Трапеция геометрическая фигура – Трапеция — что это такое, свойства и виды трапеций (равнобедренная, прямоугольная)

Содержание

Трапеция


Раздел содержит задачи по геометрии (раздел планиметрия) о трапециях. Если Вы не нашли решения задачи — пишите об этом на форуме. Курс наверняка будет дополнен. 

Трапеция. Определение, формулы и свойства

Трапе́ция (от др.-греч. τραπέζιον — «столик»; τράπεζα — «стол, еда») — четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна. 

Трапеция — четырёхугольник, у которого пара противолежащих сторон параллельна. 

Примечание.  В этом случае параллелограмм является частным случаем трапеции.  

Параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами.

Трапеции бывают:

разносторонние ;

равнобокие;

прямоугольные

.
Красным и коричневым цветами обозначены боковые стороны, зеленым и синим — основания трапеции.

A — равнобокая (равнобедренная, равнобочная) трапеция

B — прямоугольная трапеция
C — разносторонняя трапеция

У разносторонней трапеции все стороны разной длины, а основания параллельны.

У равнобокой трапеции боковые стороны равны, а основания параллельны.

У прямоугольной трапеции основания параллельны, одна боковая сторона перпендикулярна основаниям, а вторая боковая сторона — наклонная к основаниям.

Свойства трапеции

  • Средняя линия трапеции параллельна основаниям и равна их полусумме
  • Отрезок, соединяющий середины диагоналей, равен половине разности оснований и лежит на средней линии. Его длина 
  • Параллельные прямые, пересекающие стороны любого угла трапеции, отсекают от сторон угла пропорциональные отрезки (см. Теорему Фалеса)
  • Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой (см. также свойства четырехугольника)
  • Треугольники, лежащие на основаниях трапеции, вершины которых являются точкой пересечения ее диагоналей являются подобными. Соотношение площадей таких треугольников равно квадрату соотношения оснований трапеции
  • Треугольники, лежащие на боковых сторонах трапеции, вершины которых являются точкой пересечения ее диагоналей являются равновеликими (равными по площади)
  • В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон. Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований)
  • Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен удвоенному произведению оснований, деленному на их сумму 2ab / (a +b) (Формула Буракова)

Углы трапеции

Углы трапеции 
бывают острые, прямые и тупые
.
Прямыми бывают только два угла.

У прямоугольной трапеции два угла прямые, а два других – острый и тупой. У других видов трапеций бывают: два острых угла и два тупых.

Тупые углы трапеции принадлежат меньшему по длине основанию, а острые – большему основанию.

Любую трапецию можно рассматривать как усеченный треугольник, у которого линия сечения параллельна основанию треугольника. 
Важно. Обратите внимание, что таким способом (дополнительным построением трапеции до треугольника) могут решаться некоторые задачи про трапецию и доказываются некоторые теоремы.

Как найти стороны и диагонали трапеции

Нахождение сторон и диагоналей трапеции делают с помощью формул, которые приведены ниже:


В указанных формулах применяются обозначения, как на рисунке.

a — меньшее из оснований трапеции
b — большее из оснований трапеции

c,d — боковые стороны
h1h2 — диагонали 


Сумма квадратов диагоналей трапеции равна удвоенному произведению оснований трапеции плюс сумма квадратов боковых сторон (Формула 2)

Площадь трапеции


где
a и b — параллельные основания трапеции
c и d — боковые стороны трапеции
m — средняя линия трапеции
r — радиус вписанной в трапецию окружности
S — площадь трапеции Содержание главы:
 Ромб | Описание курса | Площадь трапеции 

   

profmeter.com.ua

Трапеция — это… Что такое Трапеция?

Trapezoid.svg

Трапе́ция (от др.-греч. τραπέζιον — «столик»; τράπεζα — «стол, еда») — четырёхугольник, у которого

только одна пара сторон параллельна (а другая пара сторон не параллельна). Две параллельные стороны называются основанием трапеции, а две другие — это боковые стороны. Иногда трапеция определяется как четырёхугольник, у которого пара противолежащих сторон параллельна (про другую не уточняется), в этом случае параллелограмм является частным случаем трапеции. В частности, существует понятие криволинейная трапеция.

Связанные определения

Элементы трапеции

  • Параллельные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами.
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Расстояние между основаниями называется высотой трапеции.

Виды трапеций

Trapezoid.svg Прямоугольная трапеция Trapezoid.svg
Равнобедренная трапеция
  • Трапеция, у которой боковые стороны равны, называется равнобокой или равнобедренной.
  • Трапеция, имеющая прямые углы при боковой стороне, называется прямоугольной.

Общие свойства

  • Средняя линия трапеции параллельна основаниям и равна их полусумме.
  • Отрезок, соединяющий середины диагоналей, равен полуразности оснований.
  • (Обобщённая теорема Фалеса). Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.
  • В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Свойства и признаки равнобедренной трапеции

  • Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции.
  • Высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
  • В равнобедренной трапеции углы при любом основании равны.
  • В равнобедренной трапеции длины диагоналей равны.
  • Если трапецию можно вписать в окружность, то она равнобедренная.
  • Около равнобедренной трапеции можно описать окружность.
  • Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная и описанная окружность

Площадь

Здесь приведены формулы, свойственные именно трапеции. См. также формулы для площади произвольных четырёхугольников.
  • В случае, если и  — основания и  — высота, формула площади:
  • В случае, если  — средняя линия и  — высота, формула площади:

ɴʙ Эти формулы — одинаковы, так как полусумма оснований равняется средней линии трапеции:

  • Формула, где ,  — основания, и  — боковые стороны трапеции:
  • Площадь равнобедренной трапеции с радиусом вписанной окружности, равным , и углом при основании :
  • В частности, если угол при основании равен 30°, то:
.

См. также

Примечания

dic.academic.ru

Трапеция

Трапеция (от др.-греч. τραπέζιον — «столик»; τράπεζα — «стол, еда») — четырёхугольник, у которого только одна пара противолежащих сторон параллельна.

Иногда трапеция определяется как четырёхугольник, у которого пара противолежащих сторон параллельна (про другую не уточняется), в этом случае параллелограмм является частным случаем трапеции. В частности, существует понятие криволинейная трапеция.

Средняя линия трапеции — отрезок, соединяющий середины боковых сторон трапеции.

Элементы трапеции

  • Параллельные стороны называются
    основаниями
    трапеции.
  • Две другие стороны называются боковыми сторонами.
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Расстояние между основаниями называется высотой трапеции.

Виды трапеций

  • Трапеция, у которой боковые стороны равны, называется равнобедренной.
  • Трапеция, у которой один из углов «прямой», называется прямоугольной.

Основные свойства трапеции

В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:

\[ AB + CD = BC + AD \]


Средняя линия трапеции разделяет пополам любой отрезок, который соединяет основы, так же делит диагонали пополам:

\[ AK = KB, AM = MC, BN = ND, CL = LD \]


Средняя линия трапеции параллельна основаниям и равна их полусумме:

\[ m = \dfrac{a + b}{2} \]


Точка пересечения диагоналей трапеции и середины оснований лежат на одной прямой.


В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.


Каждая диагональ в точке пересечения делится на две части с таким соотношением длины, как соотношение между основаниями:

\[ \dfrac{BC}{AD} = \dfrac{OC}{AO} = \dfrac{OB}{DO} \]


Диагонали трапеции d1 и d2 связаны со сторонами соотношением:

\[ d_1^2 + d_2^2 = 2ab + c^2 + d^2 \]

Формулы длин сторон трапеции

Формула длины оснований трапеции через среднюю линию и другую основу:

\[ a = 2m — b , b = 2m — a \]


Формулы длины основ трапеции через высоту и углы при нижнем основании:

\[ a = b + h · (ctg \alpha + ctg \beta) , b = a — h · (ctg \alpha + ctg \beta)\]


Формулы длины основ трапеции через боковые стороны и углы при нижнем основании:

\[ a = b + c·cos \alpha + d·cos \beta, b = a — c·cos \alpha — d·cos \beta \]


Формулы боковых сторон трапеции через высоту и углы при нижнем основании:

\[ с = \dfrac{h}{sin \alpha } , d = \dfrac{h}{sin \beta } \]

Формулы длины средних линий трапеции

Формула определения длины средней линии через длины оснований:

\[ m = \dfrac{a + b}{2} \]


Формула определения длины средней линии через площадь и высоту:

\[ m = \dfrac{S}{h} \]

Формулы длины высоты трапеции

Формула высоты трапеции через сторону и прилегающий угол при основании:

\[ h = c·sin α = d·sin β \]


Формула высоты трапеции через диагонали и углы между ними:

\[ h = sin γ \cdot \dfrac{d_1\cdot d_2}{a + b} = sin δ \cdot \dfrac{d_1\cdot d_2}{a + b} \]


Формула высоты трапеции через диагонали, углы между ними и среднюю линию:

\[ h = sin γ \cdot \dfrac{d_1 \cdot d_2}{2m 2m} = sin δ · \dfrac{d_1}{d_2} \]


Формула высоты трапеции через площадь и длины оснований:

\[ h = \dfrac{2S}{a + b} \]


Формула высоты трапеции через площадь и длину средней линии:

\[ h = \dfrac{2S}{m} \]

Формулы длин диагоналей трапеции

Формулы длин диагоналей трапеции по теореме косинусов:

\[ d_1 = \sqrt{a^2 + d^2 — 2ad·cos β} \]

\[ d_2 = \sqrt{a^2 + c^2 — 2ac·cos β} \]


Формулы длин диагоналей трапеции через четыре стороны:

\[ d_1 = \sqrt{d^2 + ab — \dfrac{a(d^2 — c^2)}{a — b} } \]

\[ d_2 = \sqrt{c^2 + ab — \dfrac{ a(c^2 — d^2) }{a — b} } \]


Формулы длин диагоналей трапеции через высоту:

\[ d_1 = \sqrt{h^2 + (a — h · ctg β)^2} = \sqrt { h^2 + (b + h · ctg α)^2} \]

\[ d_2 = \sqrt{h^2 + (a — h · ctg α)^2} = \sqrt{h^2 + (b + h · ctg β)^2} \]


Формулы длин диагоналей трапеции через сумму квадратов диагоналей:

\[ d_1 = \sqrt{c^2 + d^2 + 2ab — d_2^2} \]

\[ d_2 = \sqrt{c^2 + d^2 + 2ab — d_1^2} \]

Формулы площади трапеции

Формула площади трапеции через основания и высоту:

\[ S = \dfrac{ (a + b) · h }{2} \]


Формула площади трапеции через среднюю линию и высоту:

\[ S = m · h \]


Формула площади трапеции через диагонали и угол между ними:

\[ S = \dfrac{d_1d_2}{2} · sin γ = \dfrac{d_1d_2}{2} · sin δ \]


Формула площади трапеции через четыре стороны:

\[ S = \dfrac{a + b}{2}\sqrt{c^2 — \left\lgroup\dfrac{(a — b)^2 + c^2 — d^2)}{2\cdot (a — b)} \right\rgroup ^2 } \]


Формула Герона для площади трапеции

\[ S = \frac{a + b}{\left|a-b\right| } \sqrt{(p — a)(p — b)(p — a — c)(p — a — d)} \]

где \( p = \dfrac{a + b + c + d}{2} \) — полупериметр трапеции.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!