогранник, гранями которого является n-угольники А1А2 …Аn и В1В2 …Вn(нижнее и верхнее основание), расположенные в параллельных плоскостях, и n-4х угольников А1А2В2В1, А2А3В3В2, …, АnА1В1Вn (боковые грани), называется усеченной пирамидой.

Отрезки А1В1, А2В2, …, АnВnбоковые ребра.

Обозначение: А1А2 … АnВ1В2 … Вn– усеченная пирамида

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой (СН).

Боковые грани усеченной пирамиды – трапеции.

Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию. Основания правильного усечения пирамиды – правильные многоугольники, а боковые грани – равнобедренные трапеции. Высоты этих трапеций называются апофемами.

- 2 –

Тетраэдр.

Рассмотрим произвольный треугольник АВС и точку D, не лежащую в плоскости этого треугольника. Соединив точку D отрезками с вершинами треугольника АВС, получим треугольники DAB, DBC и DCA. Поверхность, составленная из четырех треугольников АВС, DAB, DBC и DCA, называется тетраэдром и обозначается DABC.

hello_html_10f4ffa8.gif

грани (4)

ребра (6)

вершины тетраэдра (4)

Два ребра тетраэдра, не имеющие общих вершин, называются противоположными.

Одна из граней тетраэдра называется основанием, а три другие – боковыми гранями.

Сечения тетраэдра:

Тетраэдр имеет 4 грани, то его сечениями могут быть только

hello_html_169a37d3.gif

Правильный тетраэдр состоит из 4х равносторонних треугольников. Каждая его вершина является вершиной 3х треугольников,  сумма плоских углов при каждой вершине равна 180.

Симметрия в правильном тетраэдре:

Тетраэдр имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер.         

Тетраэдр имеет 6 плоскостей симметрии, каждая из которых проходит через ребро тетраэдра перпендикулярно скрещивающемуся с ним ребру.

hello_html_m3be07ee7.jpghello_html_m741ce484.png

- 3 –

К правильным относятся 5 видов многогранникам:

  1. Куб

  2. Правильный тетраэдр

  3. Правильный октаэдр

  4. Правильный икосаэдр

  5. Правильный додекаэдр

С кубом и тетраэдром мы уже познакомились. Теперь рассмотрим остальные фигуры.

Кhello_html_m65ca4312.pngуб состоит из 6 квадратов, в каждой вершине сходятся 3 квадрата,  сумма плоских углов равна 270.

Правильный октаэдр состоит из 8 равносторонних треугольников. Каждая его вершина является вершиной 4х треугольников,  сумма плоских углов при каждой вершине равна 240.

hello_html_b2419e.png

Правильный икосаэдр состоит из 20 равносторонних треугольников. Каждая его вершина является вершиной 5ти треугольников,  сумма плоских углов при каждой вершине равна 300.

hello_html_m56bd2329.jpg

Правильный додекаэдр состоит из 12 правильных пятиугольников. Каждая его вершина является вершиной 3х правильных пятиугольников,  сумма плоских углов при каждой вершине равна 324.

Правильный октаэдр, правильный икосаэдр и правильный додекаэдр имеют центр симметрии и и несколько осей и плоскостей симметрии. Попробуйте подсчитать их число.

4

Площадью полной поверхности пирамиды называется сумма площадей всех ее граней, а площадью боковой поверхности пирамиды - сумма площадей ее боковых граней.

Sполн = Sбок + Sосн

Площадь боковой поверхности правильной пирамиды равна ½ P · ℓ, где р – периметр, ℓ - апофема (высота)

Площадь боковой поверхности усеченной пирамиды называется сумма площадей ее боковых граней.

Площадь боковой поверхности правильной усеченной пирамиды равна полусумме периметров оснований на апофему.

S бок = ½(Р+р) · ℓ

hello_html_18af25a0.jpghello_html_m495757ea.jpg

hello_html_7bccc4d9.jpg

hello_html_e83952e.png

Приложение 2.

Вопросы для выявления уровня первичного запоминания

  1. Какая фигура называется пирамидой?

Ответ: Многогранник, состоящий из n-угольника А1А2 … Аn и n треугольников РА1А2, РА2А3 …, РАnА1, называется пирамидой.

  1. Какая фигура называется усеченной пирамидой?

Ответ: Многогранник, гранями которого является n-угольники А1А2 …Аn и В1В2 …Вn(нижнее и верхнее основание), расположенные в параллельных плоскостях, и n-4х угольников А1А2В2В1, А2А3В3В2, …, АnА1В1Вn (боковые грани), называется усеченной пирамидой.

  1. Какая формула выражает площадь полной поверхности пирамиды?

Ответ: Sполн = Sбок + Sосн

  1. Какая формула выражает площадь боковой поверхности правильной пирамиды?

Ответ: Sбок = ½ P · ℓ, где р – периметр, ℓ - апофема (высота)

  1. Какая формула выражает площадь боковой поверхности правильной усеченной пирамиды?

Ответ: S бок = ½(Р+р) · ℓ

infourok.ru

Формулы и свойства правильной треугольной пирамиды. Усеченная треугольная пирамида

Содержание статьи:

Объемной фигурой, которая часто появляется в геометрических задачах, является пирамида. Самая простая из всех фигур этого класса - треугольная. В данной статье разберем подробно основные формулы и свойства правильной пирамиды треугольной.

Геометрические представления о фигуре

Прежде чем переходить к рассмотрению свойств правильной пирамиды треугольной, разберемся подробнее, о какой фигуре идет речь.

Предположим, что имеется произвольный треугольник в трехмерном пространстве. Выберем в этом пространстве любую точку, которая в плоскости треугольника не лежит, и соединим ее с тремя вершинами треугольника. Мы получили треугольную пирамиду.

Она состоит из 4-х сторон, причем все они являются треугольниками. Точки, в которых соединяются три грани, называются вершинами. Их у фигуры также четыре. Линии пересечения двух граней - это ребра. Ребер у рассматриваемой пирамиды 6. Рисунок ниже демонстрирует пример этой фигуры.

Вам будет интересно:Поджарый - это: значение и синонимы

Поскольку фигура образована четырьмя сторонами, ее также называют тетраэдром.

Правильная пирамида

Выше была рассмотрена произвольная фигура с треугольным основанием. Теперь предположим, что мы провели перпендикулярный отрезок из вершины пирамиды к ее основанию. Этот отрезок называется высотой. Очевидно, что можно провести 4 разные высоты для фигуры. Если высота пересекает в геометрическом центре треугольное основание, то такая пирамида называется прямой.

Прямая пирамида, основанием которой будет треугольник равносторонний, называется правильной. Для нее все три треугольника, образующих боковую поверхность фигуры, являются равнобедренными и равны друг другу. Частным случаем правильной пирамиды является ситуация, когда все четыре стороны являются равносторонними одинаковыми треугольниками.

Рассмотрим свойства правильной пирамиды треугольной и приведем соответствующие формулы для вычисления ее параметров.

Сторона основания, высота, боковое ребро и апотема

Любые два из перечисленных параметров однозначно определяют остальные две характеристики. Приведем формулы, которые связывают названные величины.

Предположим, что сторона основания треугольной пирамиды правильной равна a. Длина ее бокового ребра равна b. Чему будут равны высота правильной пирамиды треугольной и ее апотема.

Для высоты h получаем выражение:

h = √(b2 - a2/3)

Эта формула следует из теоремы Пифагора для прямоугольного треугольника, сторонами которого являются боковое ребро, высота и 2/3 высоты основания.

Апотемой пирамиды называется высота для любого бокового треугольника. Длина апотемы ab равна:

ab = √(b2 - a2/4)

Из этих формул видно, что какими бы ни были сторона основания пирамиды треугольной правильной и длина ее бокового ребра, апотема всегда будет больше высоты пирамиды.

Представленные две формулы содержат все четыре линейные характеристики рассматриваемой фигуры. Поэтому по известным двум из них можно найти остальные, решая систему из записанных равенств.

Объем фигуры

Для абсолютно любой пирамиды (в том числе наклонной) значение объема пространства, ограниченного ею, можно определить, зная высоту фигуры и площадь ее основания. Соответствующая формула имеет вид:

V = 1/3*So*h

Применяя это выражение для рассматриваемой фигуры, получим следующую формулу:

V3 = √3/12*a2*h

Где высота правильной треугольной пирамиды равна h, а ее сторона основания - a.

Не сложно получить формулу для объема тетраэдра, у которого все стороны равны между собой и представляют равносторонние треугольники. В таком случае объем фигуры определится по формуле:

V = √2/12*a3

То есть он определяется длиной стороны a однозначно.

Площадь поверхности

Продолжим рассматривать свойства пирамиды треугольной правильной. Общая площадь всех граней фигуры называется площадью ее поверхности. Последнюю удобно изучать, рассматривая соответствующую развертку. На рисунке ниже показано, как выглядит развертка правильной пирамиды треугольной.

Предположим, что нам известны высота h и сторона основания a фигуры. Тогда площадь ее основания будет равна:

So = √3/4*a2

Получить это выражение может каждый школьник, если вспомнит, как находить площадь треугольника, а также учтет, что высота равностороннего треугольника также является биссектрисой и медианой.

Площадь боковой поверхности, образованной тремя одинаковыми равнобедренными треугольниками, составляет:

Sb = 3/2*√(a2/12+h3)*a

Данное равенство следует из выражения апотемы пирамиды через высоту и длину основания.

Полная площадь поверхности фигуры равна:

S = So + Sb = √3/4*a2 + 3/2*√(a2/12+h3)*a

Заметим, что для тетраэдра, у которого все четыре стороны являются одинаковыми равносторонними треугольниками, площадь S будет равна:

S = √3*a2

Свойства правильной усеченной пирамиды треугольной

Если у рассмотренной треугольной пирамиды плоскостью, параллельной основанию, срезать верх, то оставшаяся нижняя часть будет называться усеченной пирамидой.

В случае правильной пирамиды с треугольным основанием в результате описанного метода сечения получается новый треугольник, который также является равносторонним, но имеет меньшую длину стороны, чем сторона основания. Усеченная треугольная пирамида показана ниже.

Мы видим, что эта фигура уже ограничена двумя треугольными основаниями и тремя равнобедренными трапециями.

Предположим, что высота полученной фигуры равна h, длины сторон нижнего и верхнего оснований составляют a1 и a2 соответственно, а апотема (высота трапеции) равна ab. Тогда площадь поверхности усеченной пирамиды можно вычислить по формуле:

S = 3/2*(a1+a2)*ab + √3/4*(a12 + a22)

Здесь первое слагаемое - это площадь боковой поверхности, второе слагаемое - площадь треугольных оснований.

Объем фигуры рассчитывается следующим образом:

V = √3/12*h*(a12 + a22 + a1*a2)

Для однозначного определения характеристик усеченной пирамиды необходимо знать три ее параметра, что демонстрируют приведенные формулы.

Источник

24simba.ru

Пирамида

Понятие пирамиды

Определение 1

Геометрическая фигура, образованная многоугольником и точкой, не лежащей в плоскости, содержащей этот многоугольник, соединенной со всеми вершинами многоугольника называется пирамидой (рис. 1).

Пирамида

Рисунок 1. Пирамида

Многоугольник, из которого составлена пирамида, называется основанием пирамиды, получаемые при соединение с точкой треугольники - боковыми гранями пирамиды, стороны треугольников -- сторонами пирамиды, а общая для всех треугольников точка - вершиной пирамиды.

В зависимости от количества углов в основании пирамиды ее можно назвать треугольной, четырехугольной и так далее (рис. 2).

Пирамида

Рисунок 2.

Замечание 1

Отметим, что тетраэдр является частным случаем треугольной пирамиды.

Правильная пирамида

Определение 2

Пирамида, в основании которой лежит правильный многоугольник и высота пирамиды падает в его центр называется правильной пирамидой (рис. 3).

Правильная пирамида

Рисунок 3. Правильная пирамида

Введем и докажем свойство правильной пирамиды.

Теорема 1

Все боковые грани правильной пирамиды являются равнобедренными треугольниками, которые равны между собой.

Доказательство.

Рассмотрим правильную $n-$угольную пирамиду с вершиной $S$ высотой $h=SO$. Опишем вокруг основания окружность (рис. 4).

Правильная пирамида

Рисунок 4.

Рассмотрим треугольник $SOA$. По теореме Пифагора, получим

Очевидно, что так будет определяться любое боковое ребро. Следовательно, все боковые ребра равны между собой, то есть все боковые грани -- равнобедренные треугольники. Докажем, что они равны между собой. Так как основание -- правильный многоугольник, то основания всех боковых граней равны между собой. Следовательно, все боковые грани равны по III признаку равенства треугольников.

Теорема доказана.

Введем теперь следующее определение, связанное с понятием правильной пирамиды.

Определение 3

Апофемой правильной пирамиды называется высота её боковой грани.

Очевидно, что по теореме 1 все апофемы равны между собой.

Теорема 2

Площадь боковой поверхности правильной пирамиды определяется как произведение полупериметра основания на апофему.

Доказательство.

Обозначим сторону основания $n-$угольной пирамиды через $a$, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как, по теореме 1, все боковые стороны равны, то

Теорема доказана.

Усеченная пирамида

Определение 4

Если через обычную пирамиду провести плоскость, параллельную её основанию, то фигура, образованная между этой плоскостью и плоскостью основания называется усеченной пирамидой (рис. 5).

Усеченная пирамида

Рисунок 5. Усеченная пирамида

Боковыми гранями усеченной пирамиды являются трапеции.

Теорема 3

Площадь боковой поверхности правильной усеченной пирамиды определяется как произведение суммы полупериметров оснований на апофему.

Доказательство.

Обозначим стороны оснований $n-$угольной пирамиды через $a\ и\ b$ соответственно, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как все боковые стороны равны, то

Теорема доказана.

Пример задачи

Пример 1

Найти площадь боковой поверхности усеченной треугольной пирамиды, если она получена из правильной пирамиды с основанием 6 и апофемой 4 путем отсечения плоскостью, проходящей через среднюю линию боковых граней.

Решение.

По теореме о средней линии получим, что верхнее основание усеченной пирамиды равно $6\cdot \frac{1}{2}=3$, а апофема равна $4\cdot \frac{1}{2}=2$.

Тогда, по теореме 3, получим

\[S_{бок}=\frac{3}{2}(3+6)\cdot 2=27\]

Ответ: $27$.

spravochnick.ru

Стороны и ребро усеченной пирамиды

Зная стороны оснований усеченной пирамиды, можно вычислить внутренний угол оснований, представленных правильными многоугольниками, периметры и площади оснований усеченной пирамиды, а также радиусы вписанной и описанной около оснований окружностей, воспользовавшись формулами для правильных многоугольников. γ=180°(n-2)/n P=n(a+b+d) S_a=(na^2)/(4 tan⁡〖(180°)/n〗 ) S_b=(nb^2)/(4 tan⁡〖(180°)/n〗 ) r_a=a/(2 tan⁡〖(180°)/n〗 ) r_b=b/(2 tan⁡〖(180°)/n〗 ) R_a=a/(2 sin⁡〖(180°)/n〗 ) R_b=a/(2 sin⁡〖(180°)/n〗 )

Боковое ребро усеченной пирамиды дает возможность рассчитать через трапеции во внутреннем и боковом пространстве пирамиды апофему и высоту, а также углы между ними и основаниями. Чтобы найти апофему усеченной пирамиды, рассмотрим боковую грань, представляющую собой равнобедренную трапецию, разделенную апофемой на две конгруэнтные прямоугольные трапециями, основаниями которых являются половины сторон оснований самой пирамиды. Исходя из этого апофема равна по теореме Пифагора квадратному корню из разности квадрата бокового ребра и квадрата разности половин сторон оснований пирамиды. (рис. 50.2) f=√(d^2-(b/2-a/2)^2 )=√(d^2-(b-a)^2/4)

Чтобы найти высоту усеченной пирамиды, рассмотрим трапецию во внутреннем пространстве тела, между высотой и боковым ребром. Основаниями такой трапеции служат половины радиусов описанных окружностей вокруг оснований усеченной пирамиды. Следовательно, формула высоты по аналогии с апофемой выглядит следующим образом. (рис. 50.3) h=√(d^2-(R_b-R_a )^2 )

Чтобы рассчитать углы при основаниях усеченной пирамиды и боковом ребре, можно воспользоваться в этой же трапеции/прямоугольном треугольнике тригонометрическими отношениями и принципом суммы углов трапеции. cos⁡δ=(R_b-R_a)/d ε=180°-δ

Углы при основаниях и апофеме усеченной пирамиды можно вычислить в трапеции, которую апофема образует с высотой пирамиды подобным образом, через радиусы вписанных в основания окружностей. (рис. 50.4) cos⁡β=(r_b-r_a)/f α=180°-β

Площадь боковой поверхности усеченной пирамиды состоит из n-ного количества равнобоких трапеций, площадь каждой из которых равна произведению полусуммы оснований трапеции на ее высоту, то есть, перекладывая на измерения пирамиды – полусуммы сторон оснований пирамиды на ее апофему. Чтобы найти площадь полной поверхности, нужно прибавить к полученному значению обе площади оснований усеченной пирамиды. S_(б.п.)=nf (a+b)/2 S_(п.п.)=S_(б.п.)+S_(осн.1,2)=n(f (a+b)/2+a^2/(4 tan⁡〖(180°)/n〗 )+b^2/(4 tan⁡〖(180°)/n〗 ))

Объем усеченной пирамиды, зная стороны оснований и боковое ребро, можно найти через высоту и площади оснований, найденные по указанным выше формулам. V=1/3 h(S_осн1+S_осн2+√(S_осн1 S_осн2 ))

geleot.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *