ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ? π€ Π€ΠΎΡΠΌΡΠ»Ρ, ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ.
ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΠΎΠ΄Π½Π° ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½. ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΏΡΠΈ ΠΈΡ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π² ΠΏΡΠΈΠΌΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎΡΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ 8 + 4 = 12. ΠΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, ΡΠΎ Π΅ΡΡΡ 12 = 12.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ 8 + x = 12, Ρ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΡΠ°ΠΊΠΈΠΌ, ΡΡΠΎΠ±Ρ Π·Π½Π°ΠΊ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π±ΡΠ» ΠΎΠΏΡΠ°Π²Π΄Π°Π½, ΠΈ Π»Π΅Π²Π°Ρ ΡΠ°ΡΡΡ ΡΠ°Π²Π½ΡΠ»Π°ΡΡ ΠΏΡΠ°Π²ΠΎΠΉ.
Π‘ΡΠ΅ΠΏΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠΎΠΈΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅. ΠΡΠ»ΠΈ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΡΠΎΠΈΡ Π²ΠΎ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π·Π½Π°ΡΠΈΡ, ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ax2 + bx + c = 0, Π³Π΄Π΅ a β ΠΏΠ΅ΡΠ²ΡΠΉ ΠΈΠ»ΠΈ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, Π½Π΅ ΡΠ°Π²Π½ΡΠΉ Π½ΡΠ»Ρ, b β Π²ΡΠΎΡΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, c β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½.
ΠΡΡΡ ΡΡΠΈ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
- Π½Π΅ ΠΈΠΌΠ΅ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ;
- ΠΈΠΌΠ΅ΡΡ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ;
- ΠΈΠΌΠ΅ΡΡ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ.
ΠΠΎΠ½ΡΡΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π² ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π΅ Ρ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π±ΡΠΊΠ²ΠΎΠΉ D.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ β ΠΎΡΠ»ΠΈΡΠ½ΡΠΉ ΠΏΠΎΠΌΠΎΡΠ½ΠΈΠΊ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠ½Π΅ΠΉ.
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
Π ΡΡΠΎΠΌ ΠΊΠ»ΡΡΠ΅ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΡΠ° ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π΄Π°ΠΆΠ΅ Π΄Π»Ρ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΠΎ Π΅ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ β Π²ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΠΈΠ΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π§ΡΠΎΠ±Ρ Π² Π½ΠΈΡ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ, ΡΠΎΡ ΡΠ°Π½ΡΠΉΡΠ΅ ΡΠ°Π±Π»ΠΈΡΠΊΡ ΠΈΠ»ΠΈ ΡΠ°ΡΠΏΠ΅ΡΠ°ΡΠ°ΠΉΡΠ΅ Π΅Π΅ ΠΈ Ρ ΡΠ°Π½ΠΈΡΠ΅ Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ΅.
ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
Π 8 ΠΊΠ»Π°ΡΡΠ΅ Π½Π° Π°Π»Π³Π΅Π±ΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠ΅ΡΠΈΡΡ Π·Π°Π΄Π°ΡΡ ΠΏΠΎ ΠΏΠΎΠΈΡΠΊΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ax2 + bx + c = 0:
- ΠΊΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠ½ΠΈΠ½Π°Π½Ρ: D = b2 β 4ac;
- Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ β Π·Π°ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°ΡΡ, ΡΡΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ;
- Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ β Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ Ρ = β b2/2a;
- Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ β Π½Π°ΠΉΡΠΈ Π΄Π²Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠΎΡΠ½Π΅ΠΉ
Π Π²ΠΎΡ ΠΈ Π΅ΡΠ΅ ΠΎΠ΄Π½Π° ΡΠ°Π±Π»ΠΈΡΠΊΠ°: Π² Π½Π΅ΠΉ Π²Ρ Π½Π°ΠΉΠ΄Π΅ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Ρ Π»Π΅Π³ΠΊΠΎΡΡΡΡ Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ, Π²Π°ΠΆΠ½ΠΎ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΎΠ²Π°ΡΡΡΡ. ΠΠΏΠ΅ΡΠ΅Π΄!
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΡΠΈΠΌΠ΅Ρ 1. Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅: 3x2 β 4x + 2 = 0.
ΠΠ°ΠΊ ΡΠ΅ΡΠ°Π΅ΠΌ:
- ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ: a = 3, b = -4, c = 2.
- ΠΠ°ΠΉΠ΄Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ: D = b2 β 4ac = (-4)2 β 4 * 3 * 2 = 16 β 24 = -8.
ΠΡΠ²Π΅Ρ: D < 0, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΡΠΈΠΌΠ΅Ρ 2. Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅: x2 β 6x + 9 = 0.
ΠΠ°ΠΊ ΡΠ΅ΡΠ°Π΅ΠΌ:
- ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ: a = 1, b = -6, c = 9.
- ΠΠ°ΠΉΠ΄Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ: D = b2 β 4ac = (-6)2 β 4 * 1 * 9 = 36 β 36 = 0.
- D = 0, Π·Π½Π°ΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ:
ΠΡΠ²Π΅Ρ: ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ 3.
ΠΡΠΈΠΌΠ΅Ρ 3. Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅: x2 β 4x β 5 = 0.
ΠΠ°ΠΊ ΡΠ΅ΡΠ°Π΅ΠΌ:
- ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ: a = 1, b = -4, c = -5.
- ΠΠ°ΠΉΠ΄Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ: D = b2 β 4ac = (-4)2 β 4 * 1 * (-5) = 16 + 20 = 36.
- D > 0, Π·Π½Π°ΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ:
x1 = (4 + 6) : 2 = 5,
x2 = (4 β 6) : 2 = -1.
ΠΡΠ²Π΅Ρ: Π΄Π²Π° ΠΊΠΎΡΠ½Ρ x1 = 5, x2 = -1.
ΠΠ΅ ΠΆΠ΅Π»Π°Π΅ΡΡ ΠΏΠΎΠ²ΡΠΎΡΠΈΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ?
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π€ΠΎΡΠΌΡΠ»Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, Π½Π°Ρ ΠΎΠ΄ΡΡΠ΅Π΅ΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ D.
ΠΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΊΠΎΡΠΎΡΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΠΈΠΌΠ΅Π΅Ρ Π»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ½ΠΈ ΠΈ ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΈΡ , Π½Π΅ ΡΠ΅ΡΠ°Ρ ΡΠ°ΠΌΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
- ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ.
- ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ.
- ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΠ΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ Π΅ΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΎΡΠΌΡΠ» Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°, ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΏΠ΅ΡΠ²ΡΡ:
D = b2 β 4ac,
ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½Π° ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠΎΡΠΌΡΠ»Π΅:
,
ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ°Π½Π½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΈΡ Π΄Π°ΠΆΠ΅ Π΄Π»Ρ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ
ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΡΡΠ°Π²Π½ΠΈΡΡ Π΅Π³ΠΎ Ρ Π½ΡΠ»ΡΠΌ. Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°, Π»ΠΈΠ±ΠΎ ΠΈΡΠΊΠ°ΡΡ ΠΊΠΎΡΠ½ΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅, Π»ΠΈΠ±ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΡΠΈΠΌΠ΅Ρ 1. Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
3x2 β 4x + 2 = 0.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
a = 3, b = -4, c = 2.
ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
D = b2 β 4ac = (-4)2 β 4 Β· 3 Β· 2 = 16 β 24 = -8,
D < 0.
ΠΡΠ²Π΅Ρ: ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΡΠΈΠΌΠ΅Ρ 2.
x2 β 6x + 9 = 0.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
a = 1, b = -6, c = 9.
ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
D = b2 β 4ac = (-6)2 β 4 Β· 1 Β· 9 = 36 β 36 = 0,
D = 0.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π²ΡΠ΅Π³ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ:
ΠΡΠ²Π΅Ρ: 3.
ΠΡΠΈΠΌΠ΅Ρ 3.
x2 β 4x β 5 = 0.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
a = 1, b = -4, c
ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
D = b2 β 4ac = (-4)2 β 4 Β· 1 Β· (-5) = 16 + 20 = 36,
D > 0.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ:
x1 = (4 + 6) : 2 = 5,
x2 = (4 β 6) : 2 = -1.
ΠΡΠ²Π΅Ρ: 5, -1.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΠ·ΡΡΠ°ΡΡ Π² 8 ΠΊΠ»Π°ΡΡΠ΅, ΠΏΠΎΡΡΠΎΠΌΡ Π½ΠΈΡΠ΅Π³ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ Π·Π΄Π΅ΡΡ Π½Π΅Ρ. Π£ΠΌΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ°ΡΡ ΠΈΡ
ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ax2 + bx + c = 0, Π³Π΄Π΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ a, b ΠΈ c β ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΏΡΠΈΡΠ΅ΠΌ a β 0.
ΠΡΠ΅ΠΆΠ΄Π΅, ΡΠ΅ΠΌ ΠΈΠ·ΡΡΠ°ΡΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ, Π·Π°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Π²ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ»ΠΎΠ²Π½ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π½Π° ΡΡΠΈ ΠΊΠ»Π°ΡΡΠ°:
- ΠΠ΅ ΠΈΠΌΠ΅ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ;
- ΠΠΌΠ΅ΡΡ ΡΠΎΠ²Π½ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ;
- ΠΠΌΠ΅ΡΡ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ.
Π ΡΡΠΎΠΌ ΡΠΎΡΡΠΎΠΈΡ Π²Π°ΠΆΠ½ΠΎΠ΅ ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΎΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ , Π³Π΄Π΅ ΠΊΠΎΡΠ΅Π½Ρ Π²ΡΠ΅Π³Π΄Π° ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π΅Π½. ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅? ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ Π²Π΅ΡΡ β Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΡΡΡΡ Π΄Π°Π½ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ax2 + bx + c = 0. Π’ΠΎΠ³Π΄Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ β ΡΡΠΎ ΠΏΡΠΎΡΡΠΎ ΡΠΈΡΠ»ΠΎ D = b2 β 4ac.
ΠΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ Π½Π°ΠΈΠ·ΡΡΡΡ. ΠΡΠΊΡΠ΄Π° ΠΎΠ½Π° Π±Π΅ΡΠ΅ΡΡΡ β ΡΠ΅ΠΉΡΠ°Ρ Π½Π΅Π²Π°ΠΆΠ½ΠΎ. ΠΠ°ΠΆΠ½ΠΎ Π΄ΡΡΠ³ΠΎΠ΅: ΠΏΠΎ Π·Π½Π°ΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. Π ΠΈΠΌΠ΅Π½Π½ΠΎ:
- ΠΡΠ»ΠΈ D < 0, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ;
- ΠΡΠ»ΠΈ D = 0, Π΅ΡΡΡ ΡΠΎΠ²Π½ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ;
- ΠΡΠ»ΠΈ D > 0, ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ Π΄Π²Π°.
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅: Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ, Π° Π²ΠΎΠ²ΡΠ΅ Π½Π΅ Π½Π° ΠΈΡ Π·Π½Π°ΠΊΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΡΠ΅ΠΌΡ-ΡΠΎ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΡΡΠΈΡΠ°ΡΡ. ΠΠ·Π³Π»ΡΠ½ΠΈΡΠ΅ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΡ β ΠΈ ΡΠ°ΠΌΠΈ Π²ΡΠ΅ ΠΏΠΎΠΉΠΌΠ΅ΡΠ΅:
ΠΠ°Π΄Π°ΡΠ°. Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
- x2 β 8x + 12 = 0;
- 5x2 + 3x + 7 = 0;
- x2 β 6x + 9 = 0.
ΠΡΠΏΠΈΡΠ΅ΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
a = 1, b = β8, c = 12;
D = (β8)2 β 4 Β· 1 Β· 12 = 64 β 48 = 16
ΠΡΠ°ΠΊ, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠ°Π·Π±ΠΈΡΠ°Π΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
a = 5; b = 3; c = 7;
D = 32 β 4 Β· 5 Β· 7 = 9 β 140 = β131.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ. ΠΡΡΠ°Π»ΠΎΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
a = 1; b = β6; c = 9;
D = (β6)2 β 4 Β· 1 Β· 9 = 36 β 36 = 0.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ β ΠΊΠΎΡΠ΅Π½Ρ Π±ΡΠ΄Π΅Ρ ΠΎΠ΄ΠΈΠ½.
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π±ΡΠ»ΠΈ Π²ΡΠΏΠΈΡΠ°Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ. ΠΠ°, ΡΡΠΎ Π΄ΠΎΠ»Π³ΠΎ, Π΄Π°, ΡΡΠΎ Π½ΡΠ΄Π½ΠΎ β Π·Π°ΡΠΎ Π²Ρ Π½Π΅ ΠΏΠ΅ΡΠ΅ΠΏΡΡΠ°Π΅ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΈ Π½Π΅ Π΄ΠΎΠΏΡΡΡΠΈΡΠ΅ Π³Π»ΡΠΏΡΡ ΠΎΡΠΈΠ±ΠΎΠΊ. ΠΡΠ±ΠΈΡΠ°ΠΉΡΠ΅ ΡΠ°ΠΌΠΈ: ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ»ΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ.
ΠΡΡΠ°ΡΠΈ, Π΅ΡΠ»ΠΈ Β«Π½Π°Π±ΠΈΡΡ ΡΡΠΊΡΒ», ΡΠ΅ΡΠ΅Π· Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΡΠΆΠ΅ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π²ΡΠΏΠΈΡΡΠ²Π°ΡΡ Π²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ. Π’Π°ΠΊΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π²Ρ Π±ΡΠ΄Π΅ΡΠ΅ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π² Π³ΠΎΠ»ΠΎΠ²Π΅. ΠΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ Π»ΡΠ΄Π΅ΠΉ Π½Π°ΡΠΈΠ½Π°ΡΡ Π΄Π΅Π»Π°ΡΡ ΡΠ°ΠΊ Π³Π΄Π΅-ΡΠΎ ΠΏΠΎΡΠ»Π΅ 50-70 ΡΠ΅ΡΠ΅Π½Π½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ β Π² ΠΎΠ±ΡΠ΅ΠΌ, Π½Π΅ ΡΠ°ΠΊ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎ.
ΠΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠ΅ΡΠ΅ΠΉΠ΄Π΅ΠΌ, ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎ, ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ D > 0, ΠΊΠΎΡΠ½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ:
ΠΡΠ½ΠΎΠ²Π½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΠΎΠ³Π΄Π° D = 0, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π»ΡΠ±ΡΡ ΠΈΠ· ΡΡΠΈΡ ΡΠΎΡΠΌΡΠ» β ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΈ Π±ΡΠ΄Π΅Ρ ΠΎΡΠ²Π΅ΡΠΎΠΌ. ΠΠ°ΠΊΠΎΠ½Π΅Ρ, Π΅ΡΠ»ΠΈ D < 0, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ β Π½ΠΈΡΠ΅Π³ΠΎ ΡΡΠΈΡΠ°ΡΡ Π½Π΅ Π½Π°Π΄ΠΎ.
ΠΠ°Π΄Π°ΡΠ°. Π Π΅ΡΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
- x2 β 2x β 3 = 0;
- 15 β 2x β x2 = 0;
- x2 + 12x + 36 = 0.
ΠΠ΅ΡΠ²ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
x2 β 2x β 3 = 0 β a = 1; b = β2; c = β3;
D = (β2)2 β 4 Β· 1 Β· (β3) = 16.
D > 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΈΡ :
ΠΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
15 β 2x β x2 = 0 β a = β1; b = β2; c = 15;
D = (β2)2 β 4 Β· (β1) Β· 15 = 64.
D > 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ½ΠΎΠ²Π° ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΈΡ
\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left( -1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left( -1 \right)}=3. \\ \end{align}\]
ΠΠ°ΠΊΠΎΠ½Π΅Ρ, ΡΡΠ΅ΡΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
x2 + 12x + 36 = 0 β a = 1; b = 12; c = 36;
D = 122 β 4 Β· 1 Β· 36 = 0.
D = 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ. ΠΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π»ΡΠ±ΡΡ ΡΠΎΡΠΌΡΠ»Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ²ΡΡ:
\[x=\frac{-12+\sqrt{0}}{2\cdot 1}=-6\]
ΠΠ°ΠΊ Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ², Π²ΡΠ΅ ΠΎΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΠΎ. ΠΡΠ»ΠΈ Π·Π½Π°ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΡΠΌΠ΅ΡΡ ΡΡΠΈΡΠ°ΡΡ, ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π½Π΅ Π±ΡΠ΄Π΅Ρ. Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΎΡΠΈΠ±ΠΊΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ ΠΏΡΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π² ΡΠΎΡΠΌΡΠ»Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ². ΠΠ΄Π΅ΡΡ ΠΎΠΏΡΡΡ ΠΆΠ΅ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ΅ΠΌ, ΠΎΠΏΠΈΡΠ°Π½Π½ΡΠΉ Π²ΡΡΠ΅: ΡΠΌΠΎΡΡΠΈΡΠ΅ Π½Π° ΡΠΎΡΠΌΡΠ»Ρ Π±ΡΠΊΠ²Π°Π»ΡΠ½ΠΎ, ΡΠ°ΡΠΏΠΈΡΡΠ²Π°ΠΉΡΠ΅ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π³ β ΠΈ ΠΎΡΠ΅Π½Ρ ΡΠΊΠΎΡΠΎ ΠΈΠ·Π±Π°Π²ΠΈΡΠ΅ΡΡ ΠΎΡ ΠΎΡΠΈΠ±ΠΎΠΊ.
ΠΠ΅ΠΏΠΎΠ»Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΡΠ²Π°Π΅Ρ, ΡΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π΄Π°Π½ΠΎ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:
- x2 + 9x = 0;
- x2 β 16 = 0.
ΠΠ΅ΡΠ»ΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π² ΡΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ . Π’Π°ΠΊΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ°ΡΡΡΡ Π΄Π°ΠΆΠ΅ Π»Π΅Π³ΡΠ΅, ΡΠ΅ΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅: Π² Π½ΠΈΡ Π΄Π°ΠΆΠ΅ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΡΠΈΡΠ°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. ΠΡΠ°ΠΊ, Π²Π²Π΅Π΄Π΅ΠΌ Π½ΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ½ΡΡΠΈΠ΅:
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ax2 + bx + c = 0 Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π½Π΅ΠΏΠΎΠ»Π½ΡΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ, Π΅ΡΠ»ΠΈ b = 0 ΠΈΠ»ΠΈ c = 0, Ρ.Π΅. ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΠΈΠ»ΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ.
Π Π°Π·ΡΠΌΠ΅Π΅ΡΡΡ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ΅Π½ ΡΠΎΠ²ΡΠ΅ΠΌ ΡΡΠΆΠ΅Π»ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ, ΠΊΠΎΠ³Π΄Π° ΠΎΠ±Π° ΡΡΠΈΡ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ: b = c = 0. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄ ax2 = 0. ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ: x = 0.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ. ΠΡΡΡΡ b = 0, ΡΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡΡΠΈΠΌ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ax2 + c = 0. ΠΠ΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ Π΅Π³ΠΎ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΠ· Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΠΌΡΡΠ» ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈ (βc/a) β₯ 0. ΠΡΠ²ΠΎΠ΄:
- ΠΡΠ»ΠΈ Π² Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Π²ΠΈΠ΄Π° ax2 + c = 0 Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ (βc/a) β₯ 0, ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ Π΄Π²Π°. Π€ΠΎΡΠΌΡΠ»Π° Π΄Π°Π½Π° Π²ΡΡΠ΅;
- ΠΡΠ»ΠΈ ΠΆΠ΅ (βc/a) < 0, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΠΎΠ²Π°Π»ΡΡ β Π² Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ Π²ΠΎΠΎΠ±ΡΠ΅ Π½Π΅Ρ ΡΠ»ΠΎΠΆΠ½ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ. ΠΠ° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅ Π΄Π°ΠΆΠ΅ Π½Π΅ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ (βc/a) β₯ 0. ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ x2 ΠΈ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ, ΡΡΠΎ ΡΡΠΎΠΈΡ Ρ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ ΠΎΡ Π·Π½Π°ΠΊΠ° ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. ΠΡΠ»ΠΈ ΡΠ°ΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ β ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ Π΄Π²Π°. ΠΡΠ»ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ β ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅ Π±ΡΠ΄Π΅Ρ Π²ΠΎΠΎΠ±ΡΠ΅.
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌΡΡ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ Π²ΠΈΠ΄Π° ax2 + bx = 0, Π² ΠΊΠΎΡΠΎΡΡΡ
ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. Π’ΡΡ Π²ΡΠ΅ ΠΏΡΠΎΡΡΠΎ: ΠΊΠΎΡΠ½Π΅ΠΉ Π²ΡΠ΅Π³Π΄Π° Π±ΡΠ΄Π΅Ρ Π΄Π²Π°. ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ:
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ, ΠΊΠΎΠ³Π΄Π° Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. ΠΡΡΡΠ΄Π° Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ ΠΊΠΎΡΠ½ΠΈ. Π Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°ΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
ΠΠ°Π΄Π°ΡΠ°. Π Π΅ΡΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
- x2 β 7x = 0;
- 5x2 + 30 = 0;
- 4x2 β 9 = 0.
x2 β 7x = 0 β x Β· (x β 7) = 0 β x1 = 0; x2 = β(β7)/1 = 7.
5x2 + 30 = 0 β 5x2 = β30 β x2 = β6. ΠΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ, Ρ.ΠΊ. ΠΊΠ²Π°Π΄ΡΠ°Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π²Π΅Π½ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ.
4x2 β 9 = 0 β 4x2 = 9 β x2 = 9/4 β x1 = 3/2 = 1,5; x2 = β1,5.
Π‘ΠΌΠΎΡΡΠΈΡΠ΅ ΡΠ°ΠΊΠΆΠ΅:
- Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ°
- Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΡ ΠΈΠ· ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΠ΅ΡΠ°
- Π’Π΅ΡΡ Π½Π° ΡΠ΅ΠΌΡ Β«ΠΠ½Π°ΡΠ°ΡΠ°Ρ ΡΠ°ΡΡΡ ΡΠΈΡΠ»Π°Β»
- ΠΡΠ°Π²ΠΈΠ»Π° ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΎΡΠΈΠΊΠΈ Π² Π·Π°Π΄Π°ΡΠ΅ B6
- ΠΠ°ΠΊ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ ΠΎΠ±ΡΡΠ½ΡΡ Π΄ΡΠΎΠ±Ρ Π² Π²ΠΈΠ΄Π΅ Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠΉ
- ΠΠ°Π΄Π°ΡΠ° B15: ΡΠ°ΡΡΠ½ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ ΠΏΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ
Π Π΅ΡΠ΅Π½ΠΈΠ΅ (ΠΊΠΎΡΠ½ΠΈ) ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° axΒ² + bx + c = 0,
Π³Π΄Π΅ x β ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ΅, a, b, c β Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΈΡΠ»Π°, ΠΏΡΠΈΡΡΠΌ a β 0.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅
2xΒ² β 3x + 1 = 0,
Π² ΠΊΠΎΡΠΎΡΠΎΠΌ a = 2, b = β 3, c = 1.
Π ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ axΒ² + bx + c = 0 ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ a Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ, b β Π²ΡΠΎΡΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ, c β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΌ ΡΠ»Π΅Π½ΠΎΠΌ.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΠΈΠ΄Π° axΒ² + bx = 0,
Π³Π΄Π΅ c =0,
axΒ² + c = 0,
Π³Π΄Π΅ b =0, ΠΈ
axΒ² = 0,
Π³Π΄Π΅ a =0 ΠΈ b =0,
Π½Π°Π·ΡΠ²Π°ΡΡΡΡ Π½Π΅ΠΏΠΎΠ»Π½ΡΠΌΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ.
ΠΠ°ΠΉΡΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π·Π½Π°ΡΠΈΡ ΡΠ΅ΡΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
ΠΠ»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½ΠΈΡ ΡΠ»ΡΠΆΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ bΒ² β 4ac,
ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π±ΡΠΊΠ²ΠΎΠΉ D.
ΠΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΠΌΠ΅ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΡΠ΅ΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ:
β Π΄Π»Ρ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, ΡΡΠΎ, Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΡΠΌΠΎΠΌ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ, Π²ΡΠ½Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ ΠΎΠ±ΡΠ΅Π³ΠΎ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΈ Ρ.Π΄.) Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΠΏΡΠΈ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ², ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΠΎΠ²;
β Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Π½Π° ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΌΠ΅Π½ΡΡΡΠ΅Π³ΠΎΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ° (ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΎΠ΄ΠΈΠ½, ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ±ΡΡΠ½ΠΎ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ).
ΠΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ
Π»Π΅Π½Π° axΒ² + bx + c β
Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ, ΠΎΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°
ΠΎΡΠΈ 0y. Π§ΠΈΡΠ»ΠΎ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΡ
0x ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΡΠΈΡΠ»ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΡΠΎΡΠ΅ΠΊ
ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π²Π΅, ΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ, Π΅ΡΠ»ΠΈ ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΎΠ΄Π½Π°, ΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ, Π΅ΡΠ»ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° Π½Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ
ΠΎΡΡ 0x, ΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Π΅ΠΉ. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ Π½ΠΈΠΆΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ ΡΡΠΈ ΡΠΏΠΎΠΌΡΠ½ΡΡΡΡ
ΡΠ»ΡΡΠ°Ρ.
ΠΠ°ΠΊ Π²ΠΈΠ΄Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, ΠΊΡΠ°ΡΠ½Π°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ 0x Π² Π΄Π²ΡΡ ΡΠΎΡΠΊΠ°Ρ , Π·Π΅Π»ΡΠ½Π°Ρ β Π² ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅, Π° ΠΆΡΠ»ΡΠ°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ 0x.
1. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ (), ΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ.
ΠΠ½ΠΈ Π²ΡΡΠΈΡΠ»ΡΡΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ:
ΠΈ
.
Π§Π°ΡΡΠΎ ΠΏΠΈΡΠ΅ΡΡΡ ΡΠ°ΠΊ: .
2. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ (), ΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ, ΠΈΠ»ΠΈ, ΡΡΠΎ ΡΠΎ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠ΅ β Π΄Π²Π° ΡΠ°Π²Π½ΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°Π²Π½Ρ .
3. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ (),
ΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Π΅ΠΉ, Π° ΠΈΠΌΠ΅Π΅Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΠΊΠΎΡΠ½ΠΈ, Π½ΠΎ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ
ΠΊΠΎΡΠ½Π΅ΠΉ
Π² ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π½Π΅ Π±ΡΠ΄Π΅ΠΌ. Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°ΡΠ°ΡΠΈΡ ΡΠΎΠ³ΠΎ,
ΡΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΡΠΈΠΌΠ΅Ρ 1. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
.
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ.
ΠΡΡΡΠΌ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠ΅ΡΠ°ΡΡ ΠΈ Π΄ΡΠΎΠ±Π½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π² ΠΊΠΎΡΠΎΡΡΡ Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ β Π΄ΡΠΎΠ±Ρ, Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, . Π ΡΠΎΠΌ, ΠΊΠ°ΠΊ ΡΡΠΎ Π΄Π΅Π»Π°Π΅ΡΡΡ β Π² ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π΅ Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
ΠΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΡΠΈΠΌΠ΅Ρ 2. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
.
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ.
ΠΡΠΈΠΌΠ΅Ρ 3. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
.
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΠ°Ρ ΠΎΠ΄ΠΈΡΡ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ Π·Π°Π΄Π°Ρ Π²ΡΡΡΠ΅ΠΉ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΈ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ², ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΠΎΠ², ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π° Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ ΠΈ Π΄ΡΡΠ³ΠΈΡ .
ΠΡΠΈΠΌΠ΅Ρ 4. ΠΠ°ΠΉΡΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
.
Π ΠΏΡΠΈΠΌΠ΅ΡΠ΅ 1 Π½Π°ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
,
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π°ΠΉΠ΄ΡΠΌ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ Π΄Π»Ρ ΠΊΠΎΡΠ½Π΅ΠΉ:
ΠΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΠΎΡΠ½ΠΈ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π€ΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
.
Π‘ΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ, ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΠ΅ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΅Π³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ. ΠΠ½ΠΈ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΡΡΠ°Π½ΡΡΠ·ΡΠΊΠΈΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΎΠΌ Π€.ΠΠΈΠ΅ΡΠΎΠΌ.
Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ°. ΠΡΠ»ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ axΒ² + bx + c = 0 ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΊΠΎΡΠ½ΠΈ, ΡΠΎ ΠΈΡ ΡΡΠΌΠΌΠ° ΡΠ°Π²Π½Π° β b/a, Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ Ρ/a:
Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΠ΅. ΠΡΠ»ΠΈ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ xΒ² + px + q = 0 ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΊΠΎΡΠ½ΠΈ ΠΈ , ΡΠΎ
ΠΠΎΡΡΠ½Π΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΡΠ»: ΡΡΠΌΠΌΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ°Π²Π½Π° Π²ΡΠΎΡΠΎΠΌΡ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ, Π²Π·ΡΡΠΎΠΌΡ Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΌ Π·Π½Π°ΠΊΠΎΠΌ, Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΠ°Π²Π½ΠΎ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠΌΡ
ΡΠ»Π΅Π½Ρ.
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΠ΅ΡΠ° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΠΈ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΠΎ ΡΡΡΡ ΡΠ»Π΅Π½, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠΈΠΉ ΡΠΎΠ±ΠΎΠΉ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΏΠΎ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»Π΅:
.
ΠΡΠΎΡ ΠΏΡΠΈΡΠΌ ΡΠ°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ.
ΠΡΠΈΠΌΠ΅Ρ 9. Π£ΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅:
.
Π Π΅ΡΠ΅Π½ΠΈΠ΅. Π§ΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π΄Π°Π½Π½ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ x ΠΈ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ Π΅Π³ΠΎ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΠΉΠ΄Ρ Π΅Π³ΠΎ ΠΊΠΎΡΠ½ΠΈ. ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
.
ΠΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π±ΡΠ΄ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ:
.
Π Π°Π·Π»ΠΎΠΆΠΈΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ:
.
Π£ΠΏΡΠΎΡΡΠΈΠ»ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΎΡΠ΅ Π½Π΅ Π±ΡΠ²Π°Π΅Ρ:
.
ΠΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΡΠΈΠΌΠ΅Ρ 10. Π£ΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅:
.
Π Π΅ΡΠ΅Π½ΠΈΠ΅. Π ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ, ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ β ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΡΡ ΡΠ»Π΅Π½Ρ. ΠΠ½Π°ΡΠΈΡ, ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΠΉΠ΄Ρ ΠΊΠΎΡΠ½ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
.
ΠΠΎΡΠ½ΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π±ΡΠ΄ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ:
.
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
.
Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, Π²ΡΠΎΡΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠΈΡ ΠΊΠΎΡΠ½Ρ:
.
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, ΡΠ°Π·Π»ΠΎΠΆΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ:
.
ΠΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
Π£ΠΏΡΠΎΡΠ°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΡΡΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ Π·Π°Π΄Π°Ρ Π²ΡΡΡΠ΅ΠΉ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΈ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ², ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΠΎΠ², ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π° Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ ΠΈ Π΄ΡΡΠ³ΠΈΡ .
Π Π°Π·ΡΠΌΠ΅Π΅ΡΡΡ, ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π° ΠΌΠΎΠΆΠ΅Ρ ΠΌΠΎΠΆΠ΅Ρ ΠΈ Π½Π΅ Π±ΡΡΡ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ Π² ΠΏΠ΅ΡΠ²ΠΎΠ½Π°ΡΠ°Π»ΡΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅, ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ.
Π€ΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Β«ΠΏΠ΅ΡΠ΅ΠΎΡΠΊΡΡΠ²Π°Π»Π°ΡΡΒ» Π½Π΅ΠΎΠ΄Π½ΠΎΠΊΡΠ°ΡΠ½ΠΎ. ΠΠ΄ΠΈΠ½
ΠΈΠ· ΠΏΠ΅ΡΠ²ΡΡ
Π΄ΠΎΡΠ΅Π΄ΡΠΈΡ
Π΄ΠΎ Π½Π°ΡΠΈΡ
Π΄Π½Π΅ΠΉ Π²ΡΠ²ΠΎΠ΄ΠΎΠ² ΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΈΠ½Π°ΠΆΠ»Π΅ΠΆΠΈΡ ΠΈΠ½Π΄ΠΈΠΉΡΠΊΠΎΠΌΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΡ
ΠΡΠ°Ρ
ΠΌΠ°Π³ΡΠΏΡΠ΅ (ΠΎΠΊΠΎΠ»ΠΎ 598 Π³.). Π‘ΡΠ΅Π΄Π½Π΅Π°Π·ΠΈΠ°ΡΡΠΊΠΈΠΉ ΡΡΡΠ½ΡΠΉ Π°Π»Ρ-Π₯ΠΎΡΠ΅Π·ΠΌΠΈ (IX Π².) ΠΏΠΎΠ»ΡΡΠΈΠ» ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ»Π»ΡΡΡΡΠ°ΡΠΈΠΈ. Π‘ΡΡΡ Π΅Π³ΠΎ ΡΠ°ΡΡΡΠΆΠ΄Π΅Π½ΠΈΠΉ
Π²ΠΈΠ΄Π½Π° ΠΈΠ· ΡΠΈΡΡΠ½ΠΊΠ° Π½ΠΈΠΆΠ΅ (ΠΎΠ½ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ xΒ² + 10x = 39).
ΠΠ»ΠΎΡΠ°Π΄Ρ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΠ°Π²Π½Π° (x + 5)Β². ΠΠ½Π° ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΡΡΡ ΠΈΠ· ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ xΒ² + 10x Π·Π°ΡΡΡΠΈΡ ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΈΠ³ΡΡΡ, ΡΠ°Π²Π½ΠΎΠΉ Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΈ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠ΅ΡΡΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΡΠΎ ΡΡΠΎΡΠΎΠ½ΠΎΠΉ 5/2, ΡΠ°Π²Π½ΠΎΠΉ 25. ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ Π΅Π³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅:
ΠΡΠΈΠΌΠ΅Ρ 11. ΠΡΡΠ΅Π·ΠΎΠΊ ΡΠΊΠ°Π½ΠΈ ΡΡΠΎΠΈΡ 180 Ρ.Π΅Π΄. ΠΡΠ»ΠΈ Π±Ρ ΡΠΊΠ°Π½ΠΈ Π² ΠΎΡΡΠ΅Π·ΠΊΠ΅ Π±ΡΠ»ΠΎ Π½Π° 2,5 ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΠΈ ΡΠ΅Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ° ΠΎΡΡΠ°Π²Π°Π»Π°ΡΡ Π±Ρ ΠΏΡΠ΅ΠΆΠ½Π΅ΠΉ, ΡΠΎ ΡΠ΅Π½Π° 1 ΠΌ ΡΠΊΠ°Π½ΠΈ Π±ΡΠ»Π° Π±Ρ Π½Π° 1 Ρ.Π΅Π΄. ΠΌΠ΅Π½ΡΡΠ΅. Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΊΠ°Π½ΠΈ Π² ΠΎΡΡΠ΅Π·ΠΊΠ΅?
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΠΈΠΌΠ΅ΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠΊΠ°Π½ΠΈ Π² ΠΎΡΡΠ΅Π·ΠΊΠ΅ Π·Π° x ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΡΠΈΠ²Π΅Π΄ΡΠΌ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ:
ΠΡΠΎΠΈΠ·Π²Π΅Π΄ΡΠΌ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠΈΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ:
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΈ ΡΠ΅ΡΠΈΠΌ:
Π―ΡΠ½ΠΎ, ΡΡΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠΊΠ°Π½ΠΈ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ, ΠΏΠΎΡΡΠΎΠΌΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΡΠ²Π΅ΡΠ° ΠΈΠ· Π΄Π²ΡΡ
ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΈΡ Π»ΠΈΡΡ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ β ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ.
ΠΡΠ²Π΅Ρ: Π² ΠΎΡΡΠ΅Π·ΠΊΠ΅ 20 ΠΌ ΡΠΊΠ°Π½ΠΈ.
ΠΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΡΠΈΠΌΠ΅Ρ 12. Π’ΠΎΠ²Π°Ρ, ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ 187,5 ΠΊΠ³, Π²Π·Π²Π΅ΡΠΈΠ²Π°ΡΡ Π² ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΡΠΈΠΊΠ°Ρ . ΠΡΠ»ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΡΠΈΠΊΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠΎΠ²Π°ΡΠ° ΡΠΌΠ΅Π½ΡΡΠΈΡΡ Π½Π° 2 ΠΊΠ³, ΡΠΎ ΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΎ Π±Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π½Π° 2 ΡΡΠΈΠΊΠ° Π±ΠΎΠ»ΡΡΠ΅ ΠΈ ΠΏΡΠΈ ΡΡΠΎΠΌ 2 ΠΊΠ³ ΡΠΎΠ²Π°ΡΠ° ΠΎΡΡΠ°Π»ΠΈΡΡ Π±Ρ Π½Π΅Π²Π·Π²Π΅ΡΠ΅Π½Π½ΡΠΌΠΈ. Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠ³ ΡΠΎΠ²Π°ΡΠ° Π²Π·Π²Π΅ΡΠΈΠ²Π°ΡΡ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΡΠΈΠΊΠ΅?
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΠΈΠΌΠ΅ΠΌ Π·Π° x ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠΎΠ²Π°ΡΠ°, Π²Π·Π²Π΅ΡΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ Π² ΠΎΠ΄Π½ΠΎΠΌ ΡΡΠΈΠΊΠ΅. Π’ΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΡΠΈΠ²Π΅Π΄ΡΠΌ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄ΡΠΌ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠΈΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. ΠΡΠΎΡΠ΅ΡΡ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΊ:
ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
ΠΠ°ΠΉΠ΄ΡΠΌ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠΎΠ²Π°ΡΠ° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ, ΠΏΠΎΡΡΠΎΠΌΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΡΠ²Π΅ΡΠ° ΠΈΠ· Π΄Π²ΡΡ
ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΈΡ Π»ΠΈΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ.
ΠΡΠ²Π΅Ρ: Π² ΠΎΠ΄Π½ΠΎΠΌ ΡΡΠΈΠΊΠ΅ Π²Π·Π²Π΅ΡΠΈΠ²Π°ΡΡ 12,5 ΠΊΠ³ ΡΠΊΠ°Π½ΠΈ.
ΠΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΡΡΠ³ΠΈΠ΅ ΡΠ΅ΠΌΡ Π² Π±Π»ΠΎΠΊΠ΅ Β«Π¨ΠΊΠΎΠ»ΡΠ½Π°Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°Β»
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°. ( ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Ρ Π½Π° 4 ΠΈ Π½Π° 1). Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ°. 3 ΡΠΏΠΎΡΠΎΠ±Π°.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°
,
Π³Π΄Π΅
x β ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ,
a,b,c β ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠ΅ (ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅) ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ.
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°: | . |
Π ΠΊΠΎΡΠ½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ΄ΠΈΡΡ ΠΏΠΎ Π·Π½Π°ΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° (D) :
- D>0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ 2 ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΊΠΎΡΠ½Ρ
- D=0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ 2 ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠΈΡ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΊΠΎΡΠ½Ρ
- D<0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ 2 ΠΌΠ½ΠΈΠΌΡΡ ΠΊΠΎΡΠ½Ρ (Π΄Π»Ρ Π½Π΅ΠΏΡΠΎΠ΄Π²ΠΈΠ½ΡΡΡΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ β ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ)
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ°Π²Π½Ρ:
.
ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, Π² ΡΠ»ΡΡΠ°Π΅ Ρ Π½ΡΠ»Π΅Π²ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ, ΠΎΠ±Π° ΠΊΠΎΡΠ½Ρ ΡΠ°Π²Π½Ρ
.
ΠΡΠ»ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΠΈ Ρ ΡΠ΅ΡΠ½ΡΠΉ, ΡΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΠΌΡΡΠ» Π²ΡΡΠΈΡΠ»ΡΡΡ Π½Π΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, Π° ΡΠ΅ΡΠ²Π΅ΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
Π ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΡΠΈΡΠ»ΡΡΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ°.
ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°
,
ΡΠΎ Π΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΠΏΡΠΈ ΡΡΠ°ΡΡΠ΅ΠΌ ΡΠ»Π΅Π½Π΅.
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΠ΅ΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ»Π΅Π΄ΡΡΡΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
.
Π‘Π»Π΅Π΄ΡΠ΅Ρ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π»ΡΠ±ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΡΡΠ°ΡΡ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΌ, Π΅ΡΠ»ΠΈ Π΅Π³ΠΎ ΠΏΠΎΠ΄Π΅Π»ΠΈΡΡ Π½Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΠΈ ΡΡΠ°ΡΡΠ΅ΠΌ ΡΠ»Π΅Π½Π΅, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ Ρ
2.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°. ( ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Ρ Π½Π° 4 ΠΈ Π½Π° 1). Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ°. 3 ΡΠΏΠΎΡΠΎΠ±Π°.
| ΠΠ΄ΡΠ΅Ρ ΡΡΠΎΠΉ ΡΡΡΠ°Π½ΠΈΡΡ (Π²Π»ΠΎΠΆΠ΅Π½Π½ΠΎΡΡΡ) Π² ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊΠ΅ dpva.ru: Π³Π»Π°Π²Π½Π°Ρ ΡΡΡΠ°Π½ΠΈΡΠ° / / Π’Π΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ / / ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ / / Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ². Π‘ΠΈΡΡΠ΅ΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. Π€ΠΎΡΠΌΡΠ»Ρ. ΠΠ΅ΡΠΎΠ΄Ρ. / / ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°. ( ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Ρ Π½Π° 4 ΠΈ Π½Π° 1). Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ°. 3 ΡΠΏΠΎΡΠΎΠ±Π°. ΠΠΎΠ΄Π΅Π»ΠΈΡΡΡΡ:
| |||||||||||
ΠΡΠ»ΠΈ ΠΡ Π½Π΅ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ»ΠΈ ΡΠ΅Π±Ρ Π² ΡΠΏΠΈΡΠΊΠ΅ ΠΏΠΎΡΡΠ°Π²ΡΠΈΠΊΠΎΠ², Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΠΈΠ»ΠΈ Ρ ΠΠ°Ρ Π΅ΡΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π΄Π»Ρ ΠΊΠΎΠ»Π»Π΅Π³ ΠΏΠΎ ΡΠ΅ΠΌΠ΅, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ , ΠΏΠΎΠΆΠ°Π»ΡΠΉΡΡΠ°. ΠΠ»ΠΎΠΆΠΈΡΠ΅ Π² ΠΏΠΈΡΡΠΌΠΎ ΡΡΡΠ»ΠΊΡ Π½Π° ΡΡΡΠ°Π½ΠΈΡΡ Ρ ΠΎΡΠΈΠ±ΠΊΠΎΠΉ, ΠΏΠΎΠΆΠ°Π»ΡΠΉΡΡΠ°. | ||||||||||||
ΠΠΎΠ΄Ρ Π±Π°Π½Π½Π΅ΡΠΎΠ² ΠΏΡΠΎΠ΅ΠΊΡΠ° DPVA.ru ΠΠ°ΡΠΈΠ½ΠΊΠ°: KJR Publisiers ΠΠΎΠ½ΡΡΠ»ΡΡΠ°ΡΠΈΠΈ ΠΈ ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ | ΠΡΠΎΠ΅ΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΊΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΠΈΠΌ. ΠΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½Π°Ρ Π½Π° ΡΠ°ΠΉΡΠ΅, Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠΈΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»Π΅Π½Π° ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΠ΅Π»ΡΡ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΡ. ΠΠ»Π°Π΄Π΅Π»ΡΡΡ ΡΠ°ΠΉΡΠ° www.dpva.ru Π½Π΅ Π½Π΅ΡΡΡ Π½ΠΈΠΊΠ°ΠΊΠΎΠΉ ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ Π·Π° ΡΠΈΡΠΊΠΈ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ Ρ ΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ½Π΅Ρ-ΡΠ΅ΡΡΡΡΠ°. Free xml sitemap generator |
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.

Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°. Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ°.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°:,
Π³Π΄Π΅x β ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ,
a,b,c β ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠ΅ (ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅) ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ.
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°: | . |
- D>0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ 2 ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΊΠΎΡΠ½Ρ
- D=0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ 2 ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠΈΡ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΊΠΎΡΠ½Ρ
- D<0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ 2 ΠΌΠ½ΠΈΠΌΡΡ ΠΊΠΎΡΠ½Ρ (Π΄Π»Ρ Π½Π΅ΠΏΡΠΎΠ΄Π²ΠΈΠ½ΡΡΡΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ β ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ)
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ°Π²Π½Ρ:
.
.
ΠΡΠ»ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΠΈ Ρ ΡΠ΅ΡΠ½ΡΠΉ, ΡΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΠΌΡΡΠ» Π²ΡΡΠΈΡΠ»ΡΡΡ Π½Π΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, Π° ΡΠ΅ΡΠ²Π΅ΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:Π ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΡΠΈΡΠ»ΡΡΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ°.
ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°,
ΡΠΎ Π΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΠΏΡΠΈ ΡΡΠ°ΡΡΠ΅ΠΌ ΡΠ»Π΅Π½Π΅.
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΠ΅ΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ»Π΅Π΄ΡΡΡΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
.
Π‘Π»Π΅Π΄ΡΠ΅Ρ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π»ΡΠ±ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΡΡΠ°ΡΡ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΌ, Π΅ΡΠ»ΠΈ Π΅Π³ΠΎ ΠΏΠΎΠ΄Π΅Π»ΠΈΡΡ Π½Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΠΈ ΡΡΠ°ΡΡΠ΅ΠΌ ΡΠ»Π΅Π½Π΅, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ Ρ 2ΠΠ°ΠΉΡΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΡΠ»ΠΈ Π²Ρ ΡΡΠΈΡΠ°Π΅ΡΠ΅, ΡΡΠΎ ΠΊΠΎΠ½ΡΠ΅Π½Ρ, Π΄ΠΎΡΡΡΠΏΠ½ΡΠΉ ΡΠ΅ΡΠ΅Π· ΠΠ΅Π±-ΡΠ°ΠΉΡ (ΠΊΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ Π² Π½Π°ΡΠΈΡ
Π£ΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΎΠ±ΡΠ»ΡΠΆΠΈΠ²Π°Π½ΠΈΡ), Π½Π°ΡΡΡΠ°Π΅Ρ
ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π°ΡΠΈΡ
Π°Π²ΡΠΎΡΡΠΊΠΈΡ
ΠΏΡΠ°Π², ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ Π½Π°ΠΌ, ΠΎΡΠΏΡΠ°Π²ΠΈΠ² ΠΏΠΈΡΡΠΌΠ΅Π½Π½ΠΎΠ΅ ΡΠ²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ (Β«Π£Π²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΎ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΈΒ»), ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π΅
Π²
ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ, ΠΎΠΏΠΈΡΠ°Π½Π½ΡΡ Π½ΠΈΠΆΠ΅, Π½Π°Π·Π½Π°ΡΠ΅Π½Π½ΠΎΠΌΡ Π½ΠΈΠΆΠ΅ Π°Π³Π΅Π½ΡΡ. ΠΡΠ»ΠΈ ΡΠ΅ΠΏΠ΅ΡΠΈΡΠΎΡΡ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ° ΠΏΡΠ΅Π΄ΠΏΡΠΈΠΌΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π² ΠΎΡΠ²Π΅Ρ Π½Π°
Π°Π½
Π£Π²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΎ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΈ, ΠΎΠ½ΠΎ ΠΏΡΠ΅Π΄ΠΏΡΠΈΠΌΠ΅Ρ Π΄ΠΎΠ±ΡΠΎΡΠΎΠ²Π΅ΡΡΠ½ΡΡ ΠΏΠΎΠΏΡΡΠΊΡ ΡΠ²ΡΠ·Π°ΡΡΡΡ ΡΠΎ ΡΡΠΎΡΠΎΠ½ΠΎΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½Ρ
ΡΡΠ΅Π΄ΡΡΠ²Π°ΠΌΠΈ ΡΠ°ΠΌΠΎΠ³ΠΎ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ Π°Π΄ΡΠ΅ΡΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΡΡΡ, Π΅ΡΠ»ΠΈ ΡΠ°ΠΊΠΎΠ²ΠΎΠΉ ΠΈΠΌΠ΅Π΅ΡΡΡ, ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΠΊΠΎΠΉ ΡΡΠΎΡΠΎΠ½ΠΎΠΉ Varsity Tutors.
ΠΠ°ΡΠ΅ Π£Π²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΎ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΈ ΠΏΡΠ°Π² ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΡΠΏΡΠ°Π²Π»Π΅Π½ΠΎ ΡΡΠΎΡΠΎΠ½Π΅, ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²ΠΈΠ²ΡΠ΅ΠΉ Π΄ΠΎΡΡΡΠΏ ΠΊ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡ, ΠΈΠ»ΠΈ ΡΡΠ΅ΡΡΠΈΠΌ Π»ΠΈΡΠ°ΠΌ, ΡΠ°ΠΊΠΈΠΌ ΠΊΠ°ΠΊ Π² Π²ΠΈΠ΄Π΅ ChillingEffects.org.
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ Π²Ρ Π±ΡΠ΄Π΅ΡΠ΅ Π½Π΅ΡΡΠΈ ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎΡΡΡ Π·Π° ΡΡΠ΅ΡΠ± (Π²ΠΊΠ»ΡΡΠ°Ρ ΡΠ°ΡΡ ΠΎΠ΄Ρ ΠΈ Π³ΠΎΠ½ΠΎΡΠ°ΡΡ Π°Π΄Π²ΠΎΠΊΠ°ΡΠ°ΠΌ), Π΅ΡΠ»ΠΈ Π²Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΈΡΠΊΠ°ΠΆΠ°ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡ ΠΈΠ»ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π°ΡΡΡΠ°Π΅Ρ Π²Π°ΡΠΈ Π°Π²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΅ΡΠ»ΠΈ Π²Ρ Π½Π΅ ΡΠ²Π΅ΡΠ΅Π½Ρ, ΡΡΠΎ ΠΊΠΎΠ½ΡΠ΅Π½Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΠ΅Π±-ΡΠ°ΠΉΡΠ΅ ΠΈΠ»ΠΈ ΠΏΠΎ ΡΡΡΠ»ΠΊΠ΅ Ρ Π½Π΅Π³ΠΎ Π½Π°ΡΡΡΠ°Π΅Ρ Π²Π°ΡΠΈ Π°Π²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π°, Π²Π°ΠΌ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠ½Π°ΡΠ°Π»Π° ΠΎΠ±ΡΠ°ΡΠΈΡΡΡΡ ΠΊ ΡΡΠΈΡΡΡ.
Π§ΡΠΎΠ±Ρ ΠΎΡΠΏΡΠ°Π²ΠΈΡΡ ΡΠ²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅, Π²ΡΠΏΠΎΠ»Π½ΠΈΡΠ΅ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ:
ΠΡ Π΄ΠΎΠ»ΠΆΠ½Ρ Π²ΠΊΠ»ΡΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅:
Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½Π°Ρ ΠΏΠΎΠ΄ΠΏΠΈΡΡ ΠΏΡΠ°Π²ΠΎΠΎΠ±Π»Π°Π΄Π°ΡΠ΅Π»Ρ ΠΈΠ»ΠΈ Π»ΠΈΡΠ°, ΡΠΏΠΎΠ»Π½ΠΎΠΌΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΎΠ²Π°ΡΡ ΠΎΡ ΠΈΡ
ΠΈΠΌΠ΅Π½ΠΈ;
ΠΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π°Π²ΡΠΎΡΡΠΊΠΈΡ
ΠΏΡΠ°Π², ΠΊΠΎΡΠΎΡΡΠ΅, ΠΊΠ°ΠΊ ΡΡΠ²Π΅ΡΠΆΠ΄Π°Π΅ΡΡΡ, Π±ΡΠ»ΠΈ Π½Π°ΡΡΡΠ΅Π½Ρ;
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ° ΠΈ ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΡΠΎΠ½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΠ°, ΠΊΠΎΡΠΎΡΡΠΉ, ΠΏΠΎ Π²Π°ΡΠ΅ΠΌΡ ΠΌΠ½Π΅Π½ΠΈΡ, Π½Π°ΡΡΡΠ°Π΅Ρ Π²Π°ΡΠΈ Π°Π²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π°, Π² \
Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎΡΡΠ΅ΠΉ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡΡ ΡΠ΅ΠΏΠ΅ΡΠΈΡΠΎΡΠ°ΠΌ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΡΠΊΠΈΡ
ΡΠΊΠΎΠ» Π½Π°ΠΉΡΠΈ ΠΈ ΡΠΎΡΠ½ΠΎ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ ΡΡΠΎΡ ΠΊΠΎΠ½ΡΠ΅Π½Ρ; Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ Π½Π°ΠΌ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ
Π°
ΡΡΡΠ»ΠΊΠ° Π½Π° ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠΉ Π²ΠΎΠΏΡΠΎΡ (Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π½Π° Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Π²ΠΎΠΏΡΠΎΡΠ°), ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΈ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅
ΠΊ ΠΊΠ°ΠΊΠΎΠΉ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ Π²ΠΎΠΏΡΠΎΡΠ° β ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΡΡΡΠ»ΠΊΠ΅, ΡΠ΅ΠΊΡΡΡ ΠΈ Ρ. Π΄. β ΠΎΡΠ½ΠΎΡΠΈΡΡΡ Π²Π°ΡΠ° ΠΆΠ°Π»ΠΎΠ±Π°;
ΠΠ°ΡΠ΅ ΠΈΠΌΡ, Π°Π΄ΡΠ΅Ρ, Π½ΠΎΠΌΠ΅Ρ ΡΠ΅Π»Π΅ΡΠΎΠ½Π° ΠΈ Π°Π΄ΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΡΡΡ; Π° ΡΠ°ΠΊΠΆΠ΅
ΠΠ°ΡΠ΅ Π·Π°ΡΠ²Π»Π΅Π½ΠΈΠ΅: (Π°) Π²Ρ Π΄ΠΎΠ±ΡΠΎΡΠΎΠ²Π΅ΡΡΠ½ΠΎ ΡΡΠΈΡΠ°Π΅ΡΠ΅, ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΠ°, ΠΊΠΎΡΠΎΡΡΠΉ, ΠΏΠΎ Π²Π°ΡΠ΅ΠΌΡ ΠΌΠ½Π΅Π½ΠΈΡ, Π½Π°ΡΡΡΠ°Π΅Ρ
Π²Π°ΡΠΈ Π°Π²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π° Π½Π΅ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½Ρ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ, Π²Π»Π°Π΄Π΅Π»ΡΡΠ΅ΠΌ Π°Π²ΡΠΎΡΡΠΊΠΈΡ
ΠΏΡΠ°Π² ΠΈΠ»ΠΈ Π΅Π³ΠΎ Π°Π³Π΅Π½ΡΠΎΠΌ; (Π±) ΡΡΠΎ Π²ΡΠ΅
ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ°ΡΡΡ Π² Π²Π°ΡΠ΅ΠΌ Π£Π²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠΈ ΠΎ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΈ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠ½ΠΎΠΉ, ΠΈ (c) ΠΏΠΎΠ΄ ΡΡΡΠ°Ρ
ΠΎΠΌ Π½Π°ΠΊΠ°Π·Π°Π½ΠΈΡ Π·Π° Π»ΠΆΠ΅ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΠΎ, ΡΡΠΎ Π²Ρ
Π»ΠΈΠ±ΠΎ Π²Π»Π°Π΄Π΅Π»Π΅Ρ Π°Π²ΡΠΎΡΡΠΊΠΈΡ
ΠΏΡΠ°Π², Π»ΠΈΠ±ΠΎ Π»ΠΈΡΠΎ, ΡΠΏΠΎΠ»Π½ΠΎΠΌΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΎΠ²Π°ΡΡ ΠΎΡ ΠΈΡ
ΠΈΠΌΠ΅Π½ΠΈ.
ΠΡΠΏΡΠ°Π²ΡΡΠ΅ ΠΆΠ°Π»ΠΎΠ±Ρ Π½Π°ΡΠ΅ΠΌΡ ΡΠΏΠΎΠ»Π½ΠΎΠΌΠΎΡΠ΅Π½Π½ΠΎΠΌΡ Π°Π³Π΅Π½ΡΡ ΠΏΠΎ Π°Π΄ΡΠ΅ΡΡ:
Π§Π°ΡΠ»ΡΠ· ΠΠΎΠ½
Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105
ΠΠ»ΠΈ Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅ ΡΠΎΡΠΌΡ Π½ΠΈΠΆΠ΅:
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ½ΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
ΠΡ Π² Cuemath ΡΡΠΈΡΠ°Π΅ΠΌ, ΡΡΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° β ΡΡΠΎ ΠΆΠΈΠ·Π½Π΅Π½Π½ΡΠΉ Π½Π°Π²ΡΠΊ. 2-4ac \\ [0.2 + bx + c = 0 \) β Π·Π½Π°ΡΠ΅Π½ΠΈΡ \ (x \), ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
\ (x = \ dfrac {-b \ pm \ sqrt {D}} {2 a} \) |
Π₯ΠΎΡΡ ΠΌΡ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡΠΈ ΠΊΠΎΡΠ½ΠΈ, ΠΏΡΠΎΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
- ΠΡΠ»ΠΈ \ (D> 0 \), ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠ°Π·Π½ΡΡ
Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ:
\ [\ dfrac {-b \ pm \ sqrt {\ text {ΠΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ}}} {2 a} \]
Π΄Π°Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ - ΠΡΠ»ΠΈ \ (D = 0 \), ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ:
\ [\ dfrac {-b \ pm \ sqrt {0}} {2 a} = \ dfrac {-b} {2 a} \]
ΡΡΠΎ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ - ΠΡΠ»ΠΈ \ (D <0 \), ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Π΅ΠΉ. ΡΠΎ Π΅ΡΡΡ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ:
\ [\ dfrac {-b \ pm \ sqrt {\ text {ΠΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ}}} {2 a} \]
Π΄Π°Π΅Ρ Π΄Π²Π° ΡΠ»ΠΎΠΆΠ½ΡΡ ΠΊΠΎΡΠ½Ρ.
ΠΡΠΎ ΠΏΠΎΡΠΎΠΌΡ, ΡΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π΄Π°Π΅Ρ ΠΌΠ½ΠΈΠΌΠΎΠ΅ ΡΠΈΡΠ»ΠΎ. Ρ.Π΅. \ (\ sqrt {-1} = i \)
ΠΠΎΡΠ΅Π½Ρ β ΡΡΠΎ Π½Π΅ ΡΡΠΎ ΠΈΠ½ΠΎΠ΅, ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° x ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ x.
ΠΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΡΡΠΈΡ ΡΡΠ΅Ρ ΡΠ»ΡΡΠ°Π΅Π² ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ.
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° (Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ)
ΠΠΎΡ Β«ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΒ».2-4ac \)
(i) Π΄Π²Π° Π½Π΅ΡΠ°Π²Π½ΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ, ΠΊΠΎΠ³Π΄Π° \ (D> 0 \)
(ii) ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ, ΠΊΠΎΠ³Π΄Π° \ (D = 0 \)
(iii) Π½Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠ»ΠΈ Π΄Π²Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ, ΠΊΠΎΠ³Π΄Π° \ (D <0 \)
ΠΠΎΠΌΠΎΠ³ΠΈΡΠ΅ ΡΠ²ΠΎΠ΅ΠΌΡ ΡΠ΅Π±Π΅Π½ΠΊΡ Π½Π°Π±ΡΠ°ΡΡ Π±ΠΎΠ»ΡΡΠ΅ Π±Π°Π»Π»ΠΎΠ² Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π·Π°ΠΏΠ°ΡΠ΅Π½ΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΠΠ‘ΠΠΠΠ’ΠΠΠΠ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΡΠ° Cuemath. ΠΠΎΠ»ΡΡΠΈΡΠ΅ Π΄ΠΎΡΡΡΠΏ ΠΊ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠΌ ΠΎΡΡΠ΅ΡΠ°ΠΌ, ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ»Π°Π½Π°ΠΌ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΠΠ‘ΠΠΠΠ’ΠΠΠ ΠΊΠΎΠ½ΡΡΠ»ΡΡΠ°ΡΠΈΠΈ. ΠΠΎΠΏΡΡΠ°ΠΉΡΠ΅ΡΡ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅ΠΉΡΠ°Ρ.
Π Π΅ΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ
ΠΠΎΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠ² ΠΈ ΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈΡ. 2 + Bx + C = 0 \),
\ [\ begin {align} A & = 9 \\ [0.4} \)
CLUEless ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅? Π£Π·Π½Π°ΠΉΡΠ΅, ΠΊΠ°ΠΊ ΡΡΠΈΡΠ΅Π»Ρ CUEMATH ΠΎΠ±ΡΡΡΠ½ΡΡ Π²Π°ΡΠ΅ΠΌΡ ΡΠ΅Π±Π΅Π½ΠΊΡ ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ , ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΠ²Π½ΡΠ΅ ΡΠΈΠΌΡΠ»ΡΡΠΈΠΈ ΠΈ ΡΠ°Π±ΠΎΡΠΈΠ΅ Π»ΠΈΡΡΡ, ΡΡΠΎΠ±Ρ ΠΈΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΠ»ΠΎΡΡ Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡΡ ΡΡΠΎ-Π»ΠΈΠ±ΠΎ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅!
ΠΠ·ΡΡΠΈΡΠ΅ ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΠ²Π½ΡΠ΅ ΠΈ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ»Π°ΡΡΡ Cuemath, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΄Π΅Π»Π°ΡΡ Π²Π°ΡΠ΅Π³ΠΎ ΡΠ΅Π±Π΅Π½ΠΊΠ° ΡΠΊΡΠΏΠ΅ΡΡΠΎΠΌ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. ΠΠ°Π±ΡΠΎΠ½ΠΈΡΡΠΉΡΠ΅ ΠΠΠ‘ΠΠΠΠ’ΠΠΠ ΠΏΡΠΎΠ±Π½ΠΎΠ΅ Π·Π°Π½ΡΡΠΈΠ΅ ΡΠ΅Π³ΠΎΠ΄Π½Ρ!
ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π²ΠΎΠΏΡΠΎΡΡ
ΠΠΎΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π·Π°Π½ΡΡΠΈΠΉ Π΄Π»Ρ Π²Π°Ρ.{2} -24 x + 2 = 0} \) ΠΈΠΌΠ΅Π΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΠ±ΡΠ°Π·ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΎΠ»ΠΈΠΌΠΏΠΈΠ°Π΄Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅
IMO (ΠΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½Π°Ρ ΠΎΠ»ΠΈΠΌΠΏΠΈΠ°Π΄Π° ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅) β ΡΡΠΎ ΠΊΠΎΠ½ΠΊΡΡΡΠ½ΡΠΉ ΡΠΊΠ·Π°ΠΌΠ΅Π½ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, ΠΊΠΎΡΠΎΡΡΠΉ Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ Π΄Π»Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ². ΠΠ½ ΠΏΠΎΠ±ΡΠΆΠ΄Π°Π΅Ρ Π΄Π΅ΡΠ΅ΠΉ ΡΠ°Π·Π²ΠΈΠ²Π°ΡΡ ΡΠ²ΠΎΠΈ Π½Π°Π²ΡΠΊΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π΄Π°Ρ Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΡΠΎΡΠ΅Π²Π½ΠΎΠ²Π°Π½ΠΈΠΉ.
ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΠΠ‘ΠΠΠΠ’ΠΠ ΡΠΊΠ°ΡΠ°ΡΡ ΠΎΠ±ΡΠ°Π·ΡΡ ΡΠ°Π±ΠΎΡ ΠΏΠΎ ΠΎΡΠ΅Π½ΠΊΠ°ΠΌ Π½ΠΈΠΆΠ΅:
Π§ΡΠΎΠ±Ρ ΡΠ·Π½Π°ΡΡ Π±ΠΎΠ»ΡΡΠ΅ ΠΎΠ± ΠΎΠ»ΠΈΠΌΠΏΠΈΠ°Π΄Π΅ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π½Π°ΠΆΠ°ΡΡ Π·Π΄Π΅ΡΡ
Π§Π°ΡΡΠΎ Π·Π°Π΄Π°Π²Π°Π΅ΠΌΡΠ΅ Π²ΠΎΠΏΡΠΎΡΡ (FAQ)
1.2β4 (\ sqrt {3}) (10 \ sqrt {3}) \\ [0,2 ΡΠΌ] & = 121-120 \\ [0,2 ΡΠΌ] & = 1 \ end {Π²ΡΡΠΎΠ²Π½Π΅Π½ΠΎ} \]
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ°Π²Π΅Π½:
\ (\ mathbf {D} \) ΠΈΠ»ΠΈ \ (\ mathbf {\ Delta = 1} \) |
3. ΠΠ°ΠΊ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ?
ΠΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ:
(i) Π΄Π²Π° Π½Π΅ΡΠ°Π²Π½ΡΡ
Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ, ΠΊΠΎΠ³Π΄Π° \ (D> 0 \)
(ii) ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ, ΠΊΠΎΠ³Π΄Π° \ (D = 0 \)
(iii) Π½Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠ»ΠΈ Π΄Π²Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ, ΠΊΠΎΠ³Π΄Π° \ (D <0 \)
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ | ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½Π°Ρ Π°Π»Π³Π΅Π±ΡΠ°
Π Π΅Π·ΡΠ»ΡΡΠ°Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ
- ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ Π΅Π³ΠΎ Π΄Π»Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π³Π΅Π½Π΅ΡΠΈΡΡΠ΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΠΎΠ±ΡΠ°Π΅Ρ Π½Π°ΠΌ ΠΎ ΠΏΡΠΈΡΠΎΠ΄Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ. {2} -4ac <0 [/ latex], ΡΠΎΠ³Π΄Π° ΡΠΈΡΠ»ΠΎ ΠΏΠΎΠ΄ ΡΠ°Π΄ΠΈΠΊΠ°Π»ΠΎΠΌ Π±ΡΠ΄Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π²Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π½Π°ΠΉΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, ΡΠ΅Π°Π»ΡΠ½ΡΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ. ΠΠ΄Π½Π°ΠΊΠΎ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΈ ΠΌΠ½ΠΈΠΌΡΠ΅ ΡΠΈΡΠ»Π°. Π’ΠΎΠ³Π΄Π° Ρ Π²Π°Ρ Π±ΡΠ΄Π΅Ρ Π΄Π²Π° ΡΠ»ΠΎΠΆΠ½ΡΡ
ΡΠ΅ΡΠ΅Π½ΠΈΡ: ΠΎΠ΄Π½ΠΎ ΠΏΡΡΠ΅ΠΌ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΌΠ½ΠΈΠΌΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ, Π° Π΄ΡΡΠ³ΠΎΠ΅ - ΠΏΡΡΠ΅ΠΌ Π΅Π³ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ.
Π ΡΠ°Π±Π»ΠΈΡΠ΅ Π½ΠΈΠΆΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
{2} -4ac [/ latex].{2} -4 \ left (1 \ right) \ left (10 \ right) = 16-40 = -24 \ end {array} [/ latex]Π Π΅Π·ΡΠ»ΡΡΠ°Ρ β ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
Π ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΌΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΠΈ ΡΠΈΠΏΠΎΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠΈΠΌΠ΅Ρ
ΠΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΈ ΠΊΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΠΏΠ° ΡΠ΅ΡΠ΅Π½ΠΈΡ Π±ΡΠ΄Π΅Ρ Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ [latex] f (x) = 0 [/ latex].{2}} β 4ac [/ Π»Π°ΡΠ΅ΠΊΡ]. ΠΠ½ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΈ ΡΠΈΠΏ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΡΡΡΠ΅ΡΡΠ²ΡΡΡ [latex] 2 [/ latex] Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΡΡΠΎ [latex] 0 [/ latex], ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ [latex] 1 [/ latex] ΡΠ΅Π°Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠ΅Π΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΡΡΡΠ΅ΡΡΠ²ΡΡΡ [latex] 2 [/ latex] ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ (Π½ΠΎ Π½Π΅Ρ ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ).
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΡΠ°ΡΡΠΊΠ°Π·Π°ΡΡ Π½Π°ΠΌ ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ β Π½Π°Π³Π»ΡΠ΄Π½ΠΎΠ΅ ΠΏΠΎΡΠΎΠ±ΠΈΠ΅ Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ°ΠΌΠΈ, ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π·Π°Π΄Π°ΡΠ°ΠΌΠΈ ΠΈ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΡΠΌ PDF-ΡΠ°ΠΉΠ»ΠΎΠΌ Π΄Π»Ρ ΠΏΠ΅ΡΠ°ΡΠΈ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΡΡΠΎ Π΄Π΅Π»Π°Π΅Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, Π²Π°ΠΆΠ½ΠΎ Ρ ΠΎΡΠΎΡΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡ:
ΠΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅ 2: ΠΠ°ΠΊΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΡΠ²Π΅ΡΠ°ΡΡΠ Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π΄Π²ΡΠΌΡ ΡΠ°Π·Π½ΡΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ.2 + \ blue bx + \ color {green} c $$.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ Π½ΠΈΠΆΠ΅ Π»Π΅Π²Π°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ 2 ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ (ΠΊΡΠ°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ), ΡΡΠ΅Π΄Π½ΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ 1 ΡΠ΅Π°Π»ΡΠ½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ (ΠΊΡΠ°ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°), Π° ΡΠ°ΠΌΠ°Ρ ΠΏΡΠ°Π²Π°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ (Π΄Π°, Ρ Π½Π΅Π΅ Π΅ΡΡΡ ΠΌΠ½ΠΈΠΌΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ).
ΠΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ?
ΠΡΠ²Π΅ΡΠ°ΡΡ ΠΠΎΡ
ΠΎΠΆΠ΅ Π½Π° . .. ΡΠΈΡΠ»ΠΎ.
5, 2, 0, -1 β ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· ΡΡΠΈΡ ΡΠΈΡΠ΅Π» ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ Π΄Π»Ρ 4 ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ?
ΠΡΠ²Π΅ΡΠ°ΡΡΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ , ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΈΠ· Π»ΡΠ±ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.2-4 \ cdot \ ΠΊΡΠ°ΡΠ½ΡΠΉ 3 \ cdot \ color {Π·Π΅Π»Π΅Π½ΡΠΉ} 5 \\ \ text {ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ} = \ Π² ΠΊΠΎΡΠΎΠ±ΠΊΠ΅ {6} $
Π§ΡΠΎ Π³ΠΎΠ²ΠΎΡΠΈΡ Π½Π°ΠΌ ΡΡΠ° ΡΠΎΡΠΌΡΠ»Π°?
ΠΡΠ²Π΅ΡΠ°ΡΡΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΎΠΎΠ±ΡΠ°Π΅Ρ Π½Π°ΠΌ ΡΠ»Π΅Π΄ΡΡΡΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ:
- ΠΡΠ»ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ β Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΈΠ»ΠΈ ΠΌΠ½ΠΈΠΌΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
- ΠΡΠ»ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΈΡΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ΅.2 + 2x + 1 $$.
ΠΡΠ°ΠΊΡΠΈΠΊΠ° 1
ΠΡΡΠΈΡΠ»ΠΈΡΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΈ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ: $$ y = xΒ² β 2x + 1 $$.
2-4 \ cdot \ ΠΊΡΠ°ΡΠ½ΡΠΉ 1 \ cdot \ color {Π·Π΅Π»Π΅Π½ΡΠΉ} 1 \\ & = \ Π² ΠΊΠΎΡΠΎΠ±ΠΊΠ΅ {0} \ end {Π²ΡΡΠΎΠ²Π½Π΅Π½} $$
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΠΌΡ Π΄ΠΎΠ»ΠΆΠ½Ρ ΠΎΠΆΠΈΠ΄Π°ΡΡ 1 ΡΠ΅Π°Π»ΡΠ½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΡΠ²ΠΈΠ΄Π΅ΡΡ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ Π½ΠΈΠΆΠ΅.
ΠΡΠ°ΠΊΡΠΈΠΊΠ° 2
ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ, ΡΡΠΎΠ±Ρ ΡΠ·Π½Π°ΡΡ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ: $$ y = xΒ² β x β 2 $$.2-4 \ cdot \ red 1 \ cdot \ color {green} {-2} \\ & = 1 β -8 \\ & = 1 + 8 = \ 9 Π² ΡΡΡΡΠ½ΠΎΠΉ ΡΠΏΠ°ΠΊΠΎΠ²ΠΊΠ΅ \ end {Π²ΡΡΠΎΠ²Π½Π΅Π½} $$
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΈ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ, Ρ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ 2 ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΠ°ΠΊ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΠΈΠ΄Π΅ΡΡ Π½ΠΈΠΆΠ΅, Π΅ΡΠ»ΠΈ Π²Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ, Π²Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΠ΅ 2 ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠ°ΠΊΡΠΈΠΊΠ° 3
ΠΡΡΠΈΡΠ»ΠΈΡΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ: y = xΒ² β 1.2} β 4 \ color {Magenta} {(1)} \ color {Blue} {(- 1)} = 4 $$
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΠΎΠ»Π½ΡΠΉ ΠΊΠ²Π°Π΄ΡΠ°Ρ, Ρ Π½Π°Ρ Π΅ΡΡΡ Π΄Π²Π° Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²Π»ΡΡΡΡΡ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ.
ΠΠΏΡΡΡ ΠΆΠ΅, Π΅ΡΠ»ΠΈ Π²Ρ Ρ ΠΎΡΠΈΡΠ΅ ΡΠ²ΠΈΠ΄Π΅ΡΡ ΡΠ΅Π°Π»ΡΠ½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ Π³ΡΠ°ΡΠΈΠΊ, ΠΏΡΠΎΡΡΠΎ ΠΏΠΎΡΠΌΠΎΡΡΠΈΡΠ΅ Π½ΠΈΠΆΠ΅:
ΠΡΠ°ΠΊΡΠΈΠΊΠ° 4
ΠΡΡΠΈΡΠ»ΠΈΡΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ: y = xΒ² + 4x β 5.
2} β 4 \ color {Magenta} {(1)} \ color {Blue} {(- 5)} \\ 16-4 (-5) = 16 +20 \\ = 36 $$
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΡΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΠΎΠ»Π½ΡΠΉ ΠΊΠ²Π°Π΄ΡΠ°Ρ, ΡΡΡΠ΅ΡΡΠ²ΡΡΡ Π΄Π²Π° ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠ°ΠΊΡΠΈΠΊΠ° 5
ΠΡΡΠΈΡΠ»ΠΈΡΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ: y = xΒ² β 4x + 5.
ΠΠΎΠΊΠ°ΠΆΠΈ ΠΎΡΠ²Π΅ΡΠ ΡΡΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ y = xΒ² β 4x + 5.
2} β 4 \ color {Magenta} {(1)} \ color {Blue} {(5)} \\ = 16-20 = -4 $$
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, Ρ ΡΡΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅Ρ ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΠ΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ½ΠΈΠΌΡΠ΅.
ΠΠΈΠΆΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΠ°ΠΊΡΠΈΠΊΠ° 6
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ: y = xΒ² + 4.
2} β 4 \ color {Magenta} {(1)} \ color {Blue} {(4)} = -16 $$
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, Ρ ΡΡΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΅ΡΡΡ Π΄Π²Π° ΠΌΠ½ΠΈΠΌΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
Π Π΅ΡΠ΅Π½ΠΈΡ: 2i ΠΈ -2i.
ΠΠΈΠΆΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΡΠ°ΠΊΡΠΈΠΊΠ° 7
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ: y = xΒ² + 25.2} β 4 \ color {Magenta} {(1)} \ color {Blue} {(25)} = -100 $$
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, Ρ ΡΡΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΅ΡΡΡ Π΄Π²Π° ΠΌΠ½ΠΈΠΌΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
Π Π΅ΡΠ΅Π½ΠΈΡ 5i ΠΈ -5i.
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΠΎΡΠΌΡΠ»Π°: ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
Purplemath
ΠΡΠΈΠ²Π΅Π΄Π΅ΠΌ Π΅ΡΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ².
Π Π΅ΡΠΈΡΠ΅
x ( x β 2) = 4. ΠΠΊΡΡΠ³Π»ΠΈΡΠ΅ ΠΎΡΠ²Π΅Ρ Π΄ΠΎ Π΄Π²ΡΡ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΡ Π·Π½Π°ΠΊΠΎΠ².
Π― Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π½Π΅ ΠΌΠΎΠ³Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠ°ΠΏΠ΅, Π½ΠΎ ΠΈ Π½Π΅ ΠΌΠΎΠ³Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ. ΠΠΎΡΠ΅ΠΌΡ? ΠΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ° ΡΡΠΎ Π² ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅.
Π Ρ, , ΡΠ°Π·ΡΠΌΠ΅Π΅ΡΡΡ, Π½Π΅ ΠΌΠΎΠ³Ρ Ρ Π½Π΅Π²ΠΎΠ·ΠΌΡΡΠΈΠΌΡΠΌ Π²ΠΈΠ΄ΠΎΠΌ ΡΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ, ΡΡΠΎ Β« x = 4, x β 2 = 4Β», ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ , Π° Π½Π΅ , ΠΊΠ°ΠΊ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Β«ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Ρ ΡΠ°ΠΊΡΠΎΡΠΈΠ½Π³ΠΎΠΌΒ».
ΠΠ΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΡΠΎΠ±ΠΈΡΠ°ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ β ΡΠ°ΠΊΡΠΎΡΠΈΠ·ΡΡ Π»ΠΈ Ρ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΈΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΎΡΠ²Π΅ΡΠΎΠ² β Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠ½Π°ΡΠ°Π»Π° ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΡΠΎΡΠΌΡ Β«(ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΠΉ) = 0Β».
MathHelp.com
ΠΠ΅ΡΠ²ΠΎΠ΅, ΡΡΠΎ Ρ ΡΠ΄Π΅Π»Π°Ρ Π·Π΄Π΅ΡΡ, ΡΡΠΎ ΡΠΌΠ½ΠΎΠΆΡ Π½Π° Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ, Π° Π·Π°ΡΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΡ 4 ΠΈΠ· ΠΏΡΠ°Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ Π² Π»Π΅Π²ΡΡ:
x ( x β 2) = 4
x 2 β 2 x = 4
x 2 β 2 x β 4 = 0
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π½Π΅Ρ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΠΏΡΠΈ (1) (- 4) = β4, ΠΊΠΎΡΠΎΡΡΠ΅ Π² ΡΡΠΌΠΌΠ΅ Π΄Π°ΡΡ β2, ΡΠΎ ΡΡΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π½Π΅ ΠΌΠ½ΠΎΠΆΠΈΡΡΡ.(ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΡΡΠΎΠ±Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Ρ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΠ°ΠΊΡΠΎΡΠΈΠ½Π³ΠΎΠΌ Β« x = 4, x β 2 = 4Β» ΠΌΠΎΠ³Π»ΠΎ Π±ΡΡΡ Ρ ΠΎΡΡ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠΌ.)
ΠΠ½Π°ΡΠΈΡ, ΡΠ°ΠΊΡΠΎΡΠΈΠ½Π³ Π½Π΅ ΡΡΠ°Π±ΠΎΡΠ°Π΅Ρ, Π½ΠΎ Ρ ΠΌΠΎΠ³Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ; Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Ρ Π²ΡΡΠ°Π²Π»Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ a = 1, b = β2 ΠΈ c = β4:
Π’ΠΎΠ³Π΄Π° ΠΎΡΠ²Π΅Ρ:
x = β1.24, x = 3,24 Ρ ΠΎΠΊΡΡΠ³Π»Π΅Π½ΠΈΠ΅ΠΌ Π΄ΠΎ Π΄Π²ΡΡ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΡ Π·Π½Π°ΠΊΠΎΠ².
ΠΠ»Ρ ΡΠΏΡΠ°Π²ΠΊΠΈ, Π²ΠΎΡ ΠΊΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ, y = x 2 β 2 x β 4, Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅, ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈΠ· ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»Ρ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ Ρ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΏΡΠΈΡΠΌΠΈ x . Π’ΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Ρ ΠΎΡΡΡ x Π΄Π°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΅ΡΠ°ΡΡ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π΅ΡΠ΅ ΠΎΠ΄Π½Π° ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ ΠΈΠ· ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ: Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ² x Π²Ρ ΠΏΠΎΠ»ΡΡΠΈΡΠ΅, ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²Π½ΡΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ. ΠΡΠ³ΡΠΌΠ΅Π½Ρ (ΡΠΎ Π΅ΡΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅) ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ, ΡΠ²Π»ΡΡΡΠΈΠΉΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ b 2 β 4 ac , Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Β«Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌΒ», ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Β«ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΒ» (ΡΡΠΎ ΡΠΌΠ΅ΡΡ ΡΠ°Π·Π»ΠΈΡΠ°ΡΡ) ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΠΈΠΏΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ.
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° b 2 -4 ac Π±ΡΠ»ΠΎ 20; Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π±ΡΠ»ΠΎ , Π° Π½Π΅ Π½ΠΎΠ»Ρ, ΠΈ Π±ΡΠ»ΠΎ , Π° Π½Π΅ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ Π±ΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΠ»ΠΎ ΠΈΠΌΠ΅ΡΡ ΠΏΠΎ ΠΊΡΠ°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅ΡΠ΅ ΠΎΠ΄Π½ΠΎ (Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅) ΡΠ΅ΡΠ΅Π½ΠΈΠ΅; ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ Π±ΡΠ»ΠΎ Π½ΡΠ»Π΅Π²ΡΠΌ, Π΄Π²Π° ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Ρ Π±ΡΠ»ΠΈ Π±ΡΡΡ ΡΠ°Π·Π½ΡΠΌΠΈ (ΡΠΎ Π΅ΡΡΡ ΠΎΠ½ΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ Π±ΡΠ»ΠΈ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ Π΄ΡΡΠ³ ΠΎΡ Π΄ΡΡΠ³Π°).
Π Π΅ΡΠΈΡΡ 9
x 2 + 12 x + 4 = 0.ΠΡΡΠ°Π²ΡΡΠ΅ ΡΠ²ΠΎΠΉ ΠΎΡΠ²Π΅Ρ Π² ΡΠΎΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅.
ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ a = 9, b = 12 ΠΈ c = 4, ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° Π΄Π°Π΅Ρ ΠΌΠ½Π΅:
Π’ΠΎΠ³Π΄Π° ΠΎΡΠ²Π΅Ρ:
Π ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ Π½Π° ΡΡΠΎΠΉ ΡΡΡΠ°Π½ΠΈΡΠ΅ Ρ ΠΏΠΎΠ»ΡΡΠΈΠ» Π΄Π²Π° ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° (ΡΠΎ Π΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²Π½ΡΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ) Π±ΡΠ»ΠΎ Π½Π΅Π½ΡΠ»Π΅Π²ΡΠΌ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ.Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠ°ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ Β«ΠΏΠ»ΡΡ-ΠΌΠΈΠ½ΡΡΒ» Π΄Π°Π»Π° ΠΌΠ½Π΅ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ; ΠΎΠ΄ΠΈΠ½ Π΄Π»Ρ Β«ΠΏΠ»ΡΡΠΎΠ²ΠΎΠΉΒ» ΡΠ°ΡΡΠΈ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π΄ΡΡΠ³ΠΎΠΉ Π΄Π»Ρ Β«ΠΌΠΈΠ½ΡΡΠΎΠ²ΠΎΠΉΒ» ΡΠ°ΡΡΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΡΠΌΠ΅Π½ΡΡΠΈΠ»ΡΡ Π΄ΠΎ Π½ΡΠ»Ρ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠ»ΡΡ-ΠΌΠΈΠ½ΡΡ Π½ΠΈ Π΄Π»Ρ ΡΠ΅Π³ΠΎ Π½Π΅ ΡΡΠΈΡΡΠ²Π°Π»ΡΡ.
Π’Π°ΠΊΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π²Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΠ΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Β«ΠΏΠ»ΡΡ-ΠΌΠΈΠ½ΡΡ Π½ΠΎΠ»ΡΒ» Π½ΠΈΡΠ΅Π³ΠΎ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅Ρ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Β«ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΠΌΡΡΒ» ΠΊΠΎΡΠ½Π΅ΠΌ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ x ΡΠ°Π²Π½ΠΎ
β2 / 3 , Π½ΠΎ ΠΎΠ½ΠΎ ΡΠ°Π²Π½ΠΎ ΡΡΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠ°ΠΊ Π±Ρ Π²Π΄Π²ΠΎΠ΅: β2 / 3 + 0 ΠΈ β2 / 3 β 0.ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π»ΡΡΡΠ΅ ΡΠ²ΠΈΠ΄Π΅ΡΡ ΡΡΠΎ ΠΏΠΎΠ²ΡΠΎΡΠ΅Π½ΠΈΠ΅, Π΅ΡΠ»ΠΈ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ (ΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π±ΡΠ»ΠΈ Ρ ΠΎΡΠΎΡΠΈΠΌΠΈ ΡΠΎΡΠ½ΡΠΌΠΈ Π΄ΡΠΎΠ±ΡΠΌΠΈ, ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΠΉ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ ): 9 x 2 + 12 x + 4 = (3 x + 2) (3 x + 2) = 0, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠ΅ΡΠ²ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π΄Π°Π΅Ρ Π½Π°ΠΌ 3 x + 2 = 0, ΠΏΠΎΡΡΠΎΠΌΡ
x = β2 / 3 , ΠΈ (ΠΈΠ· Π²ΡΠΎΡΠΎΠ³ΠΎ, ΠΈΠ΄Π΅Π½ΡΠΈΡΠ½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ) 3 x + 2 = 0, ΠΏΠΎΡΡΠΎΠΌΡ x = β2 / 3 ΡΠ½ΠΎΠ²Π°.ΠΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π·, ΠΊΠΎΠ³Π΄Π° Π²Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΠ΅ Π½ΠΎΠ»Ρ Π²Π½ΡΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»Ρ, Π²Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΠ΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π² ΡΠΌΡΡΠ»Π΅ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ΅ΡΠ°Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. ΠΠΎ Π²Ρ ΠΏΠΎΠ»ΡΡΠΈΡΠ΅ Π΄Π²Π° ΡΠ΅ΡΠ΅Π½ΠΈΡ Π² ΡΠΎΠΌ ΡΠΌΡΡΠ»Π΅, ΡΡΠΎ ΠΎΠ΄Π½ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ΄ΡΡΠΈΡΠ°Π½ΠΎ Π΄Π²Π°ΠΆΠ΄Ρ. ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ (ΡΠΎ Π΅ΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ b 2 β 4 ac ) Ρ Π½ΡΠ»Π΅Π²ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ Π²Ρ ΠΏΠΎΠ»ΡΡΠΈΡΠ΅ ΠΎΠ΄Π½ΠΎ Β«ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠ΅Π΅ΡΡΒ» Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΠΈΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π³ΡΠ°ΡΠΈΠΊ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, y = 9 x 2 + 12 x + 4, Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΠ°ΡΠ°Π±ΠΎΠ»Π° ΡΠΎΠ»ΡΠΊΠΎ ΠΊΠ°ΡΠ°Π΅ΡΡΡ ΠΎΡΠΈ x ΠΏΡΠΈ
x = β2 / 3 ; ΡΡΠΎ Π½Π° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅ Π½Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅ΡΡΡ.ΠΡΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅Π³Π΄Π° Π²Π΅ΡΠ½ΠΎ: Π΅ΡΠ»ΠΈ Ρ Π²Π°Ρ Π΅ΡΡΡ ΠΊΠΎΡΠ΅Π½Ρ, ΠΊΠΎΡΠΎΡΡΠΉ Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ ΡΠΎΠ²Π½ΠΎ Π΄Π²Π°ΠΆΠ΄Ρ (ΠΈΠ»ΠΈ, ΡΡΠΎ ΡΠΎ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠ΅, Π΅ΡΠ»ΠΈ Π²Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΠ΅ Π½ΠΎΠ»Ρ Π²Π½ΡΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ), ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ Π±ΡΠ΄Π΅Ρ Β«ΡΠ΅Π»ΠΎΠ²Π°ΡΡΒ» ΠΎΡΡ Π² Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ, Π½ΠΎ ΠΎΠ½ Π½Π΅ ΠΏΡΠΎΠΉΠ΄Π΅Ρ ΡΠ΅ΡΠ΅Π· ΠΎΡΡ.ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π½Π΅Ρ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΠΏΡΠΈ (3) (2) = 6, ΠΊΠΎΡΠΎΡΡΠ΅ Π² ΡΡΠΌΠΌΠ΅ Π΄Π°ΡΡ 4, ΡΡΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π½Π΅ ΠΌΠ½ΠΎΠΆΠΈΡΡΡ. ΠΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π²ΡΠ΅Π³Π΄Π°; Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Ρ Π²ΡΡΠ°Π²Π»Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ a = 3, b = 4 ΠΈ c = 2:
ΠΠ° Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Ρ ΠΌΠ΅Π½Ρ Π΅ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π²Π½ΡΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ.ΠΡΠ»ΠΈ Π²Ρ Π΅ΡΠ΅ Π½Π΅ ΡΠ·Π½Π°Π»ΠΈ ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΡΠΈΡΠ»Π°Ρ , Π²Π°ΠΌ ΠΏΡΠΈΠ΄Π΅ΡΡΡ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡΡ Π½Π° ΡΡΠΎΠΌ, ΠΈ ΠΎΡΠ²Π΅Ρ Π±ΡΠ΄Π΅Ρ Β«Π½Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡΒ»; Π΅ΡΠ»ΠΈ Π²Ρ Π·Π½Π°Π΅ΡΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, ΡΠΎ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ:
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²Π°ΡΠ΅Π³ΠΎ ΡΡΠΎΠ²Π½Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ, Π²Π°Ρ ΠΎΡΠ²Π΅Ρ Π±ΡΠ΄Π΅Ρ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ»Π΅Π΄ΡΡΡΠΈΡ :
ΡΠ΅ΡΠ΅Π½ΠΈΡ Π² Π²ΠΈΠ΄Π΅ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΡΠΈΡΠ΅Π»: Π½Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎ-ΡΠΈΡΠ»ΠΎΠ²ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ:
ΠΠ°ΡΡΠ½Π΅Ρ
ΠΠΎ Π·Π½Π°Π΅ΡΠ΅ Π»ΠΈ Π²Ρ ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°Ρ ΠΈΠ»ΠΈ Π½Π΅Ρ, Π²Ρ Π·Π½Π°Π΅ΡΠ΅, ΡΡΠΎ Π²Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΡΡ ΡΠ²ΠΎΠΉ ΠΎΡΠ²Π΅Ρ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π²Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π½Π° ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠΌ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΌ ΠΌΠ΅ΡΡΠ΅.ΠΠ° ΠΎΡΠΈ x ΡΠ°ΠΊΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π΅Ρ. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π²Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π½Π°ΠΉΡΠΈ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ ΡΠ°Π·ΡΠΌΠ½ΠΎ Π½Π΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ Π½ΠΈΠΊΠ°ΠΊΠΈΡ ΠΏΠ΅ΡΠ΅Ρ Π²Π°ΡΠΎΠ² x (ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ Ρ ΠΏΠ΅ΡΠ΅Ρ Π²Π°ΡΠΎΠΌ x ).
ΠΠΎΡ Π³ΡΠ°ΡΠΈΠΊ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, y = 3 x 2 + 4 x + 2:
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅, Π³ΡΠ°ΡΠΈΠΊ Π½Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΈ Π΄Π°ΠΆΠ΅ Π½Π΅ ΠΊΠ°ΡΠ°Π΅ΡΡΡ ΠΎΡΠΈ x .ΠΡΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅Π³Π΄Π° Π²Π΅ΡΠ½ΠΎ: Π΅ΡΠ»ΠΈ Π²Ρ ΠΏΠΎΠ»ΡΡΠΈΡΠ΅ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²Π½ΡΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ, ΡΠΎΠ³Π΄Π° Π½Π΅ Π±ΡΠ΄Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π»Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π½Π΅ Π±ΡΠ΄Π΅Ρ ΠΏΠ΅ΡΠ΅Ρ Π²Π°ΡΠΎΠ² x . ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ (ΡΠ²Π»ΡΡΡΠΈΠΉΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ b 2 β 4 ac ) ΠΈΠΌΠ΅Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΡΠΎ Ρ Π²Π°Ρ Π½Π΅ Π±ΡΠ΄Π΅Ρ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π½ΡΠ»Π΅ΠΉ .
(Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ (ΡΠ²Π»ΡΡΡΠΈΠΌΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²Π½ΡΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ), ΡΠΈΠΏΠΎΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ (Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΠΎΠ΄Π½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠ΅Π΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π³ΡΠ°ΡΠΈΡΠΈΡΠΈΡΡΠ΅ΠΌΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ) ΠΈ ΡΠΈΡΠ»ΠΎΠΌ x -ΠΏΠ΅ΡΠ΅Ρ Π²Π°ΡΡΠ²Π°Π½ΠΈΠΉ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ (Π΄Π²Π° , ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ Π½Π΅Ρ) ΡΠ²Π΅Π΄Π΅Π½Ρ Π² Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ Π½Π° ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΡΡΠ°Π½ΠΈΡΠ΅.)
URL: https://www.purplemath.com/modules/quadform2.htm
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ: ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ | Study.com
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΎΠΎΠ±ΡΠ°Π΅Ρ Π²Π°ΠΌ, ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.ΠΠ΄Π½Π°ΠΊΠΎ, ΠΏΡΠ΅ΠΆΠ΄Π΅ ΡΠ΅ΠΌ ΠΌΡ ΡΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΠΌΡ ΡΠ½Π°ΡΠ°Π»Π° Π΄ΠΎΠ»ΠΆΠ½Ρ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡ Π΅Π³ΠΎ Π½Π° ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΡ ΡΠΎΡΠΌΡ . Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½Π°Ρ ΡΠΎΡΠΌΠ° β ΡΡΠΎ ΠΊΠΎΠ³Π΄Π° Π²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΈ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π° Π΄ΡΡΠ³Π°Ρ ΡΡΠΎΡΠΎΠ½Π° ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ. ΠΡΠ³Π»ΡΠ΄ΠΈΡ ΡΡΠΎ ΡΠ°ΠΊ:
ΠΠΎΠ³Π΄Π° Ρ Π²Π°Ρ Π΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅, Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΠΌΠ΅ΡΠΈΡΡ ΡΠΈΡΠ»Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ ΠΈ Π²ΡΡΠ°Π²ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°.Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Π²Π°ΡΠ΅Π³ΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° Π³ΠΎΠ²ΠΎΡΠΈΡ Π²Π°ΠΌ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ Π²Π°ΡΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ.
ΠΡΠΈΠΌΠ΅ΡΡ
ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΡΠΈΠΌΠ΅Ρ:
Π Π½Π°ΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π°Π΅Ρ Π½Π°ΠΌ 1 Π΄Π»Ρ Π±ΡΠΊΠ²Ρ a , 5 Π΄Π»Ρ Π±ΡΠΊΠ²Ρ b ΠΈ 4 Π΄Π»Ρ Π±ΡΠΊΠ²Ρ c . ΠΡ Π±Π΅ΡΠ΅ΠΌ ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ Π²ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΈΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΌΠ΅ΡΡΠ° Π² ΡΠΎΡΠΌΡΠ»Π΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°, ΠΈ ΠΌΡ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ²Π°Π΅ΠΌ, ΡΡΠΎ Π½Π°Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ 9, ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ.ΠΡΠΎ Π³ΠΎΠ²ΠΎΡΠΈΡ Π½Π°ΠΌ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Ρ Π½Π°ΡΠ΅Π³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΅ΡΡΡ Π΄Π²Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ. Π Π΅Π°Π»ΡΠ½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ β ΡΡΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΎΠ³Π΄Π° Π²Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΠ΅ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π²Ρ ΡΠ²ΠΈΠ΄ΠΈΡΠ΅, ΡΡΠΎ ΠΊΡΠΈΠ²Π°Ρ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ x Π² Π΄Π²ΡΡ ΠΌΠ΅ΡΡΠ°Ρ , ΠΈΠΌΠ΅Π½Π½ΠΎ ΡΠ°ΠΌ, Π³Π΄Π΅ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π²Π°ΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
Π₯ΠΎΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΎΠΎΠ±ΡΠ°Π΅Ρ Π½Π°ΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ, ΠΎΠ½ Π½Π΅ Π³ΠΎΠ²ΠΎΡΠΈΡ Π½Π°ΠΌ, ΡΡΠΎ ΡΡΠΎ Π·Π° ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠΎ ΡΡΠΎ Π΄Π°Π΅Ρ Π½Π°ΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎ ΡΠΎΠΌ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΈΡΠΊΠ°ΡΡ.
ΠΠΎΠΌΠ½ΠΈΡΠ΅, ΡΡΠΎ Π΅ΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ Π½Π΅Ρ ΡΠΈΡΠ΅Π», ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ, ΡΡΠΎ ΠΏΠ΅ΡΠ΅Π΄ Π½ΠΈΠΌΠΈ ΡΡΠΎΠΈΡ 1. ΠΡ Π½Π΅ ΠΏΠΈΡΠ΅ΠΌ 1, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠ³Π»Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π°ΠΊΠΊΡΡΠ°ΡΠ½Π΅Π΅, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΠΊΠΎΠ³Π΄Π° Ρ Π²Π°Ρ ΠΌΠ½ΠΎΠ³ΠΎ Π±ΡΠΊΠ², Ρ ΠΊΠΎΡΠΎΡΡΠΌΠΈ Π½ΡΠΆΠ½ΠΎ ΡΠ°Π±ΠΎΡΠ°ΡΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄ΡΡΠ³ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅Ρ:
ΠΡ ΠΏΡΠΈΡΠ²ΠΎΠΈΠ»ΠΈ Π½Π°ΡΠΈΠΌ Π±ΡΠΊΠ²Π°ΠΌ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² Π½Π°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ, ΠΌΡ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ²Π°Π΅ΠΌ, ΡΡΠΎ Π½Π°Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ -31, ΡΠΎ Π΅ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.Π₯ΠΌ β¦ ΡΡΠΎ ΡΡΠΎ ΠΌΠΎΠ³Π»ΠΎ Π·Π½Π°ΡΠΈΡΡ? ΠΠΎΠ³Π΄Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π½Π΅Ρ. ΠΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²Ρ ΡΠ²ΠΈΠ΄ΠΈΡΠ΅, ΡΡΠΎ ΠΎΠ½ΠΎ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ x ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ.
ΠΡΡΡ Π΅ΡΠ΅ ΠΎΠ΄Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π°Ρ ΡΠΈΡΡΠ°ΡΠΈΡ β ΠΊΠΎΠ³Π΄Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ 0. ΠΠΎΠ³Π΄Π° Π²Ρ Π²ΠΈΠ΄ΠΈΡΠ΅ ΡΡΠΎ, ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°Π΅ΡΡΡ ΠΎΡΠΈ x ΡΠΎΠ»ΡΠΊΠΎ Π² ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΠΎΡ ΡΠ°Π±Π»ΠΈΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ Π²Π°ΠΌ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ½ΡΠ΅ ΡΠΈΡΡΠ°ΡΠΈΠΈ ΠΈ ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅:
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ | ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ |
---|---|
> 0 | ΠΠ²Π° ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ |
= 0 | ΠΠ΄Π½ΠΎ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ |
<0 | Π Π΅Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π½Π΅Ρ |
Π Π΅Π·ΡΠΌΠ΅ ΡΡΠΎΠΊΠ°
ΠΠΎΠ΄Π²ΠΎΠ΄Ρ ΠΈΡΠΎΠ³, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ Π²Π°ΠΌ, ΡΠΎΠΎΠ±ΡΠ°Ρ Π²Π°ΠΌ, ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.Π€ΠΎΡΠΌΡΠ»Ρ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, ΠΏΠΎΡΠΌΠΎΡΡΠ΅Π² Π½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ. ΠΠΎΠ·ΠΌΠΎΠΆΠ½Ρ ΡΡΠΈ ΡΡΠ΅Π½Π°ΡΠΈΡ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΠΎ Π΅ΡΡΡ Π΄Π²Π° ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ 0, ΡΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½ΠΎ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΠΎ ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π½Π΅Ρ.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ
ΠΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ ΡΡΠΎΠΊΠ° Π²Ρ ΡΠΌΠΎΠΆΠ΅ΡΠ΅:
- ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡΡ Π΅Π³ΠΎ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅
- ΠΠ±ΡΡΡΠ½ΠΈΡΠ΅, ΠΊΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
- ΠΠΏΠΈΡΠΈΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ ΡΡΠ΅Π½Π°ΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
a x Β² + bx + c = 0
ΡΡΠΎ
Ξ = b Β² β 4 ac .
ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Ξ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²ΠΎΠΉΠ½ΠΎΠΉ ΠΊΠΎΡΠ΅Π½Ρ, ΡΠΎ Π΅ΡΡΡ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΠΉ x , ΠΊΠΎΡΠΎΡΡΠΉ Π΄Π΅Π»Π°Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½ΡΠ»Π΅Π²ΡΠΌ, ΠΈ ΠΎΠ½ Π΄Π²Π°ΠΆΠ΄Ρ ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΊΠΎΡΠ½Π΅ΠΌ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π½Π΅ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, Π΅ΡΡΡ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ.
ΠΡΠ±ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ°ΠΊΠΆΠ΅ ΠΈΠΌΠ΅ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. ΠΠ»Ρ ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
a x Β³ + bx Β² + cx + d = 0
Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½
Ξ = 18 abcd β 4 b Β³ d + b Β²cΒ² β 4 acΒ³ β 27 a Β² d Β².
ΠΡΠ»ΠΈ Ξ = 0, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΊΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ, Π½ΠΎ Π² ΠΏΡΠΎΡΠΈΠ²Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ.
ΠΠ°ΠΌΠ΅Π½Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ΅Ρ ΡΠ²Π΅ΡΡΠΈ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊ ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠΎΠΌΡ Β«Π²Π΄Π°Π²Π»Π΅Π½Π½ΠΎΠΌΡΒ» ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΠΈΠ΄Π°
x Β³ + ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΉ + q = 0
, Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΏΡΠΎΡΠ°Π΅ΡΡΡ Π΄ΠΎ
Ξ = β 4 pΒ³ β 27 q Β².
ΠΠΎΡ ΠΏΠ°ΡΠ° ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½ΡΡ ΡΠ²ΡΠ·Π΅ΠΉ. ΠΠ΄Π΅Ρ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΊ ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ Ρ ΡΠ³Π»ΡΠ±Π»Π΅Π½ΠΈΠ΅ΠΌ Π²ΠΎΡΡ ΠΎΠ΄ΠΈΡ ΠΊ ΠΠ°ΡΠ΄Π°Π½ΠΎ (1501β1576).Π’ΠΎ, ΡΡΠΎ Π² ΡΡΠΎΠΌ ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ³Π»ΡΠ±Π»Π΅Π½Π½ΠΎΠΉ ΠΊΡΠ±ΠΈΠΊΠΎΠΉ, ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΊΠ°ΠΊ ΡΠΎΡΠΌΠ° ΠΠ΅ΠΉΠ΅ΡΡΡΡΠ°ΡΡΠ° (1815β1897) Π² ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ ΡΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΡΠΈΠ²ΡΡ . Π’ΠΎ Π΅ΡΡΡ ΡΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΊΡΠΈΠ²Π°Ρ Π²ΠΈΠ΄Π°
y Β² = x Β³ + ax + b
Π‘ΡΠΈΡΠ°Π΅ΡΡΡ, ΡΡΠΎΠ½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² ΡΠΎΡΠΌΠ΅ ΠΠ΅ΠΉΠ΅ΡΡΡΡΠ°ΡΡΠ°. ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΡΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΊΡΠΈΠ²Π°Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎΡΠΌΡ ΠΠ΅ΠΉΠ΅ΡΡΡΡΠ°ΡΡΠ°, Π΅ΡΠ»ΠΈ ΠΏΡΠ°Π²Π°Ρ ΡΠ°ΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΡΠ³Π»ΡΠ±Π»Π΅Π½Π½ΡΡ ΠΊΡΠ±ΠΈΠΊΡ.
ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΊΡΠΈΠ²Π°Ρ Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ Π½Π΅Π²ΡΡΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠΉ, ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΎΠ½Π° Π΄ΠΎΠ»ΠΆΠ½Π° ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ
4 aΒ³ + 27 b Β² β 0.
ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΎΡΠ»ΠΈΡΠ΅Π½ ΠΎΡ Π½ΡΠ»Ρ. Π ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ ΡΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΡΠΈΠ²ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ
Ξ = -16 (4 aΒ³ + 27 b Β²)
, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ Π²ΡΡΠ΅, Π·Π° ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° 16, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΏΡΠΎΡΠ°Π΅Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Ρ ΡΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΊΡΠΈΠ²ΡΠΌΠΈ.
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΠΎΠ»ΡΠΌ
Π ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΠΈ ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΡ ΠΎΠ±ΡΡΠ½ΠΎ Π½Π΅ΡΠ²Π½ΠΎ ΡΠ°Π±ΠΎΡΠ°Π΅ΠΌ Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΈΠ»ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ.ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ Π²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½Ρ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, Π΅ΡΡΡ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, Π΅ΡΡΡ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ, ΠΈ ΡΡΠΈ ΠΊΠΎΡΠ½ΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎ ΡΠΎΠΏΡΡΠΆΠ΅Π½Π½ΡΠΌΠΈ Π΄ΡΡΠ³ Π΄ΡΡΠ³Ρ.
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΡΠ΅ Π·Π°ΠΌΠ΅ΡΠ°Π½ΠΈΡ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Ρ Π΄Π»Ρ ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, ΠΊΠΎΠ³Π΄Π° Π²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½Ρ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΈΠΌΠ΅Π΅ΡΡΡ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎ ΡΠΎΠΏΡΡΠΆΠ΅Π½Π½Π°Ρ ΠΏΠ°ΡΠ° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
Π ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅ Ρ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π» ΡΠΎΠ»ΡΠΊΠΎ, Π±ΡΠ» Π»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π½ΡΠ»Π΅Π²ΡΠΌ, ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ Π½Π΅ Π·Π°Π²ΠΈΡΡΡ ΠΎΡ ΠΏΠΎΠ»Ρ, ΠΈΠ· ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π±Π΅ΡΡΡΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ.
ΠΠ»Ρ ΡΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΡΠΈΠ²ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°Π±ΠΎΡΠ°ΡΡ Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ ΠΏΠΎΠ»Π΅ΠΉ. ΠΠΎΠΆΠ΅Ρ Π±ΡΡΡ, Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΠ»ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠ΅ ΠΏΠΎΠ»Ρ. Π Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ ΡΠΎΠΎΠ±ΡΠ΅Π½ΠΈΠΉ Π±Π»ΠΎΠ³Π°, ΠΊΠΎΡΠΎΡΡΠ΅ Ρ ΠΏΠΈΡΠ°Π» ΠΎΠ± ΡΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΡΠΈΠ²ΡΡ , ΠΏΠΎΠ»Π΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π° ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°.