Тригонометрия синусы косинусы – их формулировки и вывод, связь косинуса и тангенса, как из синуса получить косинус

Тригонометрия: синус, косинус, тангенс, котангенс

История тригонометрии

Тригонометрия, как наука, зародилась на Древнем Востоке. Первые тригонометрические соотношения были выведены астрономами для создания точного календаря и ориентированию по звездам. Данные вычисления относились к сферической тригонометрии, в то время как в школьном курсе изучают соотношения сторон и угла плоского треугольника.

Тригонометрия – это раздел математики, занимающийся свойствами тригонометрических функций и зависимостью между сторонами и углами треугольников.

В период расцвета культуры и науки I тысячелетия нашей эры знания распространились с Древнего Востока в Грецию. Но основные открытия тригонометрии – это заслуга мужей арабского халифата. В частности, туркменский ученый аль-Маразви ввел такие функции, как тангенс и котангенс, составил первые таблицы значений для синусов, тангенсов и котангенсов. Понятие синуса и косинуса введены индийскими учеными. Тригонометрии посвящено немало внимания в трудах таких великих деятелей древности, как Евклида, Архимеда и Эратосфена.

Основные величины тригонометрии

Основные тригонометрические функции числового аргумента – это синус, косинус, тангенс и котангенс. Каждая из них имеет свой график: синусоида, косинусоида, тангенсоида и котангенсоида.

В основе формул для расчета значений указанных величин лежит теорема Пифагора. Школьникам она больше известна в формулировке: «Пифагоровы штаны, во все стороны равны», так как доказательство приводится на примере равнобедренного прямоугольного треугольника.

теорема Пифагора

Синус, косинус и другие зависимости устанавливают связь между острыми углами и сторонами любого прямоугольного треугольника. Приведем формулы для расчета этих величин для угла A и проследим взаимосвязи тригонометрических функций:

Взаимосвязь функций

Как видно, tg и ctg являются обратными функциями. Если представить катет a как произведение sin A и гипотенузы с, а катет b в виде cos A * c, то получим следующие формулы для тангенса и котангенса:

тангенс и котангенс

Тригонометрический круг

Графически соотношение упомянутых величин можно представить следующим образом:

Тригонометрическая окружность

Окружность, в данном случае, представляет собой все возможные значения угла α — от 0° до 360°. Как видно из рисунка, каждая функция принимает отрицательное или положительное значение в зависимости от величины угла. Например, sin α будет со знаком «+», если α принадлежит I и II четверти окружности, то есть, находится в промежутке от 0° до 180°. При α от 180° до 360° (III и IV четверти) sin α может быть только отрицательным значением.

Попробуем построить тригонометрические таблицы для конкретных углов и узнать значение величин.

частные случаи тригонометрических функций

Значения α равные 30°, 45°, 60°, 90°, 180° и так далее – называют частными случаями. Значения тригонометрических функций для них просчитаны и представлены в виде специальных таблиц.

тригонометрическая таблица

Данные углы выбраны отнюдь не случайно. Обозначение π  в таблицах стоит для радиан. Рад  — это угол, при котором длина дуги окружности соответствует ее радиусу. Данная величина была введена для того, чтобы установить универсальную зависимость, при расчетах в радианах не имеет значение действительная длина радиуса в см.

Радиан

Углы в таблицах для тригонометрических функций соответствуют значениям радиан:

радианы

Итак, не трудно догадаться, что 2π – это полная окружность или 360°.

Свойства тригонометрических функций: синус и косинус

Для того, чтобы рассмотреть и сравнить основные свойства синуса и косинуса, тангенса и котангенса, необходимо начертить их функции. Сделать это можно в виде кривой, расположенной в двумерной системе координат.

Рассмотри сравнительную таблицу свойств для синусоиды и косинусоиды:

Снимок экрана 2017-11-20 в 15.36.05

СинусоидаКосинусоида
y = sin xy = cos x
ОДЗ [-1; 1]ОДЗ [-1; 1]
sin x = 0, при x = πk, где k ϵ Zcos x = 0, при x = π/2 + πk, где k ϵ Z
sin x = 1, при x = π/2 + 2πk, где k ϵ Zcos x = 1, при x = 2πk, где k ϵ Z
sin x = — 1, при x = 3π/2 + 2πk, где k ϵ Zcos x = — 1, при x = π + 2πk, где k ϵ Z
sin (-x) = — sin x, т. е. функция нечетнаяcos (-x) = cos x, т. е. функция четная
функция периодическая, наименьший период — 2πфункция периодическая, наименьший период — 2π
sin x › 0, при x принадлежащем I и II четвертям или от 0° до 180° (2πk, π + 2πk)cos x › 0, при x принадлежащем I и IV четвертям или от 270° до 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, при x принадлежащем III и IV четвертям или от 180° до 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, при x принадлежащем II и III четвертям или от 90° до 270° (π/2 + 2πk, 3π/2 + 2πk)
возрастает на промежутке [- π/2 + 2πk, π/2 + 2πk]возрастает на промежутке [-π + 2πk, 2πk]
убывает на промежутках [ π/2 + 2πk, 3π/2 + 2πk]убывает на промежутках [2πk, π + 2πk]
производная (sin x)’ = cos xпроизводная (cos x)’ = — sin x

Определить является ли функция четной или нет очень просто. Достаточно представить тригонометрический круг со знаками тригонометрических величин и мысленно «сложить» график относительно оси OX. Если знаки совпадают, функция четная, в противном случае — нечетная.

четность тригонометрических функций

Введение радиан и перечисление основных свойств синусоиды и косинусоиды позволяют привести следующую закономерность:

зависимость косинус-синус

Убедиться в верности формулы очень просто. Например, для x =  π/2 синус равен 1, как и косинус x = 0. Проверку можно осуществить обративших к таблицам или проследив кривые функций для заданных значений.

Свойства тангенсоиды и котангенсоиды

Графики функций тангенса и котангенса значительно отличаются от синусоиды и косинусоиды. Величины tg и ctg являются обратными друг другу.

взаимосвязь тангенса и котангенса

тангенсоида

Основные свойства котангенсоиды:

  1. Y = tg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Тангенсоида стремится к значениям y при x = π/2 + πk, но никогда не достигает их.
  4. Наименьший положительный период тангенсоиды равен π.
  5. Tg (- x) = — tg x, т. е. функция нечетная.
  6. Tg x = 0, при x = πk.
  7. Функция является возрастающей.
  8. Tg x › 0, при x ϵ (πk, π/2 + πk).
  9. Tg x ‹ 0, при x ϵ ( — π/2 + πk, πk).
  10. Производная (tg x)’ = 1/cos2⁡x .

Рассмотрим графическое изображение котангенсоиды ниже по тексту.

котангенсоида

 

Основные свойства котангенсоиды:

  1. Y = ctg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Котангенсоида стремится к значениям y при x = πk, но никогда не достигает их.
  4. Наименьший положительный период котангенсоиды равен π.
  5. Ctg (- x) = — ctg x, т. е. функция нечетная.
  6. Ctg x = 0, при x = π/2 + πk.
  7. Функция является убывающей.
  8. Ctg x › 0, при x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
  10. Производная (ctg x)’ = — 1/sin2⁡x Исправить

Похожие статьи

Рекомендуем почитать:

karate-ege.ru

Тригонометрия: определение тригонометрических функций

В этой статье мы рассмотрим тригонометрический круг и введем определения тригонометрических функций с помощью тригонометрического круга .

Впервые с определением  синуса, косинуса, тангенса и котангенса школьники встречаются в восьмом классе в курсе геометрии. Напомню эти определения. Рассмотрим прямоугольный треугольник: Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:

sin A=a/b; sin C=c/b

Косинусом острого угла прямоугольного треугольника

называется отношение прилежащего  катета к гипотенузе:

 cos A=c/b; cos C= a/b

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:

tg A=a/c; tg C=c/a.

Эти определения тригонометрических функций  удобно использовать при решении геометрических задач, связанных с нахождением сторон и углов в прямоугольном треугольнике, однако они не улучшают понимания того, что из себя представляют тригонометрические функции именно как функции.

Часто  во время занятий со школьниками я сталкиваюсь с тем, что они не понимают, откуда «взялись» тригонометрические функции, что они из себя представляют, и как их «готовить», чтобы легко решать уравнения и неравенства, содержащие тригонометрические функции.

Предлагаю вам посмотреть ВИДЕОУРОК, чтобы  понять, что такое синус, косинус, тангенс и котангенс, как они между собой связаны, и как легко определять

знаки тригонометрических функций без использования таблиц.

Итак.

Косинусом  угла α называется абсцисса (то есть координата по оси OX) точки на единичной окружности, соответствующей данному углу α.

Синусом угла α называется ордината (то есть координата по оси OY ) точки на единичной окружности, соответствующеий данному углу α.

Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса (x), синус — ордината (y).

 Поскольку радиус окружности равен 1, для любого угла и синус, и косинус находятся в пределах от −1 до 1:

−1 ≤ cos α ≤ 1, −1 ≤ sin α ≤ 1.

Основное тригонометрическое тождество является следствием теоремы Пифагора (квадрат гипотенузы равен сумме квадратов катетов):

sin2 α+ cos2 α = 1

Чтобы узнать знаки синуса и косинуса какого-либо угла, находим на нашей окружности точку, соответствующую данному углу α, смотрим, положительны или отрицательны её координаты по x (это косинус угла α) и по y (это синус угла α).

 

Купить видеокурс «ВСЯ ТРИГОНОМЕТРИЯ. Часть В и 13»

ege-ok.ru

Тригонометрическая таблица

В статье, мы полностью разберемся, как выглядит таблица тригонометрических значений, синуса, косинуса, тангенса и котангенса . Рассмотрим основное значение тригонометрических функций, от угла в 0,30,45,60,90,…,360 градусов. И посмотрим как пользоваться данными таблицами в вычислении значения тригонометрических функций.
Первой рассмотрим таблицу косинуса, синуса, тангенса и котангенса от угла в 0, 30, 45, 60, 90,.. градусов. Определение данных величин дают определить значение функций углов в 0 и 90 градусов:

sin 00=0, cos 00 = 1. tg 00 = 0, котангенс от 00 будет неопределенным
sin 900 = 1, cos 900 =0, ctg900 = 0,тангенс от 900 будет неопределенным

Если взять прямоугольные треугольники углы которых от 30 до 90 градусов. Получим:

sin 300 = 1/2, cos 300 = √3/2, tg 300 = √3/3, ctg 300 = √3
sin 450 = √2/2, cos 450 = √2/2, tg 450= 1, ctg 450 = 1
sin 600 = √3/2, cos 600 = 1/2, tg 600 =√3 , ctg 600 = √3/3

Изобразим все полученные значения в виде тригонометрической таблицы:


Таблица синусов, косинусов, тангенсов и котангенсов!

тригонометрия - таблица синусов, косинусов, тангенсов и котангенсов основных углов

Если использовать формулу приведения, наша таблица увеличится, добавятся значения для углов до 360 градусов. Выглядеть она будет как:

таблица тригонометрических функций 360 градусов

Так же исходя из свойств периодичности таблицу можно увеличить, если заменим углы на 00+3600*z …. 3300+3600*z, в котором z является целым числом. В данной таблице возможно вычислить значение всех углов, соответствующими точками в единой окружности.

расширенная таблица косинусов, синусов, котантенсов и тангенсов

Разберем наглядно как использовать таблицу в решении.
Все очень прост. Так как нужное нам значение лежит в точке пересечения нужных нам ячеек. К примеру возьмем cos угла 60 градусов, в таблице это будет выглядеть как:

пример работы с тригонометрической таблицей

В итоговой таблице основных значений тригонометрических функций, действуем так же. Но в данной таблице возможно узнать сколько составит тангенс от угла в 1020 градусов, он = -√3 Проверим 10200 = 3000+3600*2. Найдем по таблице.

находим тангенс по таблице

Для более поиска тригонометрических значений углов с точностью до минут используются таблицы Брадиса. Подробная инструкция как ими пользоваться на странице по ссылке.

Таблица Брадиса. Для синуса, косинуса, тангенса и котангенса.

Таблицы Брадиса поделены на несколько частей, состоят из таблиц косинуса и синуса, тангенса и котангенса — которая поделена на две части (tg угла до 90 градусов и ctg малых углов).

Синус и косинус

Таблица Брадиса: синусы и косинусы

tg угла начиная с 00 заканчивая 760, ctg угла начиная с 140 заканчивая 900.

Таблица Брадиса: тангенсы - котангенсы

tg до 900 и ctg малых углов.

расширенная таблица тангенсов

Разберемся как пользоваться таблицами Брадиса в решении задач.

Найдем обозначение sin (обозначение в столбце с левого края) 42 минут (обозначение находится на верхней строчке). Путем пересечения ищем обозначение, оно = 0,3040.

тригонометрия по таблице Брадиса
Величины минут указаны с промежутком в шесть минут, как быть если нужное нам значение попадет именно в этот промежуток. Возьмем 44 минуты, а в таблице есть только 42. Берем за основу 42 и воспользуемся добавочными столбцами в правой стороне, берем 2 поправку и добавляем к 0,3040 + 0,0006 получаем 0,3046.
пример - тригонометрия по таблице Брадиса
При sin 47 мин, берем за основу 48 мин и отнимаем от нее 1 поправку, т.е 0,3057 — 0,0003 = 0,3054
находим синус  по таблице Брадиса
При вычислении cos работаем аналогично sin только за основу берем нижнюю строку таблицы. К примеру cos 200 = 0.9397
пример4 по таблице
Значения tg угла до 900 и cot малого угла, верны и поправок в них нет. К примеру, найти tg 780 37мин = 4,967
пример 5 по Брадису
а ctg 200 13мин = 25,83
Таблица синусов Брадиса. Пример 6

Ну вот мы и рассмотрели основные тригонометрические таблицы. Надеемся это информация была для вас крайне полезной. Свои вопросы по таблицам, если они появились, обязательно пишите в комментариях!

Заметка: Стеновые отбойники — отбойная доска для защиты стен (http://www.spi-polymer.ru/otboyniki/)


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *