Тригонометрические функции примеры – Сборник индивидуальных заданий по математике. Раздел: Тригонометрические функции.

Содержание

Тригонометрические функции числового аргумента (типовые задачи)

Тема: Тригонометрические функции

Урок: Тригонометрические функции числового аргумента (типовые задачи)

На прошлом уроке мы вспомнили, как вводятся тригонометрические функции, каковы связи между ними и их свойства. Используем эти знания для решения задач.

Задача 1.  Дано значение синуса некоторого угла  

Найти

Решение.

Отметим на оси синусов число . Ему соответствуют две точки. Но нашему условию удовлетворяет только точка в первой четверти (рис. 1).

Воспользуемся основным тригонометрическим тождеством: синус квадрат плюс

косинус квадрат одного и того же угла равен единице.

По условию точка  находится в первой четверти, где  значит

Ответ:

Задача 2. Задана функция

Найти

Решение:

Отметим на оси тангенсов число  Ему соответствуют две точки. Условию удовлетворяет только точка из второй четверти (рис. 2).

Чтобы вычислить  воспользуемся формулой, связывающей

 и  Вспомним также, как она получается из основного тригонометрического тождества.

Точка  находится во второй четверти, где

 значит

Во второй четверти  значит

Ответ:

Задача 3. Докажите тождество:

Доказательство:

Тождество доказано.

Задача 4. Найти наибольшее значения функции

Решение:

Теперь определим, в каких пределах меняется значение функции.

т.к. 

Ответ: .

Мы рассмотрели некоторые типовые задачи, а также задачу повышенной сложности. Все они решаются с помощью тригонометрических тождеств и свойств тригонометрических функций, которые будут использоваться для решения задач и в дальнейшем.

 

Список литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

8. Карп А.П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

 

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред.

А. Г. Мордковича. –М.: Мнемозина, 2007.

№№ 14.14(а), 14.15(а), 14.16(а), 14.17(а), 14.34.

 

Дополнительные веб-ресурсы

1. Математика (Источник).

2. Интернет-портал Problems.ru (Источник).

3. Образовательный портал для подготовки к экзаменам (Источник).

interneturok.ru

Тригонометрические функции, формулы и примеры

Определения и формулы всех тригонометрических функций

Рассмотрим произвольный прямоугольный треугольник , углы и – острые. (рис. 1). Тогда – гипотенуза (это сторона противолежащая прямому углу), самая длинная сторона в прямоугольном треугольнике. Катет – это катет, являющийся противолежащим по отношению к углу . Катет – это катет, прилежащий к углу .

Рис. 1

Это отношение не зависит от выбора , содержащего угол , так как все такие треугольники подобны.

Подробнее про синус угла читайте по ссылке.

Подробнее про косинус угла читайте по ссылке.

Замечание 1. Катет AC, прилежащий к углу , является противолежащим по отношению к углу . Аналогично с катетом , он противолежащий для угла и прилежащий к углу . Таким образом, синус одного острого угла в треугольнике равен косинусу второго его острого угла, и наоборот:

   

Также тангенс выражается через косинус и синус следующим образом:

   

Котангенс выражается через косину и синус следующим образом:

   

Замечание 2. Котангенс одного острого угла в прямоугольном треугольнике равен тангенсу второго его острого угла, и наоборот:

   

Секансом угла называется отношение гипотенузы к прилежащему катету или

   

Косеканс можно выразить через синус:

   

Примеры решения задач

Примечание. Прямоугольный треугольник со сторонами 3, 4, 5 называется «египетским треугольником». Это простейший треугольник из Героновых треугольников – треугольников с целочисленными сторонами и площадями.

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Тригонометрические функции

Величины углов (аргументы функций): α, x 
Тригонометрические функции: sinα, cosα, tanα, cotα, secα, cscα
Множество действительных чисел: R 
Координаты точки окружности: x, y 

Радиус круга: r 
Целые числа: k 

1.      Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол. С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

2.      К тригонометрическим функциям относятся следующие 6 функций: синускосинустангенс,котангенссеканс и косеканс. Для каждой из указанных функций существует обратная тригонометрическая функция.

3.      Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга. На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OM и положительным направлением оси Ox равен α.

4.      Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r: 
sinα=y/r. 
Поскольку r=1, то синус равен ординате точки M(x,y).

5.      Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r: 
cosα=x/r 

6.      Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x: 
tanα=y/x,x≠0 

7.      Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y: 
cotα=x/y,y≠0 

8.      Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y): 
secα=r/x=1/x,x≠0 

9.      Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y): 
cscα=r/y=1/y,y≠0 

10.  В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом: 
Синусом угла α называется отношение противолежащего катета к гипотенузе. 
Косинусом угла α называется отношение прилежащего катета к гипотенузе. 
Тангенсом угла α называется противолежащего катета к прилежащему. 
Котангенсом угла α называется прилежащего катета к противолежащему. 
Секанс угла α представляет собой отношение гипотенузы к прилежащему катету. 
Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету. 

11.  График функции синус 
y=sinx, область определения: x∈R, область значений: −1≤sinx≤1 

12.  График функции косинус 
y=cosx, область определения: x∈R, область значений: −1≤cosx≤1 

13.  График функции тангенс 
y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞<tanx<∞ 

14.  График функции котангенс 
y=cotx, область определения: x∈R,x≠kπ, область значений: −∞<cotx<∞ 

15.  График функции секанс 
y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪[1,∞) 

16.  График функции косеканс 
y=cscx, область определения: x∈R,x≠kπ, область значений: cscx∈(−∞,−1]∪[1,∞) 

 

 

Где применяется тригонометрия

Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.

Тригонометрия в астрономии:

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1—2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах — секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты — широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. — ок. 120 до н. э.)

Достижения Виета в тригонометрии 
Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

 

Тригонометрия в физике:

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

Где х — значение изменяющейся величины, t — время, А — амплитуда колебаний, ω — циклическая частота колебаний,   — полная фаза колебаний, r  — начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.

Механические колебания . Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.

Тригонометрия в природе.

Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?». Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Северное сияние Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

Многофункциональная тригонометрия

·         Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.

·         К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.

·         Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

Тригонометрия и тригонометрические функции в медицине и биологии.

·         Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.

·         Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов.

·         Основной земной ритм – суточный.

·         Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия в биологии

Какие биологические процессы связаны с тригонометрией?

·         Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

·         Биологические ритмы, биоритмы связаны с тригонометрией

Связь биоритмов с тригонометрией

·         Модель биоритмов можно построить с помощью графиков тригонометрических функций. Для этого необходимо ввести дату рождения человека ( день, месяц, год ) и длительность прогноза

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При полёте птицы траектория взмаха крыльев образует синусоиду.

Возникновение музыкальной гармонии

·         Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.

·         Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

·         диатоническая гамма 2:3:5

Тригонометрия в архитектуре

·         Детская школа Гауди в Барселоне

·         Страховая корпорация Swiss Re в Лондоне

·         Феликс Кандела Ресторан в Лос-Манантиалесе

 

Значения тригонометрических функций

Ключевые слова: радиан, радианная мера угла, тригонометрическая окружность, знаки тригонометрических функций

В геометрии угол определяется как часть плоскости, ограниченная двумя лучами. 
При таком определении получаются углы от 0° до 180°. Однако угол можно рассматривать и как меру поворота
Возьмем на координатной плоскости окружность радиуса R с центром O в начале координат. 
Пусть одна сторона угла  с вершиной в начале координат O идет по оси абсцисс, а сам угол положительный, то есть, по определению, отложен по направлению против часовой стрелки от положительного направления оси абсцисс. 
Из геометрии известно, что отношение длины дуги l , на которую опирается этот угол, к радиусу R этой окружности не зависит от самого радиуса. Поэтому это отношение может быть выбрано характеристикой и мерой данного угла: =lR.

Такая мера называется радианной мерой угла и используется наравне с угловой. 
Говорят, что угол равен определенному числу радиан. 
Ясно, что угол в один радиан опирается на длину дуги окружности, равную её радиусу. 
В самом деле: =RR=1 радиан. Обозначение радиана – «рад». 
Так как длина всей окружности радиуса R равна 2R , то всей окружности соответствует угол =R2R=2 радиан. Поскольку вся окружность содержит 360°, то один радиан соответствует 2360=180 градусов: 
1рад=1805717. И наоборот, 1=180рад.

Значит, можно написать следующие формулы перехода от градусного измерения к радианному: 
=180рад 

и от радианного измерения к градусному: 
=180 .

Обозначение «рад» при записи часто опускают и вместо, например, 180° =  рад пишут просто 180° = .

Пользуясь этими формулами, легко получить следующую таблицу перевода некоторых наиболее часто встречающихся углов из градусной меры в радианную и обратно.

Угол, градусы

30°

45°

60°

90°

180°

270°

360°

Угол, радианы

0

6

4

3

2

 

23

2

Так как, синус по определению равен ординате точки на единочной окружности, а косинус - абсциссе, то знаки тригонометрических функций по четвертям будут такими:

 

I

II

III

IV

sin

+

+

-

-

cos

+

-

-

+

tg

+

-

+

-

ctg 

+

-

+

-

Вычисление тригонометрических функций некоторых углов.

 

Тригонометрические функции числового и углового аргументов

 

Тригонометрические функции числового аргумента.

Тригонометрические функции числового аргумента t  – это функции вида y = cos t, 
y = sin t, y = tg t, y = ctg t.

С помощью этих формул через известное значение одной тригонометрической функции можно найти неизвестные значения других тригонометрических функций.

Пояснения.

1) Возьмем формулу cos2 t + sin2 t = 1 и выведем с ее помощью новую формулу.

Для этого разделим обе части формулы на cos2 t (при t ≠ 0, то есть t ≠ π/2 + πk). Итак:

  cos2 t        sin2 t             1
——— + ———  =  ———
 cos2 t        cos2 t          cos2 t

Первое слагаемое равно 1. Мы знаем, что отношение синуса к конисусу – это тангенс, значит, второе слагаемое равно tg2 t. В результате мы получаем новую (и уже известную вам) формулу:

                                                          1                        π
                                  1 + tg2 t  =  ———,     где t ≠ — + πkk – целое число.
                                                       cos2 t                    2

 

2) Теперь разделим cos2 t + sin2 t = 1 на sin2 t (при t ≠ πk):

  cos2 t        sin2 t             1
——— + ———  =  ———,   где t ≠ πk + πkk – целое число
  sin2 t         sin2 t          sin2 t

Отношение косинуса к синусу – это котангенс. Значит:

                                                          1
                                 1 + ctg2 t  =  ———,   где t ≠ πk, k – целое число.
                                                        sin2 t


Зная элементарные основы математики и выучив основные формулы тригонометрии, вы легко сможете самостоятельно выводить большинство остальных тригонометрических тождеств. И это даже лучше, чем просто зазубривать их: выученное наизусть быстро забывается, а понятое запоминается надолго, если не навсегда. К примеру, необязательно зазубривать, чему равна сумма единицы и квадрата тангенса. Забыли – можно легко вспомнить, если вы знаете самую простую вещь: тангенс – это отношение синуса к косинусу. Примените вдобавок простое правило сложения дробей с разными знаменателями – и получите результат:

                           sin2 t         1         sin2 t          cos2 t + sin2 t             1
1 + tg2 t  =  1 + ———  =  —  +  ———  =  ——————  =  ———
                          cos2 t         1          cos2 t               cos2 t                cos2 t

Точно так же легко можно найти сумму единицы и квадрата котангенса, как и многие другие тождества.

 

Тригонометрические функции углового аргумента.

В функциях  у = cos t, у = sin t, у = tg t, у = ctg t переменная t может быть не только числовым аргументом. Ее можно считать и мерой угла – то есть угловым аргументом.

С помощью числовой окружности и системы координат можно легко найти синус, косинус, тангенс, котангенс любого угла. Для этого должны быть соблюдены два важных условия: 
1) вершиной угла должен быть центр окружности, который одновременно является центром оси координат;

2) одной из сторон угла должен быть положительный луч оси x.

В этом случае ордината точки, в которой пересекаются окружность и вторая сторона угла, является синусом этого угла, а абсцисса этой точки – косинусом данного угла.

Пояснение. Нарисуем угол, одна сторона которого – положительный луч оси x, а вторая сторона выходит из начала оси координат (и из центра окружности) под углом 30º (см.рисунок). Тогда точка пересечения второй стороны с окружностью соответствует π/6. Нам известны ордината и абсцисса этой точки. Они же являются косинусом и синусом нашего угла:

   √3       1
 ——; ——
    2        2

  А зная синус и косинус угла, вы уже легко сможете найти его тангенс и котангенс.

Таким образом, числовая окружность, расположенная в системе координат, является удобным способом найти синус, косинус, тангенс или котангенс угла.

 

Но есть более простой способ. Можно и не рисовать окружность и систему координат. Можно воспользоваться простыми и удобными формулами:

                                                  πα
                             sin αº = sin ——
                                                 180

                                                  πα
                            cos αº = cos ——
                                                  180

Пример: найти синус и косинус угла, равного 60º.

Решение:

                        π · 60                π         √3
sin 60º  =  sin ———  =  sin —— = ——
                         180                  3          2

                           π        1
cos 60º  =  cos —— = —
                           3        2

 

ya-znau.ru

Тригонометрические функции числового аргумента. Видеоурок. Алгебра 10 Класс

Мы рассматриваем тригонометрические функции

Любая функция – это закон, по которому каждому значению независимой переменной соответствует единственное значение зависимой переменной – функции.

Мы задаем число  ему соответствует точка на окружности c двумя координатами – точка  (рис. 1).

 

 

Отрезок на оси x от -1 до 1 называется линией косинусов.

Отрезок на оси y от -1 до 1 называется линией синусов.

Отсюда следуют свойства синуса и косинуса:

Линия тангенсов параллельна оси y и проходит через точку  

Линия котангенсов параллельна оси x и проходит через точку  

Рассмотрим основные тригонометрические тождества.

 уравнение единичной окружности.

 - основное тригонометрическое тождество.

 связь между тангенсом и котангенсом. 

Выведем формулу, связывающую тангенс и косинус.

 

Аналогичная формула есть для котангенса и синуса.

Исследуем тригонометрические функции на четность.

функция нечетна.

функция четна.

Проиллюстрируем эти свойства на числовой окружности:

Пример 1.  Найти

Решение (рис. 2).

 

Докажем аналогичные свойства для тангенса и котангенса:

 тангенс – нечетная функция.

доказать самостоятельно.

Рассмотрим знаки тригонометрических функций в четвертях:

Знаки синуса и косинуса (рис. 3).

Однако определять знаки синуса и косинуса можно и без этих рисунков.

Например, нужно определить знак  Определяем, в какой четверти находится угол  во второй. Синус – это проекция на ось y, во второй четверти , значит

Аналогично косинусы. Определим знак  Угол находится в третьей четверти, косинус – это проекция на ось x, в третьей четверти , значит

Знаки тангенса и котангенса (рис. 4).

Проверить знаки функций в различных четвертях можно по линиям тангенсов и котангенсов. Например, возьмем угол, лежащий в третьей четверти. Через точку на окружности, соответствующую этому углу, и начало координат проведем прямую до пересечения с осью тангенсов. Значение тангенса для такого угла, также как для угла первой четверти, будет положительным. Аналогично для углов второй и четвертой четверти тангенс будет отрицательным (рис. 5).

Мы рассмотрели тригонометрические функции, вспомнили их определения, вспомнили, что они удовлетворяют требованиям однозначности, получили основные тождества и свойства. На следующем уроке мы решим ряд задач.

 

Список литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

8. Карп А.П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

 

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

№№ 14.1 – 14.5, 14.8.

 

Дополнительные веб-ресурсы

1. Математика (Источник).

2. Интернет-портал Problems.ru (Источник).

3. Образовательный портал для подготовки к экзаменам (Источник).

interneturok.ru

Тригонометрические функции. Алгебра, 10 класс: уроки, тесты, задания.

Вход ЯКласс лого Вход Регистрация Начало Начало Поиск по сайту Поиск по сайту ТОПы ТОПы Учебные заведения Учебные заведения Предметы Предметы Проверочные работы Проверочные работы Обновления Обновления Новости Новости Переменка Переменка Отправить отзывОтправить отзыв ЯКласс лого
  • Предметы
  • Алгебра
  • 10 класс
  1. Числовая окружность

  2. Синус и косинус. Тангенс и котангенс

  3. Тригонометрические функции числового аргумента

  4. Тригонометрические функции углового аргумента

  5. Свойства функции y = sinx и её график

  6. Свойства функции y = cosx и её график

  7. Периодичность тригонометрических функций, чётность, нечётность

  8. График гармонического колебания (профильный)

  9. Функции y = tgx, y = ctgx, их свойства и график

  10. Обратные тригонометрические функции (профильный)

Отправить отзыв Нашёл ошибку? Сообщи нам! Copyright © 2019 ООО ЯКласс Контакты Пользовательское соглашение

www.yaklass.ru

Графики тригонометрических функций

Графики синуса и косинуса

График функции изображен на рисунке 1.

Рис. 1

График функции изображен на рисунке 2.

Рис. 2

Кривая, описывающая функцию синуса, называется синусоидой, а косинуса – косинусоидой.

График функции можно получить из графика функции сдвигом последнего влево на . Аналогично, график функции можно получить из графика функции сдвигом последнего вправо на .

Графики тангенса и котангенса

График функции изображен на рисунке 3. Кривая, задающая функцию тангенса, называется тангенсоидой.

Рис. 3

График функции изображен на рисунке 4.

Рис. 4

Примеры решения задач

ПРИМЕР 1
Задание Построить график функции
Решение Искомый график получается из графика функции в результате параллельного переноса вдоль оси абсцисс вправо на (рис. 5).

Рис. 5

ПРИМЕР 2
Задание Построить график функции
Решение Искомый график получается из графика функции в результате параллельного переноса вдоль оси ординат вверх на 1 (рис. 6) .

Рис. 6

ПРИМЕР 3
Задание Построить график функции
Решение Искомый график получается из графика функции растяжением последнего вдоль оси ординат в три раза (увеличением расстояния от каждой точки графика до оси абсцисс в три раза) (рис. 7).

Рис. 7

ПРИМЕР 4
Задание Построить график функции
Решение Заданный график построим с помощью элементарных преобразований графика функции . Осуществив параллельный перенос графика функции вдоль оси абсцисс влево на , получим (рис. 8)

Рис. 8

Затем, отразив график функции симметрично относительно оси абсцисс, получим искомый график (рис. 9).

Рис. 9

Читайте также:

Простейшие тригонометрические уравнения

Тригонометрические функции числового аргумента

Свойства тригонометрических функций

Упрощение тригонометрических выражений

Косинус суммы

ru.solverbook.com

Тригонометрические функции - это... Что такое Тригонометрические функции?

Рис. 1
Графики тригонометрических функций:      синуса      косинуса      тангенса      котангенса      секанса      косеканса

Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости сторон этих треугольников от острых углов при гипотенузе (или, что эквивалентно, зависимость хорд и высот от центрального угла в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям относятся:

прямые тригонометрические функции
  • синус (sin x)
  • косинус (cos x)
производные тригонометрические функции
  • тангенс (tg x)
  • котангенс (ctg x)
другие тригонометрические функции
  • секанс (sec x)
  • косеканс (cosec x)

В западной литературе тангенс, котангенс и косеканс обозначаются tan x, cot x, csc x.

Кроме этих шести, существуют также некоторые редко используемые тригонометрические функции (версинус и т.д.), а также обратные тригонометрические функции (арксинус, арккосинус и т. д.), рассматриваемые в отдельных статьях.

Синус и косинус вещественного аргумента являются периодическими непрерывными и неограниченно дифференцируемыми вещественнозначными функциями. Остальные четыре функции на вещественной оси также вещественнозначные, периодические и неограниченно дифференцируемые на области определения, но не непрерывные. Тангенс и секанс имеют разрывы второго рода в точках ±πn + π/2, а котангенс и косеканс — в точках ±πn.

Способы определения

Геометрическое определение

Рис. 2
Определение тригонометрических функций

Обычно тригонометрические функции определяются геометрически. Пусть нам дана декартова система координат на плоскости, и построена окружность радиуса R с центром в начале координат O. Измерим углы как повороты от положительного направления оси абсцисс до луча OB. Направление против часовой стрелки считается положительным, по часовой стрелке отрицательным. Абсциссу точки В обозначим xB, ординату обозначим yB (см. рисунок).

Рис. 3
Численные значения тригонометрических функций угла в тригонометрической окружности с радиусом, равным единице

Ясно, что значения тригонометрических функций не зависят от величины радиуса окружности R в силу свойств подобных фигур. Часто этот радиус принимают равным величине единичного отрезка, тогда синус равен просто ординате yB, а косинус — абсциссе xB. На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

Если α — вещественное число, то синусом α в математическом анализе называется синус угла, радианная мера которого равна α, аналогично для прочих тригонометрических функций.

Определение тригонометрических функций для острых углов
\alpha Рис. 4
Тригонометрические функции острого угла

Во многих учебниках элементарной геометрии до настоящего времени тригонометрические функции острого угла определяются как отношения сторон прямоугольного треугольника. Пусть OAB — треугольник с углом α. Тогда:

  • Синусом угла α называется отношение AB/OB (отношение противолежащего катета к гипотенузе).
  • Косинусом угла α называется отношение ОА/OB (отношение прилежащего катета к гипотенузе).
  • Тангенсом угла α называется отношение AB/OA (отношение противолежащего катета к прилежащему).
  • Котангенсом угла α называется отношение ОА/AB (отношение прилежащего катета к противолежащему).
  • Секансом угла α называется отношение ОB/OA (отношение гипотенузы к прилежащему катету).
  • Косекансом угла α называется отношение ОB/AB (отношение гипотенузы к противолежащему катету).

Построив систему координат с началом в точке O, направлением оси абсцисс вдоль OA и в случае необходимости изменив ориентацию (перевернув) треугольник так, чтобы он находился в первой четверти системы координат, и затем, построив окружность с радиусом, равным гипотенузе, сразу находим, что такое определение функций приводит к тому же результату, что и предыдущее.

Данное определение имеет некоторое педагогическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач про тупоугольные треугольники (см.: Теорема синусов, Теорема косинусов).

Определение тригонометрических функций как решений дифференциальных уравнений

Функции косинус и синус можно определить как чётное (косинус) и нечётное (синус) решение дифференциального уравнения

с начальными условиями , то есть как функций одной переменной, вторая производная которых равна самой функции, взятой со знаком минус:

Определение тригонометрических функций как решений функциональных уравнений

Функции косинус и синус можно определить как непрерывные решения (f и g соответственно) системы функциональных уравнений:

Определение тригонометрических функций через ряды

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:

Пользуясь этими формулами, а также уравнениями и можно найти разложения в ряд Тейлора и других тригонометрических функций:

где

 — числа Бернулли,
 — числа Эйлера.

Значения тригонометрических функций для некоторых углов

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («∞» означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).

E_n Значения косинуса и синуса на окружности.

Значения тригонометрических функций нестандартных углов

Значения тригонометрических функций прочих углов  

Свойства тригонометрических функций

Простейшие тождества

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности или теореме Пифагора, имеем:

Это соотношение называется основным тригонометрическим тождеством.

Деля это уравнение на квадрат косинуса и синуса соответственно имеем далее:

Непрерывность

Синус и косинус — непрерывные функции. Тангенс и секанс имеют точки разрыва котангенс и косеканс —

Чётность

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

Периодичность

Функции  — периодические с периодом 2π, функции и  — c периодом π.

Формулы приведения

Формулами приведения называются формулы следующего вида:

Здесь f — любая тригонометрическая функция, g — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), n — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол α острый, например:

Некоторые формулы приведения:

Формулы сложения

Значения тригонометрических функций суммы и разности двух углов:

Аналогичные формулы для суммы трёх углов:

Формулы для кратных углов

Формулы двойного угла:

Формулы тройного угла:

Прочие формулы для кратных углов:

следует из формулы дополнения и формулы Гаусса для Гамма-функции

Формулы половинного угла:

Произведения

Формулы для произведений функций двух углов:

Аналогичные формулы для произведений синусов и косинусов трёх углов:

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

Степени

Суммы

Для функций от аргумента существует представление:

где угол находится из соотношений:

Однопараметрическое представление

Все тригонометрические функции можно выразить через тангенс половинного угла.

Производные и интегралы

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом:

Тригонометрические функции комплексного аргумента

Определение

Формула Эйлера:

позволяет определить тригонометрические функции от комплексных аргументов через экспоненту или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:

где


Соответственно, для вещественного x,

Комплексные синус и косинус тесно связаны с гиперболическими функциями:

Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства:

  • комплексные синус и косинус, в отличие от вещественных, могут принимать сколь угодно большие по модулю значения;
  • все нули комплексных синуса и косинуса лежат на вещественной оси.

Комплексные графики

На следующих графиках изображена комплексная плоскость, а значения функций выделены цветом. Яркость отражает абсолютное значение (чёрный — ноль). Цвет изменяется от аргумента и угла согласно карте.

История названий

Линия синуса у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды), затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские переводчики не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба». Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus, имеющим то же значение.

Современные краткие обозначения sin и cos введены Уильямом Отредом и закреплены в трудах Эйлера.

Термины «тангенс» (от лат. tangens — касающийся) и «секанс» (лат. secans — секущий) были введены датским математиком Томасом Финке (1561—1656) в его книге «Геометрия круглого» (Geometria rotundi, 1583).

Сам термин тригонометрические функции введён Клюгелем в 1770 году.

См. также

Литература

  • Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
  • Г. Б. Двайт Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.

Ссылки

dik.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2015-2019 © Игровая комната «Волшебный лес», Челябинск
тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск