Твердые оксиды – Оксиды

Оксиды

Несолеобразующие (безразличные, индифферентные) оксиды СО, SiO, N20, NO.

Солеобразующие оксиды:

Основные. Оксиды, гидраты которых являются основаниями. Оксиды металлов со степенями окисления +1 и +2 (реже +3). Примеры: Na2O - оксид натрия, СаО - оксид кальция, CuO - оксид меди (II), СоО - оксид кобальта (II), Bi2O3 - оксид висмута (III), Mn2O3 - оксид марганца (III).

Амфотерные. Оксиды, гидраты которых являются амфотерными гидроксидами. Оксиды металлов со степенями окисления +3 и +4 (реже +2). Примеры: Аl2O3 - оксид алюминия, Cr2O3 - оксид хрома (III), SnO2 - оксид олова (IV), МnO2 - оксид марганца (IV), ZnO - оксид цинка, ВеО - оксид бериллия.

Кислотные. Оксиды, гидраты которых являются кислородсодержащими кислотами. Оксиды неметаллов. Примеры: Р2О3 - оксид фосфора (III), СO2 - оксид углерода (IV), N2O5 - оксид азота (V), SO3 - оксид серы (VI), Cl2O7 - оксид хлора (VII). Оксиды металлов со степенями окисления +5, +6 и +7. Примеры: Sb

2O5 - оксид сурьмы (V). СrОз - оксид хрома (VI), МnОз - оксид марганца (VI), Мn2O7 - оксид марганца (VII).


Изменение характера оксидов
при увеличении с. о. металла

Cr+2O (осн.)

Cr+32O 3(амф.)

Cr+6O 3(кисл.)

Mn+2O (осн.)

Mn+4O2 (амф.)

Mn+6O3 (кисл.)

Mn+32O3 (осн.)

Mn+72O 7 (кисл.)


Оксиды бывают твердые, жидкие и газообразные, различного цвета. Например: оксид меди (II) CuO черного цвета, оксид кальция СаО белого цвета - твердые вещества. Оксид серы (VI) SO3 - бесцветная летучая жидкость, а оксид углерода (IV) СО2 - бесцветный газ при обычных условиях.

Твердые:

CaO, СuО, Li2O и др. основные оксиды; ZnO, Аl2O3, Сr2O3 и др. амфотерные оксиды; SiO2, Р2O5, СrO3 и др. кислотные оксиды.

Жидкие:

SO3, Cl2O7, Мn2O7 и др..

Газообразные:

CO2, SO2, N2O, NO, NO2 и др..

Растворимые:

а) основные оксиды щелочных и щелочноземельных металлов;

б) практически все кислотные оксиды (исключение: SiO2).

Нерастворимые:

а) все остальные основные оксиды;

б) все амфотерные оксиды

в) SiO2

1. Кислотно-основные свойства

Общими свойствами основных, кислотных и амфотерных оксидов являются кислотно-основные взаимодействия, которые иллюстрируются следующей схемой:


Пример:

(только для оксидов щелочных и щелочно-земельных металлов) (кроме SiO2).

Амфотерные оксиды, обладая свойствами и основных и кислотных оксидов, взаимодействуют с сильными кислотами и щелочами:

2. Окислительно - восстановительные свойства

Если элемент имеет переменную степень окисления (с. о.), то его оксиды с низкими с. о. могут проявлять восстановительные свойства, а оксиды с высокими с. о. - окислительные.

Примеры реакций, в которых оксиды выступают в роли восстановителей:

Окисление оксидов с низкими с. о. до оксидов с высокими с. о. элементов.

2C+2O + O2 = 2C+4O2

2S+4O2 + O2 = 2S+6O3

2N+2O + O2 = 2N+4O2

Оксид углерода (II) восстанавливает металлы из их оксидов и водород из воды.

C+2O + FeO = Fe + 2C+4O2

C+2O + H2O = H2 + 2C+4O2

Примеры реакций, в которых оксиды выступают в роли окислителей:

Восстановление оксидов с высокими с о. элементов до оксидов с низкими с. о. или до простых веществ.

C+4O2 + C = 2C+2O

2S+6O3 + H2S = 4S+4O2 + H2O

C+4O2 + Mg = C0 + 2MgO

Cr+32O3 + 2Al = 2Cr0 + 2Al2O3

Cu+2O + H2 = Cu0 + H2O

Использование оксидов малоактивных металлов дпя окисления органических веществ.

Некоторые оксиды, в которых элемент имеет промежуточную с. о., способны к диспропорционированию;

например:

2NO2 + 2NaOH = NaNO2 + NaNO3 + H2O

1. Взаимодействие простых веществ - металлов и неметаллов - с кислородом:

4Li + O2 = 2Li2O;

2Cu + O2 = 2CuO;

S + O2 = SO2

4P + 5O2 = 2P2O5

2. Дегидратация нерастворимых оснований, амфотерных гидроксидов и некоторых кислот:

Cu(OH)2 = CuO + H2O

2Al(OH)3 = Al2O3 + 3H2O

H2SO3 = SO2↑ + H2O

H2SiO3 = SiO2 + H2O

3. Разложение некоторых солей:

2Cu(NO3)2 = 2CuO + 4NO2↑ + O2

CaCO3 = CaO + CO2

(CuOH)2CO3 = 2CuO + CO2↑ + H2O

4. Окисление сложных веществ кислородом:

CH4 + 2O2 = CO2 + H2O

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

4NH3 + 5O2 = 4NO + 6H2O

5.Восстановление кислот-окислителей металлами и неметаллами:

Cu + H2SO4 (конц) = CuSO4 + SO2↑ + 2H2O

10HNO3 (конц) + 4Ca = 4Ca(NO3)2 + N2O↑ + 5H2O

2HNO3 (разб) + S = H2SO4 + 2NO↑

6. Взаимопревращения оксидов в ходе окислительно-восстановительных реакций (см. окислительно-восстановительные свойства оксидов).

examchemistry.com

Физические свойства оксидов — урок. Химия, 8–9 класс.

Агрегатное состояние

Оксиды металлов, например, оксид меди(\(II\)) CuO, оксид железа(\(III\)) Fe2O3, оксид кальция CaO, являются

твёрдыми кристаллическими веществами.

 

Некоторые оксиды неметаллов при обычных условиях также находятся в твёрдом агрегатном состоянии. Например, твёрдыми веществами являются оксид кремния SiO2, оксид фосфора(\(V\)) P2O5 и оксид серы(\(VI\)) SO3.

 

Жидким веществом является оксид водорода, то есть вода h3O.

 

Среди оксидов неметаллов при нормальных условиях некоторые являются газообразными веществами. Например, SO2, N2O, NO, NO2, CO и CO2.

 

Цвет оксидов может быть самым разнообразным.

Отметим, что бесцветным, например, является оксид кремния в виде кварца или горного хрусталя. Из жидких оксидов цвета не имеет вода. Большинство газообразных оксидов также не имеет окраски.

 

Оксид меди(\(I\)) Cu2O — вещество красного цвета:

Cu2O.jpg

 

Оксид меди(\(II\)) CuO чёрного цвета:

CuO.jpg

 

Оксид магния MgO белого цвета:

MgO.jpg

 

Оксид хрома(\(III\)) Cr2O3 тёмно-зелёного цвета:

Cr2O3.jpg

 

Оксид азота(\(IV\)) NO2 — газообразное вещество бурого цвета. Такой же цвет у твёрдого оксида железа(\(III\)) Fe2O3:

NO2.jpg

 

Риски, связанные с воздействием оксидов на организм

Самый ядовитый из оксидов — оксид углерода(\(II\)), или угарный газ CO. Его молекулы связываются гемоглобином крови намного прочнее, чем молекулы кислорода. Поэтому при наличии даже незначительной примеси этого вещества в воздухе человек может погибнуть от удушья.

 

Ядовитыми также являются диоксид серы SO2 и диоксид азота NO2.

www.yaklass.ru

Общие способы получения оксидов — урок. Химия, 8–9 класс.

1. Оксиды образуются при взаимодействии простых веществ с кислородом.

 

Например, при сгорании водорода в кислороде образуется оксид водорода (вода):

2h3+O2→2h3O.

 

При нагревании меди на воздухе она покрывается налётом чёрного цвета, состоящим из оксида меди(\(II\)):

2Cu+O2→2CuO.

 

2. Оксиды можно получить путём обжига или при сжигании некоторых бинарных соединений.

 

Например, оксид цинка и оксид серы(\(IV\)) получают обжигом сульфида цинка:

2ZnS+3O2→2ZnO+2SO2.

 

3. Оксиды образуются при термическом разложении некоторых солей, оснований и кислот.

 

Например, при обжиге известняка, состоящего из карбоната кальция, образуются оксид кальция и углекислый газ: CaCO3→CaO+CO2.

 

Оксид меди(\(II\)) образуется при нагревании гидроксида меди(\(II\)): Cu(OH)2→CuO+h3O.

 

Угольная кислота разлагается даже без нагревания, выделяя оксид углерода(\(IV\)), т. е. углекислый газ: h3CO3→h3O+CO2.

 

Применение оксидов

Оксиды используются в самых разных отраслях народного хозяйства: в промышленности, в строительстве, при получении других веществ, в медицине, в быту и т. д. 

 

Оксиды используют в промышленности

  

В промышленности оксиды используются в качестве сырья.

 

Например, некоторые оксиды используются в качестве пигментов в производстве красок и эмалей. Именно на эти нужды в большом количестве расходуются оксид цинка ZnO, оксид титана(\(IV\)) TiO2 и оксид железа(\(III\)) Fe2O3.

 

При варке цветных стёкол в качестве пигментов используют оксид кобальта(\(III\)) Co2O3, оксид хрома(\(III\)) Cr2O3 и оксид марганца(\(IV\)) MnO2.

 

Из оксида серы(\(VI\)) SO3  производят серную кислоту h3SO4, а оксид кальция, или негашёная известь CaO, служит сырьём для получения гидроксида кальция, или гашёной извести Ca(OH)2.

Из оксида кремния SiO2 получают кремний, без которого в наши дни не может обойтись производство солнечных батарей и компьютеров.

 

Оксиды находят применение в пищевой промышленности и в сельском хозяйстве 

 

В качестве консерванта, а также для дезинфекции теплиц и складских помещений, используют оксид серы(\(IV\)), или сернистый газ SO2. Этот же оксид используют для отбеливания сахара.

Углекислый газ CO2 используют для газирования напитков, а также в производстве сахара.

 

Оксиды используют для обеспечения безопасности

  

В качестве надёжного средства для борьбы с огнём используют оксид водорода, т. е. воду h3O, а также оксид кремния SiO2 в виде песка.

Углекислый газ CO2 не поддерживает горения, поэтому им заполняют огнетушители.

www.yaklass.ru

XuMuK.ru - ОКСИДЫ - Химическая энциклопедия


ОКСИДЫ, соединения элементов с кислородом. В оксидах степень окисления атома кислорода —2. К оксидам относятся все соед. элементов с кислородом, кроме содержащих атомы О, соединенные друг с другом (пероксиды, надпероксиды, озо-ниды), и соед. фтора с кислородом (OF2 и др.). Последние следует называть не оксидами, а фторидами кислорода, т. к. степень окисления кислорода в них положительная.

При комнатной т-ре большинство оксиды-твердые в-ва (СаО, Fe2O3 и др.), нек-рые-жидкости (Н2О, Сl2О7 и др.) и газы (NO, SO2 и др.). Хим. связь в оксидах-ионная и ионно-ковалент-ная. Т-ры плавления и кипения оксидов понижаются с возрастанием в них доли ковалентной связи. Многим оксидам в твердом состоянии присущ полиморфизм. Нек-рые оксиды элементов III, IV, V гр. (напр., В, Si, As, Р) образуют рентгеноаморфные стекла. Оксиды s- и p-элементов (напр., MgO, Аl2О3, SiO2)-диэлектрики, оксиды переходных металлов (Fe, Сг и др.) часто обладают св-вами полупроводников. Нек-рые оксиды-пьезоэлектрики (напр., кварц), ферромагнетики [оксиды Fe, Cr(IV) и др.]. Вследствие своей многочисленности, разнообразия св-в и доступности оксиды представляют исключительно важный класс неорг. в-в.

Большинство оксидов-солеобразующие; при солеобразовании, протекающем обычно при нагр. (напр., Na2O + SiO2 Na2SiO3), степени окисления элементов не изменяются. Известно неск. несолеобразующих оксидов (напр., NO), не вступающих в подобные р-ции. Солеобразующие оксиды подразделяют на основные, кислотные и амфотерные. Элемент основного оксида (Li2O, BaO и др.) при образовании соли (напр., ВаО + SO3 BaSO4) становится катионом, элемент кислотного оксида (напр., SO3, NO2, P2O5) входит в состав кислородсодержащего аниона соли. Амфотерные оксиды (напр., ZnO, BeO, А12О3) могут реагировать и как основные оксиды, и как кислотные, напр.:


Уменьшение степени окисления элемента и увеличение радиуса его иона делает оксид более основным, наоборот, увеличение степени окисления и уменьшение ионного радиуса-более кислотным (напр., МnО- основной оксид, Мn2О7-кислотный). Многие оксиды, напр. Рb3О4, Fe3O4, содержащие элемент в разных степенях окисления, являются двойными оксидами: (PbII2, PbIV)O4, (FeII, FeIII2)O4. Среди оксидов, особенно среди оксидов d-элементов, много нестехиометрич. соединений.

Оксиды щелочных и щел.-зем. металлов активно реагируют с водой, образуя щелочи, напр.: К2О + Н2О 2КОН; нек-рые кислотные оксиды -ангидриды неорганических кислот-активно взаимод. с водой, давая к-ты, напр.: SO3 + Н2О H2SO4. Большинство оксидов металлов в компактном состоянии при комнатной т-ре с водой не реагируют. Основные оксиды обычно быстро реагируют с к-тами в р-ре с образованием солей, напр.:


Восстановители (С, Н2, активные металлы, в частности Mg, Al) при нагр. восстанавливают многие оксиды до металла, напр.:


При сильном нагревании оксидов с углеродом часто образуются карбиды (напр., СаО + ЗС СаС2 + СО), при хлорировании смеси оксидов с углем-хлориды (напр., В2О3 + ЗС + + ЗСl2 2ВСl3 + 3СО).

Оксиды широко распространены в природе. В очень больших кол-вах встречаются Н2О и SiO2. Мн. минералы являются оксидами (гематит Fe2O3, магнетит Fe3O4, касситерит SnO2 и др.).

Многие оксиды образуются при взаимод. простых в-в с кислородом (Li2O, СаО, La2O3, SO2 и др.). Оксиды металлов обычно получают термич. разложением гидроксидов, карбонатов, нитратов и др. солей кислородсодержащих к-т (напр., СаСО3 СаО + СО2), анодным окислением металлов, оксиды неметаллов - окислением кислородом водородсодержащих соед. неметаллов (напр., 2H2S 4+ 3О2 2SO2 + 2H2O). В пром-сти в больших кол-вах получают СаО, Аl2О3, MgO, SO3, CO, CO2, NO и другие оксиды. Используют оксиды как огнеупоры (SiO2, MgO, Al2O3 и др.), адсорбенты (SiO2-сшгака-гель, Аl2О3 и др.), катализаторы (V2O5, Al2O3 и др.), в произ-ве строит. материалов, стекол, фарфора, фаянса, магн. материалов, пьезоэлектриков и др. Оксиды металлов (Fe, Ni, Al, Sn и др.)-сырье в произ-ве металлов, оксиды неметаллов (напр., S, Р, N)- в произ-ве соответствующих к-т.

С. И. Дракин.

www.xumuk.ru

Оксиды

Основания

Основаниями называются соединения, состоящие из атомов металла, связанных с одной или несколькими гидроксогруппами ОН, на-

пример NaOH, Ba(OH)2, Fe(OH)3.

Отдельное место занимает неорганическое соединение Nh5OH или Nh4 Н2О (более точно его состав передается формулой Nh4 хН2О). В составе этого соединения группа атомов NH +4 (катион аммония) играет такую же роль, как однозарядный катион металла.

Классификация оснований

1.По растворимости в воде. Все основания делятся на две группы: хорошо растворимые в воде и малорастворимые в воде (их условно называют нерастворимыми). Растворимые в воде сильные основания называются щелочами. Это гидроксиды щелочных (Li, Na, K, Rb, Cs, Fr) и щелочноземельных (Ca, Sr, Ba, Ra) металлов. Растворы щелочей мыльные на ощупь, разъедают кожу и ткани, поэтому их называют едкими щелочами. Для некоторых щелочей до сих пор употребляются старинные названия, такие как NaOH – едкий натр, KОН – едкое кали,

Са(ОН)2 – гашеная известь, Ba(OH)2 – едкий барит. Растворимым, но слабым основанием является раствор аммиака.

2.По кислотности. Кислотность оснований определяют по числу гидроксогрупп, связанных с металлом.

Однокислотным называют основание, 1 моль которого нейтрали-

зует 1 моль одноосновной кислоты (содержит одну гидроксогруппу ОН–), например NaOH.

Двухкислотным называют основание, 1 моль которого нейтрали-

зует 2 моля одноосновной кислоты (содержит две гидроксогруппы ОН–), например Ва(ОН)2.

Трехкислотным называют основание, 1 моль которого нейтрали-

зует 3 моля одноосновной кислоты (содержит три гидроксогруппы ОН–), например Fe(OH)3.

3.По силе. Сильные электролиты – щелочи, в водных растворах

практически полностью распадаются на катионы металла и гидро- ксид-анионы OH–; слабые электролиты – малорастворимые основания, в водных растворах диссоциируют незначительно, обратимо и ступенчато.

4.Амфотерными называют гидроксиды, проявляющие как основные, так и кислотные свойства, т. е. реагирующие и с кислотами, и со щелочами. Амфотерному оксиду соответствует амфотерный гидроксид.

studfile.net

Твердый оксид - Большая Энциклопедия Нефти и Газа, статья, страница 1

Твердый оксид

Cтраница 1

Твердый оксид SiO представляет собой порошок темно-желтого цвета. Он не проводит электрического тока и является прекрасным изоляционным материалом.  [1]

Введение твердого оксида кальция не изменяет концентрацию СаО в фазе СаО ( к), и химическое равновесие не смещается.  [2]

В твердых оксидах тепло передается упругими колебаниями решетки. Эти колебания апериодичны, они, как говорят, квантуются. По аналогии с фотонами в теории света кванты передачи тепла называют фононами, а теплопроводность - фононной. Теплопроводность зависит от атомной массы катиона.  [3]

При диссоциации некоторого твердого оксида МеО на металл и кислород равновесное давление кислорода составляет 10 торр при 100 С.  [4]

В общем случае, твердый оксид лучше смачивается жидким металлом, имеющим большее сродство к кислороду, чем металл в оксиде. Этот металл, в свою очередь, лучше смачивает оксид, имеющий меньшую энергию образования.  [6]

На поверхности кристаллической решетки твердых оксидов находятся кислороды. Катионы, располагающиеся внутри, оказывают на свойства поверхности небольшое влияние. По основному закону термодинамики все процессы самопроизвольно идут в направлении понижения свободной энергии.  [7]

Различие в строении решеток твердого оксида угле рода ( IV) и оксида кремния ( IV) и обусловливает различие нх свойств. Решетка твердого СО2 - молекулярная, слагается из слабосвязанных молекул. Атомные решетки, состоящие из атомов кремния, связанных друг с другом через кислород, отличаются значительной прочностью, что и обусловливает его нелетучесть и, как следствие - большое распространение крем-незема в земной jtope. На долю свободного SiO2 приходится Т2 % - 6Т - всеТГ - массы земной коры. На долю же кремния и кислорода ( в виде силикатов) в горных поро - - дах приходится около 43 % от массы земной коры.  [8]

При нагревании нитрата цинка образуется твердый оксид его, а в случае нитрата серебра - твердое серебро.  [9]

Некоторые процессы протекают на различного вида твердых оксидах.  [10]

Объясните, почему твердый диоксид углерода и твердый оксид кремния, имеющие аналогичные эмпирические формулы СО2 и SiO2, столь сильно отличаются по физическим свойствам.  [11]

В литературе имеются и другие попытки оценки кислотности твердых оксидов металлов. Указывается, что поскольку кислотные оксиды имеют преимущественно ковалентную, а основные-ионную связь, то целесообразно подходить к решению вопроса путем установления эффективного заряда на атоме кислорода.  [12]

Из производных нитроний-иона NO2 можно указать [ NO2JC1O4, твердый оксид азота ( V) [ N02 ] N03 и др. Соли нитрония - кристаллические вещества, химически очень активны, быстро гидролизуются влагой воздуха.  [13]

В начале этой главы отмечалось, что скорость процесса восстановления твердых оксидов железа газам может определяться как внешней, так и внутренней массопереда-чей. Опыты показали, что при малых скоростях потока газов процесс определяется внешней массопередачей. В этом случае, согласно уравнению ( XVIII. D, a, d и с количество прореагировавшего ( или поглощенного) вещества пропорционально времени. При этом скорость реакции оказывается пропорциональной У а. При увеличении скорости потока течение процесса начинает определяться внутренней массопередачей.  [14]

Из производных нитроний-тна NC1 следует указать [ NO2 ] C1O4, твердый оксид азота ( V) [ NO2 ] N03 и др. Соли нитрония - кристаллические вещества, химически очень активны, быстро гидролизуются вла-гэй воздуха.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *