ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΎΠ½Π»Π°ΠΉΠ½ β Π£ΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° (ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ²) (Ρ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ)
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΡΠΏΡΠΎΡΡΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½.
Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ°Π±ΠΎΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
β ΡΠΌΠ½ΠΎΠΆΠ°Π΅Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Ρ
β ΡΡΠΌΠΌΠΈΡΡΠ΅Ρ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½Ρ (ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅)
β ΡΠ°ΡΠΊΡΡΠ²Π°Π΅Ρ ΡΠΊΠΎΠ±ΠΊΠΈ
β Π²ΠΎΠ·Π²ΠΎΠ΄ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ
ΠΡΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ² Π½Π΅ ΠΏΡΠΎΡΡΠΎ Π΄Π°ΡΡ ΠΎΡΠ²Π΅Ρ Π·Π°Π΄Π°ΡΠΈ, ΠΎΠ½Π° ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠΎΡΡΠ½Π΅Π½ΠΈΡΠΌΠΈ, Ρ.Π΅. ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°Π΅Ρ ΠΏΡΠΎΡΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ Π²Ρ ΠΌΠΎΠ³Π»ΠΈ ΠΏΡΠΎΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΡΠ²ΠΎΠΈ Π·Π½Π°Π½ΠΈΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΈ/ΠΈΠ»ΠΈ Π°Π»Π³Π΅Π±ΡΠ΅.
ΠΠ°Π½Π½Π°Ρ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΠ»Π΅Π·Π½Π° ΡΡΠ°ΡΠΈΠΌΡΡ ΠΎΠ±ΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΠΊΠΎΠ» ΠΏΡΠΈ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ΅ ΠΊ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΠΌ ΡΠ°Π±ΠΎΡΠ°ΠΌ ΠΈ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΠΌ, ΠΏΡΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Π·Π½Π°Π½ΠΈΠΉ ΠΏΠ΅ΡΠ΅Π΄ ΠΠΠ, ΡΠΎΠ΄ΠΈΡΠ΅Π»ΡΠΌ Π΄Π»Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΈΡ Π·Π°Π΄Π°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΈ Π°Π»Π³Π΅Π±ΡΠ΅. Π ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π²Π°ΠΌ ΡΠ»ΠΈΡΠΊΠΎΠΌ Π½Π°ΠΊΠ»Π°Π΄Π½ΠΎ Π½Π°Π½ΠΈΠΌΠ°ΡΡ ΡΠ΅ΠΏΠ΅ΡΠΈΡΠΎΡΠ° ΠΈΠ»ΠΈ ΠΏΠΎΠΊΡΠΏΠ°ΡΡ Π½ΠΎΠ²ΡΠ΅ ΡΡΠ΅Π±Π½ΠΈΠΊΠΈ? ΠΠ»ΠΈ Π²Ρ ΠΏΡΠΎΡΡΠΎ Ρ ΠΎΡΠΈΡΠ΅ ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Π±ΡΡΡΡΠ΅Π΅ ΡΠ΄Π΅Π»Π°ΡΡ Π΄ΠΎΠΌΠ°ΡΠ½Π΅Π΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΈΠ»ΠΈ Π°Π»Π³Π΅Π±ΡΠ΅? Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π²Ρ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π½Π°ΡΠΈΠΌΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ°ΠΌΠΈ Ρ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΡΠ²ΠΎΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΈ/ΠΈΠ»ΠΈ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ²ΠΎΠΈΡ ΠΌΠ»Π°Π΄ΡΠΈΡ Π±ΡΠ°ΡΡΠ΅Π² ΠΈΠ»ΠΈ ΡΠ΅ΡΡΡΡ, ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΡΠΎΠ²Π΅Π½Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ΅ΡΠ°Π΅ΠΌΡΡ Π·Π°Π΄Π°Ρ ΠΏΠΎΠ²ΡΡΠ°Π΅ΡΡΡ.
ΠΡΠΈΠΌΠ΅ΡΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ >>
ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ ΡΡΠΎ Π½Π΅ Π·Π°Π³ΡΡΠ·ΠΈΠ»ΠΈΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΊΡΠΈΠΏΡΡ, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΠ΅ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ, ΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ ΡΠ°Π±ΠΎΡΠ°ΡΡ.
ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Ρ Π²Π°Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ AdBlock.
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΡΠΊΠ»ΡΡΠΈΡΠ΅ Π΅Π³ΠΎ ΠΈ ΠΎΠ±Π½ΠΎΠ²ΠΈΡΠ΅ ΡΡΡΠ°Π½ΠΈΡΡ.
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½Π° ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°. ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°
Π‘ΡΠ΅Π΄ΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ Π² Π°Π»Π³Π΅Π±ΡΠ΅, Π²Π°ΠΆΠ½ΠΎΠ΅ ΠΌΠ΅ΡΡΠΎ Π·Π°Π½ΠΈΠΌΠ°ΡΡ ΡΡΠΌΠΌΡ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½ΠΎΠ².
ΠΡΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ°ΠΊΠΈΡ
Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ:
\( 5a^4 β 2a^3 + 0,3a^2 β 4,6a + 8 \)
\( xy^3 β 5x^2y + 9x^3 β 7y^2 + 6x + 5y β 2 \)
Π‘ΡΠΌΠΌΡ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½ΠΎΠ² Π½Π°Π·ΡΠ²Π°ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠΌ. Π‘Π»Π°Π³Π°Π΅ΠΌΡΠ΅ Π² ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ»Π΅Π½Π°ΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°. ΠΠ΄Π½ΠΎΡΠ»Π΅Π½Ρ ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΠ½ΠΎΡΡΡ ΠΊ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°ΠΌ, ΡΡΠΈΡΠ°Ρ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠΌ, ΡΠΎΡΡΠΎΡΡΠΈΠΌ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ»Π΅Π½Π°.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½
\( 8b^5 β 2b \cdot 7b^4 + 3b^2 β 8b + 0,25b \cdot (-12)b + 16 \)
ΠΌΠΎΠΆΠ½ΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ.
ΠΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ Π²ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅ Π² Π²ΠΈΠ΄Π΅ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½ΠΎΠ² ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°:
\( 8b^5 β 2b \cdot 7b^4 + 3b^2 β 8b + 0,25b \cdot (-12)b + 16 = \)
\( = 8b^5 β 14b^5 + 3b^2 -8b -3b^2 + 16 \)
ΠΡΠΈΠ²Π΅Π΄Π΅ΠΌ Π² ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π΅ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π΅Π½Ρ:
\( 8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
ΠΠΎΠ»ΡΡΠΈΠ»ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½, Π²ΡΠ΅ ΡΠ»Π΅Π½Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½Π°ΠΌΠΈ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°, ΠΏΡΠΈΡΠ΅ΠΌ ΡΡΠ΅Π΄ΠΈ Π½ΠΈΡ
Π½Π΅Ρ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ
.
Π’Π°ΠΊΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Ρ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°ΠΌΠΈ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°.
ΠΠ° ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΡΡ ΠΈΠ· ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ Π΅Π³ΠΎ ΡΠ»Π΅Π½ΠΎΠ². Π’Π°ΠΊ, Π΄Π²ΡΡΠ»Π΅Π½ \( 12a^2b β 7b \) ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ΅ΡΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ, Π° ΡΡΠ΅Ρ ΡΠ»Π΅Π½ \( 2b^2 -7b + 6 \) β Π²ΡΠΎΡΡΡ.
ΠΠ±ΡΡΠ½ΠΎ ΡΠ»Π΅Π½Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ² ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΠΎΠ΄Π½Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ, ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°ΡΡ Π² ΠΏΠΎΡΡΠ΄ΠΊΠ΅ ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π΅Π΅ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:
\( 5x β 18x^3 + 1 + x^5 = x^5 β 18x^3 + 5x + 1 \)
Π‘ΡΠΌΠΌΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ (ΡΠΏΡΠΎΡΡΠΈΡΡ) Π² ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°.
ΠΠ½ΠΎΠ³Π΄Π° ΡΠ»Π΅Π½Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° Π½ΡΠΆΠ½ΠΎ ΡΠ°Π·Π±ΠΈΡΡ Π½Π° Π³ΡΡΠΏΠΏΡ, Π·Π°ΠΊΠ»ΡΡΠ°Ρ ΠΊΠ°ΠΆΠ΄ΡΡ Π³ΡΡΠΏΠΏΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠΈ β ΡΡΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, ΡΠΎ Π»Π΅Π³ΠΊΠΎ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΏΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ:
ΠΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠ°Π²ΠΈΡΡΡ Π·Π½Π°ΠΊ Β«+Β», ΡΠΎ ΡΠ»Π΅Π½Ρ, Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΠΌΡΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Ρ ΡΠ΅ΠΌΠΈ ΠΆΠ΅ Π·Π½Π°ΠΊΠ°ΠΌΠΈ.
ΠΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠ°Π²ΠΈΡΡΡ Π·Π½Π°ΠΊ Β«-Β», ΡΠΎ ΡΠ»Π΅Π½Ρ, Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΠΌΡΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΌΠΈ Π·Π½Π°ΠΊΠ°ΠΌΠΈ.
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ (ΡΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅) ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½Π° ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ (ΡΠΏΡΠΎΡΡΠΈΡΡ) Π² ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½Π° ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:
\( 9a^2b(7a^2 β 5ab β 4b^2) = \)
\( = 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\( = 63a^4b β 45a^3b^2 β 36a^2b^3 \)
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½Π° ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΡΡΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½Π° ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΡΠ»Π΅Π½ΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°.
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΎΠ±ΡΡΠ½ΠΎ ΡΠΎΡΠΌΡΠ»ΠΈΡΡΡΡ Π² Π²ΠΈΠ΄Π΅ ΠΏΡΠ°Π²ΠΈΠ»Π°.
Π§ΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½, Π½Π°Π΄ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΡΠΎΡ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½ Π½Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΡΠ»Π΅Π½ΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°.
ΠΡ ΡΠΆΠ΅ Π½Π΅ΠΎΠ΄Π½ΠΎΠΊΡΠ°ΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΡΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄Π»Ρ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π½Π° ΡΡΠΌΠΌΡ.
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ². ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ (ΡΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅) ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π²ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ²
ΠΠΎΠΎΠ±ΡΠ΅, ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ² ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠ»Π΅Π½Π° ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠ»Π΅Π½Π° Π΄ΡΡΠ³ΠΎΠ³ΠΎ.
ΠΠ±ΡΡΠ½ΠΎ ΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎΠΌ.
Π§ΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½, Π½Π°Π΄ΠΎ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΠΈ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ.
Π€ΠΎΡΠΌΡΠ»Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ²Π°Π΄ΡΠ°ΡΡ ΡΡΠΌΠΌΡ, ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΈ ΡΠ°Π·Π½ΠΎΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ²
Π‘ Π½Π΅ΠΊΠΎΡΠΎΡΡΠΌΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΠΌΠΈ Π² Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡΡΡ ΠΈΠΌΠ΅ΡΡ Π΄Π΅Π»ΠΎ ΡΠ°ΡΠ΅, ΡΠ΅ΠΌ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ. ΠΠΎΠΆΠ°Π»ΡΠΉ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΡΠΎ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ \( (a + b)^2, \; (a β b)^2 \) ΠΈ \( a^2 β b^2 \), Ρ. Π΅. ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΡΠΌΠΌΡ, ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΈ ΡΠ°Π·Π½ΠΎΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ². ΠΡ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ, ΡΡΠΎ Π½Π°Π·Π²Π°Π½ΠΈΡ ΡΠΊΠ°Π·Π°Π½Π½ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΊΠ°ΠΊ Π±Ρ Π½Π΅ Π·Π°ΠΊΠΎΠ½ΡΠ΅Π½Ρ, ΡΠ°ΠΊ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, \( (a + b)^2 \) β ΡΡΠΎ, ΠΊΠΎΠ½Π΅ΡΠ½ΠΎ, Π½Π΅ ΠΏΡΠΎΡΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΡΠΌΠΌΡ, Π° ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΡΠΌΠΌΡ Π° ΠΈ b. ΠΠ΄Π½Π°ΠΊΠΎ ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΡΠΌΠΌΡ Π° ΠΈ b Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ Π½Π΅ ΡΠ°ΠΊ ΡΠΆ ΡΠ°ΡΡΠΎ, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π²ΠΌΠ΅ΡΡΠΎ Π±ΡΠΊΠ² Π° ΠΈ b Π² Π½Π΅ΠΌ ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅, ΠΈΠ½ΠΎΠ³Π΄Π° Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ.
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΡ \( (a + b)^2, \; (a β b)^2 \) Π½Π΅ΡΡΡΠ΄Π½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ (ΡΠΏΡΠΎΡΡΠΈΡΡ) Π² ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Ρ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°, ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎ, Π²Ρ ΡΠΆΠ΅ Π²ΡΡΡΠ΅ΡΠ°Π»ΠΈΡΡ Ρ
ΡΠ°ΠΊΠΈΠΌ Π·Π°Π΄Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ²:
\( (a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\( = a^2 + 2ab + b^2 \)
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΏΠΎΠ»Π΅Π·Π½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ ΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ Π±Π΅Π· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ Π²ΡΠΊΠ»Π°Π΄ΠΎΠΊ. ΠΠΎΠΌΠΎΠ³Π°ΡΡ ΡΡΠΎΠΌΡ ΠΊΡΠ°ΡΠΊΠΈΠ΅ ΡΠ»ΠΎΠ²Π΅ΡΠ½ΡΠ΅ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠΈ.
\( (a + b)^2 = a^2 + b^2 + 2ab \) β ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΡΠΌΠΌΡ ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΠΈ ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ.
\( (a β b)^2 = a^2 + b^2 β 2ab \) β ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π±Π΅Π· ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ.
\( a^2 β b^2 = (a β b)(a + b) \) β ΡΠ°Π·Π½ΠΎΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ°Π·Π½ΠΎΡΡΠΈ Π½Π° ΡΡΠΌΠΌΡ.
ΠΡΠΈ ΡΡΠΈ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π² ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ Π·Π°ΠΌΠ΅Π½ΡΡΡ ΡΠ²ΠΎΠΈ Π»Π΅Π²ΡΠ΅ ΡΠ°ΡΡΠΈ ΠΏΡΠ°Π²ΡΠΌΠΈ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ β ΠΏΡΠ°Π²ΡΠ΅ ΡΠ°ΡΡΠΈ Π»Π΅Π²ΡΠΌΠΈ. Π‘Π°ΠΌΠΎΠ΅ ΡΡΡΠ΄Π½ΠΎΠ΅ ΠΏΡΠΈ ΡΡΠΎΠΌ β ΡΠ²ΠΈΠ΄Π΅ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΏΠΎΠ½ΡΡΡ, ΡΠ΅ΠΌ Π² Π½ΠΈΡ Π·Π°ΠΌΠ΅Π½Π΅Π½Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ Π° ΠΈ b. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΠΌΡΠ» ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ.
www.math-solution.ru
ΠΠ±ΡΡΠ½ΡΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΎΠ½Π»Π°ΠΉΠ½. ΒΌ + Β½ = ΒΎ.
ΠΠ±ΡΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ
ΠΠ±ΡΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ ΠΏΡΠΎΡΡΡΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π½Π° ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ΅, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅, ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅.
ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π±ΡΡΡΡΡΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠΌ
ΠΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π½Π° ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ΅, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, Π°ΡΠΊΡΠΈΠ½ΡΡ, Π°ΡΠΊΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ, Π°ΡΠΊΡΠ°Π½Π³Π΅Π½Ρ, Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ, ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠ°, Π»ΠΎΠ³Π°ΡΠΈΡΠΌ, ΠΏΡΠΎΡΠ΅Π½ΡΡ, ΡΠ°ΠΊΠΆΠ΅ Π΅ΡΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π² ΠΏΠ°ΠΌΡΡΠΈ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° ΠΎΠ½Π»Π°ΠΉΠ½. ΠΠΎΠΆΠ½ΠΎ Π½Π°Π±ΠΈΡΠ°ΡΡ ΠΏΡΡΠΌΠΎ Ρ ΠΊΠ»Π°Π²ΠΈΠ°ΡΡΡΡ, Π΄Π»Ρ ΡΡΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊΠ»ΠΈΠΊΠ½ΠΈΡΠ΅ Π½Π° ΠΎΠ±Π»Π°ΡΡΡ Ρ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠΌ.
ΠΡΠΏΠΎΠ»Π½ΡΠ΅Ρ ΠΏΡΠΎΡΡΡΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Ρ ΡΠΈΡΠ»Π°ΠΌΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΠΊΠ°ΠΊ
ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΎΠ½Π»Π°ΠΉΠ½.
ΒΌ + Β½ = ΒΎ.
ΠΠ΄Π΅ΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π΄Π²Π° ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ°:
- ΠΠ΅ΡΠ²ΡΠΉ Π²ΡΡΠΈΡΠ»ΡΠ΅Ρ ΠΊΠ°ΠΊ ΠΎΠ±ΡΡΠ½ΡΠΉ
- ΠΡΠΎΡΠΎΠΉ Π²ΡΡΠΈΡΠ»ΡΠ΅Ρ ΠΊΠ°ΠΊ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΠΉ
ΠΡΠ°Π²ΠΈΠ»Π° ΠΎΡΠ½ΠΎΡΡΡΡΡ ΠΊ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΡ, ΠΊΠΎΡΠΎΡΡΠΉ Π²ΡΡΠΈΡΠ»ΡΠ΅Ρ Π½Π° ΡΠ΅ΡΠ²Π΅ΡΠ΅
ΠΡΠ°Π²ΠΈΠ»Π° Π²Π²ΠΎΠ΄Π° Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ ΡΠΎΡΡΠΎΡΡΡ ΠΈΠ· ΡΡΠ½ΠΊΡΠΈΠΉ (ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π°Π½Ρ Π² Π°Π»ΡΠ°Π²ΠΈΡΠ½ΠΎΠΌ ΠΏΠΎΡΡΠ΄ΠΊΠ΅):- absolute(x)
- ΠΠ±ΡΠΎΠ»ΡΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ x
(ΠΌΠΎΠ΄ΡΠ»Ρ x ΠΈΠ»ΠΈ |x|) - arccos(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β Π°ΡΠΊΠΊΠΎΡΠΈΠ½ΡΡ ΠΎΡ x
- arccosh(x)
- ΠΡΠΊΠΊΠΎΡΠΈΠ½ΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- arcsin(x)
- ΠΡΠΊΡΠΈΠ½ΡΡ ΠΎΡ x
- arcsinh(x)
- ΠΡΠΊΡΠΈΠ½ΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- arctg(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β Π°ΡΠΊΡΠ°Π½Π³Π΅Π½Ρ ΠΎΡ x
- arctgh(x)
- ΠΡΠΊΡΠ°Π½Π³Π΅Π½Ρ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- e
- e ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠ°Π²Π½ΠΎ 2.7
- exp(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠ° ΠΎΡ x (ΡΡΠΎ ΠΈ e^x)
- log(x) or ln(x)
- ΠΠ°ΡΡΡΠ°Π»ΡΠ½ΡΠΉ Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΠΎΡ x
(Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ log7(x), Π½Π°Π΄ΠΎ Π²Π²Π΅ΡΡΠΈ log(x)/log(7) (ΠΈΠ»ΠΈ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ Π΄Π»Ρ log10(x)=log(x)/log(10)) - pi
- Π§ΠΈΡΠ»ΠΎ β Β«ΠΠΈΒ», ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠ°Π²Π½ΠΎ 3.14
- sin(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β Π‘ΠΈΠ½ΡΡ ΠΎΡ x
- cos(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β ΠΠΎΡΠΈΠ½ΡΡ ΠΎΡ x
- sinh(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β Π‘ΠΈΠ½ΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- cosh(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β ΠΠΎΡΠΈΠ½ΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- sqrt(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· x
- sqr(x) ΠΈΠ»ΠΈ x^2
- Π€ΡΠ½ΠΊΡΠΈΡ β ΠΠ²Π°Π΄ΡΠ°Ρ x
- tg(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β Π’Π°Π½Π³Π΅Π½Ρ ΠΎΡ x
- tgh(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β Π’Π°Π½Π³Π΅Π½Ρ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- cbrt(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· x
- floor(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β ΠΎΠΊΡΡΠ³Π»Π΅Π½ΠΈΠ΅ x Π² ΠΌΠ΅Π½ΡΡΡΡ ΡΡΠΎΡΠΎΠ½Ρ (ΠΏΡΠΈΠΌΠ΅Ρ floor(4.5)==4.0)
- sign(x)
- Π€ΡΠ½ΠΊΡΠΈΡ β ΠΠ½Π°ΠΊ x
- erf(x)
- Π€ΡΠ½ΠΊΡΠΈΡ ΠΎΡΠΈΠ±ΠΎΠΊ (ΠΠ°ΠΏΠ»Π°ΡΠ° ΠΈΠ»ΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ)
- ΠΠ΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°
- Π²Π²ΠΎΠ΄ΠΈΡΡ Π² Π²ΠΈΠ΄Π΅ 7.5, Π½Π΅ 7,5
- 2*x
- β ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅
- 3/x
- β Π΄Π΅Π»Π΅Π½ΠΈΠ΅
- x^3
- β Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ
- x + 7
- β ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅
- x β 6
- β Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅
ΠΠ°ΡΠ΅ΠΌ Π½ΡΠΆΠ΅Π½ ΡΡΠΎΡ ΠΎΠ½-Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ?
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΎΠ½Π»Π°ΠΉΠ½ β ΡΠ΅ΠΌ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΠΎΠ±ΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ°? ΠΠΎ-ΠΏΠ΅ΡΠ²ΡΡ
, ΠΎΠ±ΡΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π½Π΅ ΡΠ΄ΠΎΠ±Π½ΠΎ Π½ΠΎΡΠΈΡΡ Ρ ΡΠΎΠ±ΠΎΠΉ, Π²ΠΎ-Π²ΡΠΎΡΡΡ
β ΡΠΆΠ΅ ΡΠ΅ΠΉΡΠ°Ρ ΠΈΠ½ΡΠ΅ΡΠ½Π΅Ρ Π΅ΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π²Π΅Π·Π΄Π΅, ΠΏΠΎ-ΡΡΠΎΠΌΡ Π½Π΅ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π·Π°ΠΉΡΠΈ Π½Π° Π½Π°Ρ ΡΠ°ΠΉΡ ΠΈ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠΌ.
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΎΠ½-Π»Π°ΠΉΠ½ β ΡΠ΅ΠΌ ΠΎΠ½ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ java-ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΡ Π΄ΡΡΠ³ΠΈΡ
ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠ² Π΄Π»Ρ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ? β ΠΎΠΏΡΡΡ ΠΆΠ΅ β ΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΠΎΡΡΡ. ΠΡΠ»ΠΈ ΠΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΠ΅ΡΡ Π·Π° Π΄ΡΡΠ³ΠΈΠΌ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠΎΠΌ, ΡΠΎ Π½Π΅ Π½Π°Π΄ΠΎ ΡΠ½ΠΎΠ²Π° ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°ΡΡ
ΠΡΠ°ΠΊ, ΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ΡΡ ΡΡΠΈΠΌ ΠΎΠ½Π»Π°ΠΉΠ½!
www.kontrolnaya-rabota.ru
Π£ΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΠ°Π΄Π°Π½ΠΈΠ΅ 9
Π£ΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΠ°Π΄Π°Π½ΠΈΠ΅ 9.
ΠΡΠΈ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΡΠΈΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΡΡ ΡΠ°ΠΊΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ:
1. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ» ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ Π²ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊ ΡΠ³Π»Π°ΠΌ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠ΅ΡΠ²Π΅ΡΡΠΈ.
2. ΠΠΎΡΠΌΠΎΡΡΠ΅ΡΡ, ΠΊΠ°ΠΊ ΡΠΎΠΎΡΠ½ΠΎΡΡΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ³Π»Ρ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΠΊΠ°ΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ. Π Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ Π·Π°Π΄Π°Ρ ΡΡΠΎ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΈΠ»ΠΈ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅
3. ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ.
ΠΡΠ΅ΠΆΠ΄Π΅ ΡΠ΅ΠΌ ΡΠΈΡΠ°ΡΡ Π΄Π°Π»ΡΡΠ΅, ΠΎΡΠ΅Π½Ρ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΡ ΠΏΠ΅ΡΠ΅ΡΠΈΡΠ°ΡΡ ΡΡΠ°ΡΡΡ, ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈ Π½Π΅ Π·Π°ΡΡΠΈΠ²Π°ΡΡ ΠΈΡ .
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Π½Π° ΡΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈΠ· ΠΡΠΊΡΡΡΠΎΠ³ΠΎ Π±Π°Π½ΠΊΠ° Π·Π°Π΄Π°Π½ΠΈΠΉ Π΄Π»Ρ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΊ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅.
1. ΠΠ°Π΄Π°Π½ΠΈΠ΅ B10 (β 26756) ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
ΠΡ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ , ΠΏΠΎΡΡΠΎΠΌΡ Π»ΠΈΠ±ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠΎΡΠΈΠ½ΡΡΠ° Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, Π»ΠΈΠ±ΠΎ, Π½Π°ΠΎΠ±ΡΠΎΡ ΡΠ²Π΅ΡΠ½Π΅ΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΏΠΎ ΡΠΎΠΉ ΠΆΠ΅ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΠ²Π΅Ρ: -24.
2. ΠΠ°Π΄Π°Π½ΠΈΠ΅ B10 (β 26757) ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
ΠΠ°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ
ΠΠΎΡΠΏΠΎΠ»ΡΠ·Π΅ΡΠΌΡΡ ΡΠΎΠΌΡΠ»ΠΎΠΉ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ:
ΠΡΠ²Π΅Ρ: 5.
3. ΠΠ°Π΄Π°Π½ΠΈΠ΅ B10(β 26757) ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ Π΄ΡΠΎΠ±ΠΈ:
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΡΠΈΠ½ΡΡ β Π½Π΅ΡΠ΅ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, Π° ΠΊΠΎΡΠΈΠ½ΡΡ β ΡΠ΅ΡΠ½Π°Ρ:
Π ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΠΈΠ½ΡΡΠ° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°. ΠΠΎΠ»ΡΡΠΈΠΌ:
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΡΡΠ³Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅
ΠΈ
:
ΠΠΎΠ»ΡΡΠΈΠΌ:
ΠΡΠ²Π΅Ρ: β 16.
4. ΠΠ°Π΄Π°Π½ΠΈΠ΅ B10 (β 26770) ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ:
ΠΡΠ²Π΅Ρ: β 5.
5. ΠΠ°Π΄Π°Π½ΠΈΠ΅ B10 (β 26774) ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
Π‘Π½ΠΎΠ²Π° Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ:
ΠΡΠ²Π΅Ρ: 12.
6. ΠΠ°Π΄Π°Π½ΠΈΠ΅ B10 (β 26776) ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ , Π΅ΡΠ»ΠΈ
ΠΈ
ΠΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Ρ:
ΠΠΎΡΠΈΠ½ΡΡ Π² ΡΡΠ΅ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ²Π΅ΡΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½, ΠΏΠΎΡΡΠΎΠΌΡ
ΠΡΡΡΠ΄Π°
ΠΡΠ²Π΅Ρ: 5.
7. ΠΠ°Π΄Π°Π½ΠΈΠ΅ B10 (β 26781) ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ:
ΠΠΎΠ»ΡΡΠΈΠΌ:
ΠΡΠ²Π΅Ρ: 2
ΠΠ΅ΡΠΎΡΡΠ½ΠΎ, ΠΠ°Ρ Π±ΡΠ°ΡΠ·Π΅Ρ Π½Π΅ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π΅ΡΡΡ. ΠΠΎΠΏΡΠΎΠ±ΡΠΉΡΠ΅ ΡΠΊΠ°ΡΠ°ΡΡFirefox
Π.Π. Π€Π΅Π»ΡΠ΄ΠΌΠ°Π½, ΡΠ΅ΠΏΠ΅ΡΠΈΡΠΎΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅.
ΠΡΠΏΠΈΡΡ Π²ΠΈΠ΄Π΅ΠΎΠΊΡΡΡ Β«ΠΠ‘Π― Π’Π ΠΠΠΠΠΠΠΠ’Π ΠΠ―. Π§Π°ΡΡΡ Π ΠΈ 13Β»
ege-ok.ru
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Ρ ΡΠ°ΡΡΠΈΡΠ΅Π½Π½ΡΠΌΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΠΌΠΈ.
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΎΠ½Π»Π°ΠΉΠ½ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Π£Π΄ΠΎΠ±Π½ΡΠΉ ΠΈ ΠΏΡΠΎΡΡΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Ρ Π±ΠΎΠ³Π°ΡΡΠΌ Π°ΡΡΠ΅Π½Π°Π»ΠΎΠΌ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠ΅ΠΉ Π΄Π»Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ΅ΠΌ Ρ ΠΏΡΠΈΡΡΠ½ΡΠΌ ΠΈ ΠΏΠΎΠ½ΡΡΠ½ΡΠΌ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΉΡΠΎΠΌ, ΡΠΏΠΎΡΠΎΠ±Π΅Π½ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π»ΡΠ±ΡΠ΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ. ΠΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΌΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π½ΡΡ
ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ: β’ ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΉ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΈ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ: β’ Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠ»Π° Π½Π° ΠΏΡΠΎΡΡΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ. ΠΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΊΠΎΠ½Π²Π΅ΡΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠ°Π·Π½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ (ΠΌΠ°ΡΡΠ°, ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅, Π²ΡΠ΅ΠΌΡ, ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΡΠ΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ Π΄Ρ. Π‘ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΠΌΠΈ Π½Π°ΡΠ΅Π³ΠΎ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° Π²Ρ ΡΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ ΡΡΠ½ΡΡ Π² ΠΊΠΈΠ»ΠΎΠ³ΡΠ°ΠΌΠΌΡ, ΠΌΠΈΠ»ΠΈ Π² ΠΊΠΈΠ»ΠΎΠΌΠ΅ΡΡΡ, ΡΠ΅ΠΊΡΠ½Π΄Ρ Π² ΡΠ°ΡΡ ΠΈ Ρ.Π΄. ΠΠ»Ρ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ², ΠΏΡΠΎΡΡΠΎ Π²Π²Π΅Π΄ΠΈΡΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ ΠΏΠΎΠ»Π΅ ΠΈ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° Π½Π°ΠΆΠΌΠΈΡΠ΅ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. ΠΠ»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π² ΠΏΠΎΠ»Π΅ Π²Π²ΠΎΠ΄Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠ°Π½Π΅Π»ΠΈ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠ² Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΈ Π½Π°ΠΆΠ°ΡΡ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡ Ρ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π³ΡΠ°ΡΠΈΠΊΠ°. ΠΠ½ΠΎΠΏΠΊΠ° Ρ Π½Π°Π΄ΠΏΠΈΡΡΡ Unit ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π° Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π° Π² ΠΊΠΎΠ½Π²Π΅ΡΡΠ΅Ρ Π²Π΅Π»ΠΈΡΠΈΠ½, Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΌΠ°ΡΡΠΈΡ Π½Π°ΠΆΠΌΠΈΡΠ΅ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡ Matrix. Π ΡΠ°Π±Π»ΠΈΡΠ΅ ΡΠΊΠ°Π·Π°Π½Ρ Π²ΡΠ΅ ΠΊΠ»Π°Π²ΠΈΡΠΈ (ΡΠΎ Π·Π½Π°ΡΠΊΠΎΠΌ * Π²ΡΠ·ΡΠ²Π°Π΅ΡΡΡ ΡΠ΅ΡΠ΅Π· Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠ»Π°Π²ΠΈΡΡ II) ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° ΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΠΌΡΠ΅ ΠΈΠΌΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ.
Π’Π΅ΠΏΠ΅ΡΡ, ΠΊΠΎΠ³Π΄Π° Π²Π°ΠΌ ΠΏΠΎΠ½Π°Π΄ΠΎΠ±ΠΈΡΡΡ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ, ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡΠ΅ Π½Π° ΡΠ°ΠΉΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΡΠΉ Π½Π°ΡΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ. |
ncor.ru