Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ дискриминант: Как Π½Π°ΠΉΡ‚ΠΈ Дискриминант? πŸ€” Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ.

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

Как Π½Π°ΠΉΡ‚ΠΈ Дискриминант? πŸ€” Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ.

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€” это матСматичСскоС равСнство, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ нСизвСстна ΠΎΠ΄Π½Π° ΠΈΠ»ΠΈ нСсколько Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ нСизвСстных Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈ ΠΈΡ… подстановкС Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ Π²Π΅Ρ€Π½ΠΎΠ΅ числовоС равСнство.

НапримСр, возьмСм Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ 8 + 4 = 12. ΠŸΡ€ΠΈ вычислСнии Π»Π΅Π²ΠΎΠΉ части получаСтся Π²Π΅Ρ€Π½ΠΎΠ΅ числовоС равСнство, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ 12 = 12.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ 8 + x = 12, с нСизвСстной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ Ρ‚Π°ΠΊΠΈΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π·Π½Π°ΠΊ равСнства Π±Ρ‹Π» ΠΎΠΏΡ€Π°Π²Π΄Π°Π½, ΠΈ лСвая Ρ‡Π°ΡΡ‚ΡŒ Ρ€Π°Π²Π½ΡΠ»Π°ΡΡŒ ΠΏΡ€Π°Π²ΠΎΠΉ.

Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ уравнСния ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎ наибольшСй стСпСни, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ стоит нСизвСстноС. Если нСизвСстноС стоит Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ являСтся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€” это ax2 + bx + c = 0, Π³Π΄Π΅ a β€” ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΈΠ»ΠΈ ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт, Π½Π΅ Ρ€Π°Π²Π½Ρ‹ΠΉ Π½ΡƒΠ»ΡŽ, b β€” Π²Ρ‚ΠΎΡ€ΠΎΠΉ коэффициСнт, c β€” свободный Ρ‡Π»Π΅Π½.

Π•ΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

  • Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΊΠΎΡ€Π½Π΅ΠΉ;
  • ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ;
  • ΠΈΠΌΠ΅ΡŽΡ‚ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… корня.

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ дискриминанта

Дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния β€” это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ находится ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Дискриминант Π² ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π΅ с латинского ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Β«ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ» ΠΈ обозначаСтся Π±ΡƒΠΊΠ²ΠΎΠΉ D.

Дискриминант β€” ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹ΠΉ ΠΏΠΎΠΌΠΎΡ‰Π½ΠΈΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ, сколько Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΡ€Π½Π΅ΠΉ.


Π§Π°Ρ‰Π΅ всСго для поиска дискриминанта ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π’ этом ΠΊΠ»ΡŽΡ‡Π΅ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для поиска ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния выглядит Ρ‚Π°ΠΊ:


Π­Ρ‚Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Π΄Π°ΠΆΠ΅ для Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Но Π΅ΡΡ‚ΡŒ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ β€” всС зависит ΠΎΡ‚ Π²ΠΈΠ΄Π° уравнСния. Π§Ρ‚ΠΎΠ±Ρ‹ Π² Π½ΠΈΡ… Π½Π΅ Π·Π°ΠΏΡƒΡ‚Π°Ρ‚ΡŒΡΡ, сохраняйтС Ρ‚Π°Π±Π»ΠΈΡ‡ΠΊΡƒ ΠΈΠ»ΠΈ распСчатайтС Π΅Π΅ ΠΈ Ρ…Ρ€Π°Π½ΠΈΡ‚Π΅ Π² ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ΅.


Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния Ρ‡Π΅Ρ€Π΅Π· дискриминант

Π’ 8 классС Π½Π° Π°Π»Π³Π΅Π±Ρ€Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΏΠΎ поиску Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

Для этого Π²Π°ΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅Π΄ использованиСм Ρ„ΠΎΡ€ΠΌΡƒΠ» Π½Π°ΠΉΡ‚ΠΈ дискриминант ΠΈ ΡƒΠ±Π΅Π΄ΠΈΡ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ Π½Π΅ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Волько послС этого вычисляСм значСния ΠΊΠΎΡ€Π½Π΅ΠΉ. Если дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ.

Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ax2 + bx + c = 0:

  • ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ дискрининант: D = b2 βˆ’ 4ac;
  • Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ β€” Π·Π°Ρ„ΠΈΠΊΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚;
  • Ссли дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ β€” Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ СдинствСнный ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Ρ… = β€” b2/2a;
  • Ссли дискриминант ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ β€” Π½Π°ΠΉΡ‚ΠΈ Π΄Π²Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… корня ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΊΠΎΡ€Π½Π΅ΠΉ

А Π²ΠΎΡ‚ ΠΈ Π΅Ρ‰Π΅ ΠΎΠ΄Π½Π° Ρ‚Π°Π±Π»ΠΈΡ‡ΠΊΠ°: Π² Π½Π΅ΠΉ Π²Ρ‹ Π½Π°ΠΉΠ΄Π΅Ρ‚Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для поиска ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ дискриминанта:


Π§Ρ‚ΠΎΠ±Ρ‹ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ с Π»Π΅Π³ΠΊΠΎΡΡ‚ΡŒΡŽ Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ, Π²Π°ΠΆΠ½ΠΎ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΎΠ²Π°Ρ‚ΡŒΡΡ. Π’ΠΏΠ΅Ρ€Π΅Π΄!

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ дискриминанта

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅: 3x2 β€” 4x + 2 = 0.

Как Ρ€Π΅ΡˆΠ°Π΅ΠΌ:

  1. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ коэффициСнты: a = 3, b = -4, c = 2.

  2. НайдСм дискриминант: D = b2 β€” 4ac = (-4)2 β€” 4 * 3 * 2 = 16 β€” 24 = -8.

ΠžΡ‚Π²Π΅Ρ‚: D < 0, ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅: x2 β€” 6x + 9 = 0.

Как Ρ€Π΅ΡˆΠ°Π΅ΠΌ:

  1. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ коэффициСнты: a = 1, b = -6, c = 9.

  2. НайдСм дискриминант: D = b2 β€” 4ac = (-6)2 β€” 4 * 1 * 9 = 36 β€” 36 = 0.

  3. D = 0, Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ:

ΠžΡ‚Π²Π΅Ρ‚: ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния 3.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅: x2 β€” 4x β€” 5 = 0.

Как Ρ€Π΅ΡˆΠ°Π΅ΠΌ:

  1. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ коэффициСнты: a = 1, b = -4, c = -5.

  2. НайдСм дискриминант: D = b2 β€” 4ac = (-4)2 β€” 4 * 1 * (-5) = 16 + 20 = 36.

  3. D > 0, Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° корня:

     

x1 = (4 + 6) : 2 = 5,

x2 = (4 β€” 6) : 2 = -1.

ΠžΡ‚Π²Π΅Ρ‚: Π΄Π²Π° корня x1 = 5, x2 = -1.

НС ТСлаСшь ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ сокращСнного умноТСния?

Дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ дискриминанта

Дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния β€” это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, находящССся ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Дискриминант обозначаСтся латинской Π±ΡƒΠΊΠ²ΠΎΠΉ  D.

ВсС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΊΠΎΡ€ΠΎΡ‡Π΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ дискриминанта:

Дискриминант позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΈΠΌΠ΅Π΅Ρ‚ Π»ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½ΠΈ ΠΈ сколько ΠΈΡ…, Π½Π΅ Ρ€Π΅ΡˆΠ°Ρ само ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

  1. Если дискриминант большС нуля, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° корня.
  2. Если дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ.
  3. Если дискриминант мСньшС нуля, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΡ€Π½Π΅ΠΉ.

НСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ нСсколько Ρ„ΠΎΡ€ΠΌΡƒΠ» дискриминанта, Ρ‡Π°Ρ‰Π΅ всСго ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΏΠ΅Ρ€Π²ΡƒΡŽ:

D = b2 β€” 4ac,

Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½Π° относится ΠΊ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

,

которая являСтся ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Данная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Π΄Π°ΠΆΠ΅ для Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

РСшСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Ρ‡Π΅Ρ€Π΅Π· дискриминант

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ сначала Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ дискриминант ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ Π΅Π³ΠΎ с Π½ΡƒΠ»Ρ‘ΠΌ. Π’ зависимости ΠΎΡ‚ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°, Π»ΠΈΠ±ΠΎ ΠΈΡΠΊΠ°Ρ‚ΡŒ ΠΊΠΎΡ€Π½ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅, Π»ΠΈΠ±ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

3x2 β€” 4x + 2 = 0.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ коэффициСнты:

a = 3,  b = -4,  c = 2.

Найдём дискриминант:

D = b2 β€” 4ac = (-4)2 β€” 4 Β· 3 Β· 2 = 16 β€” 24 = -8,

D < 0.

ΠžΡ‚Π²Π΅Ρ‚: ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2.

x2 β€” 6x + 9 = 0.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ коэффициСнты:

a = 1,  b = -6,  c = 9.

Найдём дискриминант:

D = b2 β€” 4ac = (-6)2 β€” 4 Β· 1 Β· 9 = 36 β€” 36 = 0,

D = 0.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ всСго ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ:

ΠžΡ‚Π²Π΅Ρ‚:  3.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3.

x2 β€” 4x β€” 5 = 0.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ коэффициСнты:

a = 1,  b = -4,  c

= -5

Найдём дискриминант:

D = b2 β€” 4ac = (-4)2 β€” 4 Β· 1 Β· (-5) = 16 + 20 = 36,

D > 0.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° корня:

x1 = (4 + 6) : 2 = 5,

x2 = (4 β€” 6) : 2 = -1.

ΠžΡ‚Π²Π΅Ρ‚:  5,  -1.

РСшСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‚ Π² 8 классС, поэтому Π½ΠΈΡ‡Π΅Π³ΠΎ слоТного здСсь Π½Π΅Ρ‚. Π£ΠΌΠ΅Π½ΠΈΠ΅ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΈΡ… ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€” это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ax2 + bx + c = 0, Π³Π΄Π΅ коэффициСнты a, b ΠΈ c β€” ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Π΅ числа, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ a β‰  0.

ΠŸΡ€Π΅ΠΆΠ΄Π΅, Ρ‡Π΅ΠΌ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, Π·Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ всС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния ΠΌΠΎΠΆΠ½ΠΎ условно Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° Ρ‚Ρ€ΠΈ класса:

  1. НС ΠΈΠΌΠ΅ΡŽΡ‚ ΠΊΠΎΡ€Π½Π΅ΠΉ;
  2. Π˜ΠΌΠ΅ΡŽΡ‚ Ρ€ΠΎΠ²Π½ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ;
  3. Π˜ΠΌΠ΅ΡŽΡ‚ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… корня.

Π’ этом состоит Π²Π°ΠΆΠ½ΠΎΠ΅ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΎΡ‚ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ…, Π³Π΄Π΅ ΠΊΠΎΡ€Π΅Π½ΡŒ всСгда сущСствуСт ΠΈ СдинствСнСн. Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, сколько ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅? Для этого сущСствуСт Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ Π²Π΅Ρ‰ΡŒ β€” дискриминант.

Дискриминант

ΠŸΡƒΡΡ‚ΡŒ Π΄Π°Π½ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax2 + bx + c = 0. Π’ΠΎΠ³Π΄Π° дискриминант β€” это просто число D = b2 βˆ’ 4ac.

Π­Ρ‚Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π½Π°Π΄ΠΎ Π·Π½Π°Ρ‚ΡŒ Π½Π°ΠΈΠ·ΡƒΡΡ‚ΡŒ. ΠžΡ‚ΠΊΡƒΠ΄Π° ΠΎΠ½Π° бСрСтся β€” сСйчас Π½Π΅Π²Π°ΠΆΠ½ΠΎ. Π’Π°ΠΆΠ½ΠΎ Π΄Ρ€ΡƒΠ³ΠΎΠ΅: ΠΏΠΎ Π·Π½Π°ΠΊΡƒ дискриминанта ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, сколько ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅. А ΠΈΠΌΠ΅Π½Π½ΠΎ:

  1. Если D < 0, ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚;
  2. Если D = 0, Π΅ΡΡ‚ΡŒ Ρ€ΠΎΠ²Π½ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ;
  3. Если D > 0, ΠΊΠΎΡ€Π½Π΅ΠΉ Π±ΡƒΠ΄Π΅Ρ‚ Π΄Π²Π°.

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅: дискриминант ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° количСство ΠΊΠΎΡ€Π½Π΅ΠΉ, Π° вовсС Π½Π΅ Π½Π° ΠΈΡ… Π·Π½Π°ΠΊΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΡ‡Π΅ΠΌΡƒ-Ρ‚ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚. ВзглянитС Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ β€” ΠΈ сами всС ΠΏΠΎΠΉΠΌΠ΅Ρ‚Π΅:

Π—Π°Π΄Π°Ρ‡Π°. Бколько ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния:

  1. x2 βˆ’ 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x2 βˆ’ 6x + 9 = 0.

Π’Ρ‹ΠΏΠΈΡˆΠ΅ΠΌ коэффициСнты для ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ уравнСния ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ дискриминант:
a = 1, b = βˆ’8, c = 12;
D = (βˆ’8)2 βˆ’ 4 Β· 1 Β· 12 = 64 βˆ’ 48 = 16

Π˜Ρ‚Π°ΠΊ, дискриминант ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, поэтому ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… корня. Аналогично Ρ€Π°Π·Π±ΠΈΡ€Π°Π΅ΠΌ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:
a = 5; b = 3; c = 7;
D = 32 βˆ’ 4 Β· 5 Β· 7 = 9 βˆ’ 140 = βˆ’131.

Дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚. ΠžΡΡ‚Π°Π»ΠΎΡΡŒ послСднСС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:
a = 1; b = βˆ’6; c = 9;
D = (βˆ’6)2 βˆ’ 4 Β· 1 Β· 9 = 36 βˆ’ 36 = 0.

Дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ β€” ΠΊΠΎΡ€Π΅Π½ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠ΄ΠΈΠ½.

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ уравнСния Π±Ρ‹Π»ΠΈ выписаны коэффициСнты. Π”Π°, это Π΄ΠΎΠ»Π³ΠΎ, Π΄Π°, это Π½ΡƒΠ΄Π½ΠΎ β€” Π·Π°Ρ‚ΠΎ Π²Ρ‹ Π½Π΅ ΠΏΠ΅Ρ€Π΅ΠΏΡƒΡ‚Π°Π΅Ρ‚Π΅ коэффициСнты ΠΈ Π½Π΅ допуститС Π³Π»ΡƒΠΏΡ‹Ρ… ошибок. Π’Ρ‹Π±ΠΈΡ€Π°ΠΉΡ‚Π΅ сами: ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ качСство.

ΠšΡΡ‚Π°Ρ‚ΠΈ, Ссли Β«Π½Π°Π±ΠΈΡ‚ΡŒ Ρ€ΡƒΠΊΡƒΒ», Ρ‡Π΅Ρ€Π΅Π· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ врСмя ΡƒΠΆΠ΅ Π½Π΅ потрСбуСтся Π²Ρ‹ΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ всС коэффициСнты. Π’Π°ΠΊΠΈΠ΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π²Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ Π² Π³ΠΎΠ»ΠΎΠ²Π΅. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ людСй Π½Π°Ρ‡ΠΈΠ½Π°ΡŽΡ‚ Π΄Π΅Π»Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ Π³Π΄Π΅-Ρ‚ΠΎ послС 50-70 Ρ€Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ β€” Π² ΠΎΠ±Ρ‰Π΅ΠΌ, Π½Π΅ Ρ‚Π°ΠΊ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎ.

ΠšΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠ΅Ρ€Π΅ΠΉΠ΄Π΅ΠΌ, собствСнно, ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ. Если дискриминант D > 0, ΠΊΠΎΡ€Π½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ:

Основная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Когда D = 0, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π»ΡŽΠ±ΡƒΡŽ ΠΈΠ· этих Ρ„ΠΎΡ€ΠΌΡƒΠ» β€” получится ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅ число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Π²Π΅Ρ‚ΠΎΠΌ. НаконСц, Ссли D < 0, ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚ β€” Π½ΠΈΡ‡Π΅Π³ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π½Π΅ Π½Π°Π΄ΠΎ.

Π—Π°Π΄Π°Ρ‡Π°. Π Π΅ΡˆΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния:

  1. x2 βˆ’ 2x βˆ’ 3 = 0;
  2. 15 βˆ’ 2x βˆ’ x2 = 0;
  3. x2 + 12x + 36 = 0.

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:
x2 βˆ’ 2x βˆ’ 3 = 0 β‡’ a = 1; b = βˆ’2; c = βˆ’3;
D = (βˆ’2)2 βˆ’ 4 Β· 1 Β· (βˆ’3) = 16.

D > 0 β‡’ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° корня. НайдСм ΠΈΡ…:

Π’Ρ‚ΠΎΡ€ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:
15 βˆ’ 2x βˆ’ x2 = 0 β‡’ a = βˆ’1; b = βˆ’2; c = 15;
D = (βˆ’2)2 βˆ’ 4 Β· (βˆ’1) Β· 15 = 64.

D > 0 β‡’ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ снова ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° корня. НайдСм ΠΈΡ…

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left( -1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left( -1 \right)}=3. \\ \end{align}\]

НаконСц, Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:
x2 + 12x + 36 = 0 β‡’ a = 1; b = 12; c = 36;
D = 122 βˆ’ 4 Β· 1 Β· 36 = 0.

D = 0 β‡’ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ. МоТно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π»ΡŽΠ±ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ. НапримСр, ΠΏΠ΅Ρ€Π²ΡƒΡŽ:

\[x=\frac{-12+\sqrt{0}}{2\cdot 1}=-6\]

Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ², всС ΠΎΡ‡Π΅Π½ΡŒ просто. Если Π·Π½Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ ΡƒΠΌΠ΅Ρ‚ΡŒ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ, ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚. Π§Π°Ρ‰Π΅ всСго ошибки Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ ΠΏΡ€ΠΈ подстановкС Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… коэффициСнтов. Π—Π΄Π΅ΡΡŒ ΠΎΠΏΡΡ‚ΡŒ ΠΆΠ΅ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ΅ΠΌ, описанный Π²Ρ‹ΡˆΠ΅: смотритС Π½Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π±ΡƒΠΊΠ²Π°Π»ΡŒΠ½ΠΎ, расписывайтС ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ шаг β€” ΠΈ ΠΎΡ‡Π΅Π½ΡŒ скоро ΠΈΠ·Π±Π°Π²ΠΈΡ‚Π΅ΡΡŒ ΠΎΡ‚ ошибок.

НСполныС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния

Π‘Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ нСсколько отличаСтся ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Π΄Π°Π½ΠΎ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ. НапримСр:

  1. x2 + 9x = 0;
  2. x2 βˆ’ 16 = 0.

НСслоТно Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π² этих уравнСниях отсутствуСт ΠΎΠ΄Π½ΠΎ ΠΈΠ· слагаСмых. Π’Π°ΠΊΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния Ρ€Π΅ΡˆΠ°ΡŽΡ‚ΡΡ Π΄Π°ΠΆΠ΅ Π»Π΅Π³Ρ‡Π΅, Ρ‡Π΅ΠΌ стандартныС: Π² Π½ΠΈΡ… Π΄Π°ΠΆΠ΅ Π½Π΅ потрСбуСтся ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ дискриминант. Π˜Ρ‚Π°ΠΊ, Π²Π²Π΅Π΄Π΅ΠΌ Π½ΠΎΠ²ΠΎΠ΅ понятиС:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax2 + bx + c = 0 называСтся Π½Π΅ΠΏΠΎΠ»Π½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ, Ссли b = 0 ΠΈΠ»ΠΈ c = 0, Ρ‚.Π΅. коэффициСнт ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΠΈΠ»ΠΈ свободный элСмСнт Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ.

РазумССтся, Π²ΠΎΠ·ΠΌΠΎΠΆΠ΅Π½ совсСм тяТСлый случай, ΠΊΠΎΠ³Π΄Π° ΠΎΠ±Π° этих коэффициСнта Ρ€Π°Π²Π½Ρ‹ Π½ΡƒΠ»ΡŽ: b = c = 0. Π’ этом случаС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄ ax2 = 0. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ СдинствСнный ΠΊΠΎΡ€Π΅Π½ΡŒ: x = 0.

Рассмотрим ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ случаи. ΠŸΡƒΡΡ‚ΡŒ b = 0, Ρ‚ΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ax2 + c = 0. НСмного ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ Π΅Π³ΠΎ:

РСшСниС Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ арифмСтичСский ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ сущСствуСт Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΈΠ· Π½Π΅ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа, послСднСС равСнство ΠΈΠΌΠ΅Π΅Ρ‚ смысл ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈ (βˆ’c/a) β‰₯ 0. Π’Ρ‹Π²ΠΎΠ΄:

  1. Если Π² Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ Π²ΠΈΠ΄Π° ax2 + c = 0 Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ нСравСнство (βˆ’c/a) β‰₯ 0, ΠΊΠΎΡ€Π½Π΅ΠΉ Π±ΡƒΠ΄Π΅Ρ‚ Π΄Π²Π°. Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π°Π½Π° Π²Ρ‹ΡˆΠ΅;
  2. Если ΠΆΠ΅ (βˆ’c/a) < 0, ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚.

Как Π²ΠΈΠ΄ΠΈΡ‚Π΅, дискриминант Π½Π΅ потрСбовался β€” Π² Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… уравнСниях Π²ΠΎΠΎΠ±Ρ‰Π΅ Π½Π΅Ρ‚ слоТных вычислСний. На самом Π΄Π΅Π»Π΅ Π΄Π°ΠΆΠ΅ Π½Π΅ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ нСравСнство (βˆ’c/a) β‰₯ 0. Достаточно Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ x2 ΠΈ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ стоит с Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны ΠΎΡ‚ Π·Π½Π°ΠΊΠ° равСнства. Если Ρ‚Π°ΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число β€” ΠΊΠΎΡ€Π½Π΅ΠΉ Π±ΡƒΠ΄Π΅Ρ‚ Π΄Π²Π°. Если ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ β€” ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π²ΠΎΠΎΠ±Ρ‰Π΅.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ разбСрСмся с уравнСниями Π²ΠΈΠ΄Π° ax2 + bx = 0, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… свободный элСмСнт Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ. Π’ΡƒΡ‚ всС просто: ΠΊΠΎΡ€Π½Π΅ΠΉ всСгда Π±ΡƒΠ΄Π΅Ρ‚ Π΄Π²Π°. Достаточно Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ:

ВынСсСниС ΠΎΠ±Ρ‰Π΅Π³ΠΎ мноТитСля Π·Π° скобку

ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ, ΠΊΠΎΠ³Π΄Π° хотя Π±Ρ‹ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ. ΠžΡ‚ΡΡŽΠ΄Π° находятся ΠΊΠΎΡ€Π½ΠΈ. Π’ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ нСсколько Ρ‚Π°ΠΊΠΈΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

Π—Π°Π΄Π°Ρ‡Π°. Π Π΅ΡˆΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния:

  1. x2 βˆ’ 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 βˆ’ 9 = 0.

x2 βˆ’ 7x = 0 β‡’ x Β· (x βˆ’ 7) = 0 β‡’ x1 = 0; x2 = βˆ’(βˆ’7)/1 = 7.

5x2 + 30 = 0 β‡’ 5x2 = βˆ’30 β‡’ x2 = βˆ’6. ΠšΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚, Ρ‚.ΠΊ. ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π²Π΅Π½ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ числу.

4x2 βˆ’ 9 = 0 β‡’ 4x2 = 9 β‡’ x2 = 9/4 β‡’ x1 = 3/2 = 1,5; x2 = βˆ’1,5.

Π‘ΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ Ρ‚Π°ΠΊΠΆΠ΅:

  1. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°
  2. БлСдствия ΠΈΠ· Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π’ΠΈΠ΅Ρ‚Π°
  3. ВСст Π½Π° Ρ‚Π΅ΠΌΡƒ «Значащая Ρ‡Π°ΡΡ‚ΡŒ числа»
  4. ΠŸΡ€Π°Π²ΠΈΠ»Π° ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€ΠΈΠΊΠΈ Π² Π·Π°Π΄Π°Ρ‡Π΅ B6
  5. Как ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΎΠ±Ρ‹Ρ‡Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ Π² Π²ΠΈΠ΄Π΅ дСсятичной
  6. Π—Π°Π΄Π°Ρ‡Π° B15: частный случай ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ с ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ

РСшСниС (ΠΊΠΎΡ€Π½ΠΈ) ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° axΒ² + bx + c = 0, Π³Π΄Π΅ x β€” пСрСмСнная, которая Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ присутствуСт Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅, a, b, c β€” Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ числа, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ a β‰  0.

НапримСр, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ являСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅

2xΒ² β€” 3x + 1 = 0,

Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ a = 2, b = β€” 3, c = 1.

Π’ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ axΒ² + bx + c = 0 коэффициСнт a Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ коэффициСнтом, b β€” Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ коэффициСнтом, c β€” свободным Ρ‡Π»Π΅Π½ΠΎΠΌ.

УравнСния Π²ΠΈΠ΄Π° axΒ² + bx = 0,

Π³Π΄Π΅ c =0,

axΒ² + c = 0,

Π³Π΄Π΅ b =0, ΠΈ

axΒ² = 0,

Π³Π΄Π΅ a =0 ΠΈ b =0,

Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π½Π΅ΠΏΠΎΠ»Π½Ρ‹ΠΌΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌΠΈ уравнСниями.

Найти ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π·Π½Π°Ρ‡ΠΈΡ‚ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.

Для вычислСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравния слуТит Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ bΒ² β€” 4ac, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ называСтся дискриминантом ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΈ обозначаСтся Π±ΡƒΠΊΠ²ΠΎΠΉ D.

ΠšΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ сфСры примСнСния:

β€” для Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ, Ρ‡Ρ‚ΠΎ, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, являСтся ΠΏΡ€ΠΈΡ‘ΠΌΠΎΠΌ упрощСния Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, сокращСния Π΄Ρ€ΠΎΠ±Π΅ΠΉ, вынСсСниС Π·Π° скобки ΠΎΠ±Ρ‰Π΅Π³ΠΎ знамСнатСля ΠΈ Ρ‚.Π΄.) Π² частности, ΠΏΡ€ΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ², ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ²;

β€” для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Π½Π° ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΌΠ΅Π½ΡΡŽΡ‰Π΅Π³ΠΎΡΡ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° (ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния, Ρ‡Π°Ρ‰Π΅ всСго ΠΎΠ΄ΠΈΠ½, ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ).

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Π»Π΅Π½Π° axΒ² + bx + c β€” Π»Π΅Π²ΠΎΠΉ части ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния β€” прСдставляСт собой ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ, ось симмСтрии ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° оси 0y. Число Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью 0x опрСдСляСт число ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Если Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния Π΄Π²Π΅, Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… корня, Ссли Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΎΠ΄Π½Π°, Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ, Ссли ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π½Π΅ пСрСсСкаСт ось 0x, Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ. На рисункС Π½ΠΈΠΆΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ Ρ‚Ρ€ΠΈ упомянутых случая.

Как Π²ΠΈΠ΄Π½ΠΎ Π½Π° рисункС, красная ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось 0x Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…, зСлёная β€” Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅, Π° Тёлтая ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния с осью 0x.

1. Если дискриминант большС нуля (), Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… корня.

Они Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ:

ΠΈ

.

Часто ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ Ρ‚Π°ΠΊ: .

2. Если дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ (), Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ, ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎ ΠΆΠ΅ самоС β€” Π΄Π²Π° Ρ€Π°Π²Π½Ρ‹Ρ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… корня, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹ .

3. Если дискриминант мСньшС нуля (), Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ, Π° ΠΈΠΌΠ΅Π΅Ρ‚ комплСксныС ΠΊΠΎΡ€Π½ΠΈ, Π½ΠΎ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ комплСксных ΠΊΠΎΡ€Π½Π΅ΠΉ Π² этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π½Π΅ Π±ΡƒΠ΄Π΅ΠΌ. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ являСтся констатация Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, сколько Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

.

РСшСниС. Найдём дискриминант:

.

Дискриминант большС нуля, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… корня.

ΠŸΡƒΡ‚Ρ‘ΠΌ прСобразования Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ слСдуСт Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΈ Π΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ уравнСния, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… хотя Π±Ρ‹ ΠΎΠ΄Π½ΠΎ ΠΈΠ· слагаСмых β€” Π΄Ρ€ΠΎΠ±ΡŒ, Π² Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»Π΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ присутствуСт нСизвСстноС, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, . О Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ это дСлаСтся β€” Π² ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ РСшСниС Π΄Ρ€ΠΎΠ±Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, сколько Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

.

РСшСниС. Найдём дискриминант:

.

Дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, сколько Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

.

РСшСниС. Найдём дискриминант:

.

Дискриминант мСньшС нуля, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

ΠΠ°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния трСбуСтся ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΡ€ΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ², ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ², исслСдовании Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° возрастаниС ΠΈ ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ….

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4. Найти ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния:

.

Π’ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ 1 нашли дискриминант этого уравнСния:

,

РСшСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π½Π°ΠΉΠ΄Ρ‘ΠΌ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ для ΠΊΠΎΡ€Π½Π΅ΠΉ:

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

ΠšΠΎΡ€Π½ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠ³ΠΎ уравнСния ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

.

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния с Π΅Π³ΠΎ коэффициСнтами. Они Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ французским ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠΌ Π€.Π’ΠΈΠ΅Ρ‚ΠΎΠΌ.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°. Если ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ axΒ² + bx + c = 0 ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ, Ρ‚ΠΎ ΠΈΡ… сумма Ρ€Π°Π²Π½Π° β€” b/a, Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ с/a:

БлСдствиС. Если ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ xΒ² + px + q = 0 ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ ΠΈ , Ρ‚ΠΎ

ПояснСниС Ρ„ΠΎΡ€ΠΌΡƒΠ»: сумма ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Ρ€Π°Π²Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ коэффициСнту, взятому с ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ, Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ Ρ€Π°Π²Π½ΠΎ свободному Ρ‡Π»Π΅Π½Ρƒ.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ Π’ΠΈΠ΅Ρ‚Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΈ для поиска ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.


Если извСстны ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния, Ρ‚ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ собой Π»Π΅Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ уравнСния, ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ ΠΏΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

.

Π­Ρ‚ΠΎΡ‚ ΠΏΡ€ΠΈΡ‘ΠΌ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для упрощСния Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, особСнно сокращСния Π΄Ρ€ΠΎΠ±Π΅ΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 9. Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅:

.

РСшСниС. Π§ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ Π΄Π°Π½Π½ΠΎΠΉ Π΄Ρ€ΠΎΠ±ΠΈ ΠΌΠΎΠΆΠ΅ΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½ Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ x ΠΈ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ Π΅Π³ΠΎ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ, ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ найдя Π΅Π³ΠΎ ΠΊΠΎΡ€Π½ΠΈ. Найдём дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния:

.

ΠšΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π±ΡƒΠ΄ΡƒΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ:

.

Π Π°Π·Π»ΠΎΠΆΠΈΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ:

.

Упростили Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΎΡ‰Π΅ Π½Π΅ Π±Ρ‹Π²Π°Π΅Ρ‚:

.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 10. Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅:

.

РСшСниС. И Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ, ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ β€” ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Ρ‹. Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ, ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ найдя ΠΊΠΎΡ€Π½ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Находим дискриминант ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния:

.

ΠšΠΎΡ€Π½ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π±ΡƒΠ΄ΡƒΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ:

.

Находим дискриминант Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния:

.

Π’Π°ΠΊ ΠΊΠ°ΠΊ дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΡ… корня:

.

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, Ρ€Π°Π·Π»ΠΎΠΆΠΈΠΌ Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Π£ΠΏΡ€ΠΎΡ‰Π°Ρ‚ΡŒ выраТСния ΠΏΡƒΡ‚Ρ‘ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ трСбуСтся ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΡ€ΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ², ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ², исслСдовании Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° возрастаниС ΠΈ ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ….

РазумССтся, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° ΠΌΠΎΠΆΠ΅Ρ‚ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈ Π½Π΅ Π±Ρ‹Ρ‚ΡŒ Π² Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ Π² ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅, ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π² процСссС ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ выраТСния.

Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Β«ΠΏΠ΅Ρ€Π΅ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π»Π°ΡΡŒΒ» Π½Π΅ΠΎΠ΄Π½ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎ. Один ΠΈΠ· ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Π΄ΠΎΡˆΠ΅Π΄ΡˆΠΈΡ… Π΄ΠΎ Π½Π°ΡˆΠΈΡ… Π΄Π½Π΅ΠΉ Π²Ρ‹Π²ΠΎΠ΄ΠΎΠ² этой Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΈΠ½Π°ΠΆΠ»Π΅ΠΆΠΈΡ‚ индийскому ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ Π‘Ρ€Π°Ρ…ΠΌΠ°Π³ΡƒΠΏΡ‚Π΅ (ΠΎΠΊΠΎΠ»ΠΎ 598 Π³.). БрСднСазиатский ΡƒΡ‡Ρ‘Π½Ρ‹ΠΉ аль-Π₯ΠΎΡ€Π΅Π·ΠΌΠΈ (IX Π².) ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» эту Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ гСомСтричСской ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ. Π‘ΡƒΡ‚ΡŒ Π΅Π³ΠΎ рассуТдСний Π²ΠΈΠ΄Π½Π° ΠΈΠ· рисунка Π½ΠΈΠΆΠ΅ (ΠΎΠ½ рассматриваСт ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ xΒ² + 10x = 39).

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ большого ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° Ρ€Π°Π²Π½Π° (x + 5)Β². Она складываСтся ΠΈΠ· ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ xΒ² + 10x Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Ρ€Π°Π²Π½ΠΎΠΉ Π»Π΅Π²ΠΎΠΉ части рассматриваСмого уравнСния, ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² со стороной 5/2, Ρ€Π°Π²Π½ΠΎΠΉ 25. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ Π΅Π³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 11. ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ Ρ‚ΠΊΠ°Π½ΠΈ стоит 180 Ρƒ.Π΅Π΄. Если Π±Ρ‹ Ρ‚ΠΊΠ°Π½ΠΈ Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ Π±Ρ‹Π»ΠΎ Π½Π° 2,5 ΠΌ большС ΠΈ Ρ†Π΅Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΎΡΡ‚Π°Π²Π°Π»Π°ΡΡŒ Π±Ρ‹ ΠΏΡ€Π΅ΠΆΠ½Π΅ΠΉ, Ρ‚ΠΎ Ρ†Π΅Π½Π° 1 ΠΌ Ρ‚ΠΊΠ°Π½ΠΈ Π±Ρ‹Π»Π° Π±Ρ‹ Π½Π° 1 Ρƒ.Π΅Π΄. мСньшС. Бколько Ρ‚ΠΊΠ°Π½ΠΈ Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅?

РСшСниС. ΠŸΡ€ΠΈΠΌΠ΅ΠΌ количСство Ρ‚ΠΊΠ°Π½ΠΈ Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ Π·Π° x ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

ΠŸΡ€ΠΈΠ²Π΅Π΄Ρ‘ΠΌ ΠΎΠ±Π΅ части уравнСния ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŽ:

ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Ρ‘ΠΌ дальнСйшиС прСобразования:

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΈ Ρ€Π΅ΡˆΠΈΠΌ:

Ясно, Ρ‡Ρ‚ΠΎ количСство Ρ‚ΠΊΠ°Π½ΠΈ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ, поэтому Π² качСствС ΠΎΡ‚Π²Π΅Ρ‚Π° ΠΈΠ· Π΄Π²ΡƒΡ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ лишь ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ β€” ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ.

ΠžΡ‚Π²Π΅Ρ‚: Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ 20 ΠΌ Ρ‚ΠΊΠ°Π½ΠΈ.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 12. Π’ΠΎΠ²Π°Ρ€, количСство ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ 187,5 ΠΊΠ³, Π²Π·Π²Π΅ΡˆΠΈΠ²Π°ΡŽΡ‚ Π² ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Ρ… ящиках. Если Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ящикС количСство Ρ‚ΠΎΠ²Π°Ρ€Π° ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π½Π° 2 ΠΊΠ³, Ρ‚ΠΎ слСдовало Π±Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° 2 ящика большС ΠΈ ΠΏΡ€ΠΈ этом 2 ΠΊΠ³ Ρ‚ΠΎΠ²Π°Ρ€Π° ΠΎΡΡ‚Π°Π»ΠΈΡΡŒ Π±Ρ‹ Π½Π΅Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹ΠΌΠΈ. Бколько ΠΊΠ³ Ρ‚ΠΎΠ²Π°Ρ€Π° Π²Π·Π²Π΅ΡˆΠΈΠ²Π°ΡŽΡ‚ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ящикС?

РСшСниС. ΠŸΡ€ΠΈΠΌΠ΅ΠΌ Π·Π° x количСство Ρ‚ΠΎΠ²Π°Ρ€Π°, взвСшиваСмого Π² ΠΎΠ΄Π½ΠΎΠΌ ящикС. Π’ΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

ΠŸΡ€ΠΈΠ²Π΅Π΄Ρ‘ΠΌ ΠΎΠ±Π΅ части уравнСния ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŽ, ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Ρ‘ΠΌ дальнСйшиС прСобразования ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅. ΠŸΡ€ΠΎΡ†Π΅ΡΡ записываСтся Ρ‚Π°ΠΊ:

Найдём дискриминант:

Найдём ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния:

ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Ρ‚ΠΎΠ²Π°Ρ€Π° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ, поэтому Π² качСствС ΠΎΡ‚Π²Π΅Ρ‚Π° ΠΈΠ· Π΄Π²ΡƒΡ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ лишь ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ.

ΠžΡ‚Π²Π΅Ρ‚: Π² ΠΎΠ΄Π½ΠΎΠΌ ящикС Π²Π·Π²Π΅ΡˆΠΈΠ²Π°ΡŽΡ‚ 12,5 ΠΊΠ³ Ρ‚ΠΊΠ°Π½ΠΈ.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Π”Ρ€ΡƒΠ³ΠΈΠ΅ Ρ‚Π΅ΠΌΡ‹ Π² Π±Π»ΠΎΠΊΠ΅ «Школьная ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°Β»

РСшСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Дискриминант. Π€ΠΎΡ€ΠΌΡƒΠ»Π° дискриминанта. ( Дискриминат Π½Π° 4 ΠΈ Π½Π° 1). Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°. 3 способа.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°

                 ,

Π³Π΄Π΅

x β€” пСрСмСнная,

a,b,c β€” постоянныС (числовыС) коэффициСнты.

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ сводится ΠΊ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΡŽ дискриминанта

Π€ΠΎΡ€ΠΌΡƒΠ»Π° дискриминанта: .

       О корнях ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΌΠΎΠΆΠ½ΠΎ ΡΡƒΠ΄ΠΈΡ‚ΡŒ ΠΏΠΎ Π·Π½Π°ΠΊΡƒ дискриминанта (D) :

  • D>0 β€” ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ 2 Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… вСщСствСнных корня
  • D=0 β€” ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ 2 ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΡ… вСщСствСнных корня
  • D<0 β€” ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ 2 ΠΌΠ½ΠΈΠΌΡ‹Ρ… корня (для Π½Π΅ΠΏΡ€ΠΎΠ΄Π²ΠΈΠ½ΡƒΡ‚Ρ‹Ρ… ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΉ β€” ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚)

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠΊΠΎΡ€Π½ΠΈ уравнСния Ρ€Π°Π²Π½Ρ‹:

                 .

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Π² случаС с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ дискриминантом, ΠΎΠ±Π° корня Ρ€Π°Π²Π½Ρ‹

                 .

Если коэффициСнт ΠΏΡ€ΠΈ Ρ… Ρ‡Π΅Ρ‚Π½Ρ‹ΠΉ, Ρ‚ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ смысл Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ Π½Π΅ дискриминант, Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ дискриминанта:

                

Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС ΠΊΠΎΡ€Π½ΠΈ уравнСния Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

                

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°

                ,

Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΌ коэффициСнтом ΠΏΡ€ΠΈ ΡΡ‚Π°Ρ€ΡˆΠ΅ΠΌ Ρ‡Π»Π΅Π½Π΅.

Π’ этом случаС цСлСсообразно ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ Π’ΠΈΠ΅Ρ‚Π°, которая позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΡ€Π½Π΅ΠΉ уравнСния ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ систСму ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

                 .

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ любоС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ, Ссли Π΅Π³ΠΎ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° коэффициСнт ΠΏΡ€ΠΈ ΡΡ‚Π°Ρ€ΡˆΠ΅ΠΌ Ρ‡Π»Π΅Π½Π΅, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ…2.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния. РСшСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Дискриминант. Π€ΠΎΡ€ΠΌΡƒΠ»Π° дискриминанта. ( Дискриминат Π½Π° 4 ΠΈ Π½Π° 1). Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°. 3 способа.





АдрСс этой страницы (Π²Π»ΠΎΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ) Π² справочникС dpva.ru:  Π³Π»Π°Π²Π½Π°Ρ страница  / / Π’СхничСская информация / / ΠœΠ°Ρ‚СматичСский справочник / / Π Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ нСравСнств. БистСмы ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹.  / / ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния. РСшСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Дискриминант. Π€ΠΎΡ€ΠΌΡƒΠ»Π° дискриминанта. ( Дискриминат Π½Π° 4 ΠΈ Π½Π° 1). Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°. 3 способа.

ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ:   

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅. РСшСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Дискриминант. Π€ΠΎΡ€ΠΌΡƒΠ»Π° дискриминанта. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°.     ВСрсия для ΠΏΠ΅Ρ‡Π°Ρ‚ΠΈ.
ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°:

                 ,

  • Π³Π΄Π΅
    • x β€” пСрСмСнная,
    • a,b,c β€” постоянныС (числовыС) коэффициСнты.

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ сводится ΠΊ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΡŽ

дискриминанта
Π€ΠΎΡ€ΠΌΡƒΠ»Π° дискриминанта: .
О корнях ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΌΠΎΠΆΠ½ΠΎ ΡΡƒΠ΄ΠΈΡ‚ΡŒ ΠΏΠΎ Π·Π½Π°ΠΊΡƒ дискриминанта (D) :
  • D>0 β€” ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ 2 Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… вСщСствСнных корня
  • D=0 β€” ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ 2 ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΡ… вСщСствСнных корня
  • D<0 β€” ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ 2 ΠΌΠ½ΠΈΠΌΡ‹Ρ… корня (для Π½Π΅ΠΏΡ€ΠΎΠ΄Π²ΠΈΠ½ΡƒΡ‚Ρ‹Ρ… ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΉ β€” ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚)

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠΊΠΎΡ€Π½ΠΈ уравнСния Ρ€Π°Π²Π½Ρ‹:

                 .

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Π² случаС с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ дискриминантом, ΠΎΠ±Π° корня Ρ€Π°Π²Π½Ρ‹

                 .

Если коэффициСнт ΠΏΡ€ΠΈ Ρ… Ρ‡Π΅Ρ‚Π½Ρ‹ΠΉ, Ρ‚ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ смысл Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ Π½Π΅ дискриминант, Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ дискриминанта:

                

Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС ΠΊΠΎΡ€Π½ΠΈ уравнСния Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

                

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π° ΠΎ корнях ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уранСния.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°

                ,

Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΌ коэффициСнтом ΠΏΡ€ΠΈ ΡΡ‚Π°Ρ€ΡˆΠ΅ΠΌ Ρ‡Π»Π΅Π½Π΅.

Π’ этом случаС цСлСсообразно ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ Π’ΠΈΠ΅Ρ‚Π°, которая позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΡ€Π½Π΅ΠΉ уравнСния ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ систСму ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

                 .

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ любоС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ, Ссли Π΅Π³ΠΎ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° коэффициСнт ΠΏΡ€ΠΈ ΡΡ‚Π°Ρ€ΡˆΠ΅ΠΌ Ρ‡Π»Π΅Π½Π΅, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ…2
Поиск Π² ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΌ справочникС DPVA. Π’Π²Π΅Π΄ΠΈΡ‚Π΅ свой запрос:
Поиск Π² ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΌ справочникС DPVA. Π’Π²Π΅Π΄ΠΈΡ‚Π΅ свой запрос:
Если Π’Ρ‹ Π½Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ»ΠΈ сСбя Π² спискС поставщиков, Π·Π°ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ ΠΎΡˆΠΈΠ±ΠΊΡƒ, ΠΈΠ»ΠΈ Ρƒ Вас Π΅ΡΡ‚ΡŒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числСнныС Π΄Π°Π½Π½Ρ‹Π΅ для ΠΊΠΎΠ»Π»Π΅Π³ ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅, сообщитС , поТалуйста.
Π’Π»ΠΎΠΆΠΈΡ‚Π΅ Π² письмо ссылку Π½Π° страницу с ошибкой, поТалуйста.
ΠšΠΎΠ΄Ρ‹ Π±Π°Π½Π½Π΅Ρ€ΠΎΠ² ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° DPVA.ru
Начинка: KJR Publisiers

ΠšΠΎΠ½ΡΡƒΠ»ΡŒΡ‚Π°Ρ†ΠΈΠΈ ΠΈ тСхничСская
ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ° сайта: Zavarka Team

ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ являСтся нСкоммСрчСским. Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ, прСдставлСнная Π½Π° сайтС, Π½Π΅ являСтся ΠΎΡ„ΠΈΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΈ прСдоставлСна Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² цСлях ознакомлСния. Π’Π»Π°Π΄Π΅Π»ΡŒΡ†Ρ‹ сайта www.dpva.ru Π½Π΅ нСсут Π½ΠΈΠΊΠ°ΠΊΠΎΠΉ отвСтствСнности Π·Π° риски, связанныС с использованиСм ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ с этого ΠΈΠ½Ρ‚Π΅Ρ€Π½Π΅Ρ‚-рСсурса. Free xml sitemap generator

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅. РСшСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Дискриминант. Π€ΠΎΡ€ΠΌΡƒΠ»Π° дискриминанта. ( Дискриминат Π½Π° 4 ΠΈ Π½Π° 1). Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°. 3 способа.

РСшСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Дискриминант. Π€ΠΎΡ€ΠΌΡƒΠ»Π° дискриминанта. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°:

                 ,

Π³Π΄Π΅
x β€” пСрСмСнная,
a,b,c β€” постоянныС (числовыС) коэффициСнты.

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ сводится ΠΊ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΡŽ дискриминанта

Π€ΠΎΡ€ΠΌΡƒΠ»Π° дискриминанта: .
О корнях ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΌΠΎΠΆΠ½ΠΎ ΡΡƒΠ΄ΠΈΡ‚ΡŒ ΠΏΠΎ Π·Π½Π°ΠΊΡƒ дискриминанта (D) :
  • D>0 β€” ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ 2 Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… вСщСствСнных корня
  • D=0 β€” ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ 2 ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΡ… вСщСствСнных корня
  • D<0 β€” ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ 2 ΠΌΠ½ΠΈΠΌΡ‹Ρ… корня (для Π½Π΅ΠΏΡ€ΠΎΠ΄Π²ΠΈΠ½ΡƒΡ‚Ρ‹Ρ… ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΉ β€” ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚)

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠΊΠΎΡ€Π½ΠΈ уравнСния Ρ€Π°Π²Π½Ρ‹:

                 .

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Π² случаС с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ дискриминантом, ΠΎΠ±Π° корня Ρ€Π°Π²Π½Ρ‹

                 .

Если коэффициСнт ΠΏΡ€ΠΈ Ρ… Ρ‡Π΅Ρ‚Π½Ρ‹ΠΉ, Ρ‚ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ смысл Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ Π½Π΅ дискриминант, Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ дискриминанта:

                

Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС ΠΊΠΎΡ€Π½ΠΈ уравнСния Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

                

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°

                ,

Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΌ коэффициСнтом ΠΏΡ€ΠΈ ΡΡ‚Π°Ρ€ΡˆΠ΅ΠΌ Ρ‡Π»Π΅Π½Π΅.

Π’ этом случаС цСлСсообразно ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ Π’ΠΈΠ΅Ρ‚Π°, которая позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΡ€Π½Π΅ΠΉ уравнСния ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ систСму ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

                 .

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ любоС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ, Ссли Π΅Π³ΠΎ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° коэффициСнт ΠΏΡ€ΠΈ ΡΡ‚Π°Ρ€ΡˆΠ΅ΠΌ Ρ‡Π»Π΅Π½Π΅, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ…2

Найти ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ дискриминанта

Если Π²Ρ‹ считаСтС, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠ½Ρ‚Π΅Π½Ρ‚, доступный Ρ‡Π΅Ρ€Π΅Π· Π’Π΅Π±-сайт (ΠΊΠ°ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ Π² Π½Π°ΡˆΠΈΡ… Условиях обслуТивания), Π½Π°Ρ€ΡƒΡˆΠ°Π΅Ρ‚ ΠΈΠ»ΠΈ нСсколько Π²Π°ΡˆΠΈΡ… авторских ΠΏΡ€Π°Π², сообщитС Π½Π°ΠΌ, ΠΎΡ‚ΠΏΡ€Π°Π²ΠΈΠ² письмСнноС ΡƒΠ²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ (Β«Π£Π²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΈΒ»), содСрТащСС Π² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ, ΠΎΠΏΠΈΡΠ°Π½Π½ΡƒΡŽ Π½ΠΈΠΆΠ΅, Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½ΠΎΠΌΡƒ Π½ΠΈΠΆΠ΅ Π°Π³Π΅Π½Ρ‚Ρƒ. Если Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€Ρ‹ унивСрситСта ΠΏΡ€Π΅Π΄ΠΏΡ€ΠΈΠΌΡƒΡ‚ дСйствия Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° Π°Π½ Π£Π²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΈ, ΠΎΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π΄ΠΎΠ±Ρ€ΠΎΡΠΎΠ²Π΅ΡΡ‚Π½ΡƒΡŽ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΡƒ ΡΠ²ΡΠ·Π°Ρ‚ΡŒΡΡ со стороной, которая прСдоставила Ρ‚Π°ΠΊΠΎΠΉ ΠΊΠΎΠ½Ρ‚Π΅Π½Ρ‚ срСдствами самого послСднСго адрСса элСктронной ΠΏΠΎΡ‡Ρ‚Ρ‹, Ссли Ρ‚Π°ΠΊΠΎΠ²ΠΎΠΉ имССтся, прСдоставлСнного Ρ‚Π°ΠΊΠΎΠΉ стороной Varsity Tutors.

Π’Π°ΡˆΠ΅ Π£Π²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€Π°Π² ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚ΠΏΡ€Π°Π²Π»Π΅Π½ΠΎ сторонС, ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²ΠΈΠ²ΡˆΠ΅ΠΉ доступ ΠΊ ΠΊΠΎΠ½Ρ‚Π΅Π½Ρ‚Ρƒ, ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈΠΌ Π»ΠΈΡ†Π°ΠΌ, Ρ‚Π°ΠΊΠΈΠΌ ΠΊΠ°ΠΊ Π² Π²ΠΈΠ΄Π΅ ChillingEffects.org.

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π²Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚Π΅ нСсти ΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π·Π° ΡƒΡ‰Π΅Ρ€Π± (Π²ΠΊΠ»ΡŽΡ‡Π°Ρ расходы ΠΈ Π³ΠΎΠ½ΠΎΡ€Π°Ρ€Ρ‹ Π°Π΄Π²ΠΎΠΊΠ°Ρ‚Π°ΠΌ), Ссли Π²Ρ‹ сущСствСнно ΠΈΡΠΊΠ°ΠΆΠ°Ρ‚ΡŒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ ΠΈΠ»ΠΈ дСйствиС Π½Π°Ρ€ΡƒΡˆΠ°Π΅Ρ‚ ваши авторскиС ΠΏΡ€Π°Π²Π°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ссли Π²Ρ‹ Π½Π΅ ΡƒΠ²Π΅Ρ€Π΅Π½Ρ‹, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠ½Ρ‚Π΅Π½Ρ‚ находится Π½Π° Π’Π΅Π±-сайтС ΠΈΠ»ΠΈ ΠΏΠΎ ссылкС с Π½Π΅Π³ΠΎ Π½Π°Ρ€ΡƒΡˆΠ°Π΅Ρ‚ ваши авторскиС ΠΏΡ€Π°Π²Π°, Π²Π°ΠΌ слСдуСт сначала ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒΡΡ ΠΊ ΡŽΡ€ΠΈΡΡ‚Ρƒ.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ ΡƒΠ²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅, Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ дСйствия:

Π’Ρ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π²ΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

ЀизичСская ΠΈΠ»ΠΈ элСктронная подпись правообладатСля ΠΈΠ»ΠΈ Π»ΠΈΡ†Π°, ΡƒΠΏΠΎΠ»Π½ΠΎΠΌΠΎΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΡ‚ ΠΈΡ… ΠΈΠΌΠ΅Π½ΠΈ; Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ авторских ΠΏΡ€Π°Π², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅, ΠΊΠ°ΠΊ утвСрТдаСтся, Π±Ρ‹Π»ΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½Ρ‹; ОписаниС Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ мСстонахоТдСния ΠΊΠΎΠ½Ρ‚Π΅Π½Ρ‚Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ, ΠΏΠΎ Π²Π°ΡˆΠ΅ΠΌΡƒ мнСнию, Π½Π°Ρ€ΡƒΡˆΠ°Π΅Ρ‚ ваши авторскиС ΠΏΡ€Π°Π²Π°, Π² \ достаточно подробностСй, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ΡŒ Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€Π°ΠΌ унивСрситСтских школ Π½Π°ΠΉΡ‚ΠΈ ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ этот ΠΊΠΎΠ½Ρ‚Π΅Π½Ρ‚; Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π½Π°ΠΌ трСбуСтся Π° ссылка Π½Π° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹ΠΉ вопрос (Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° Π½Π°Π·Π²Π°Π½ΠΈΠ΅ вопроса), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ содСрТит содСрТаниС ΠΈ описаниС ΠΊ ΠΊΠ°ΠΊΠΎΠΉ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ части вопроса β€” ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΡŽ, ссылкС, тСксту ΠΈ Ρ‚. Π΄. β€” относится ваша ΠΆΠ°Π»ΠΎΠ±Π°; Π’Π°ΡˆΠ΅ имя, адрСс, Π½ΠΎΠΌΠ΅Ρ€ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½Π° ΠΈ адрСс элСктронной ΠΏΠΎΡ‡Ρ‚Ρ‹; Π° Ρ‚Π°ΠΊΠΆΠ΅ Π’Π°ΡˆΠ΅ заявлСниС: (Π°) Π²Ρ‹ добросовСстно считаСтС, Ρ‡Ρ‚ΠΎ использованиС ΠΊΠΎΠ½Ρ‚Π΅Π½Ρ‚Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ, ΠΏΠΎ Π²Π°ΡˆΠ΅ΠΌΡƒ мнСнию, Π½Π°Ρ€ΡƒΡˆΠ°Π΅Ρ‚ ваши авторскиС ΠΏΡ€Π°Π²Π° Π½Π΅ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½Ρ‹ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ, Π²Π»Π°Π΄Π΅Π»ΡŒΡ†Π΅ΠΌ авторских ΠΏΡ€Π°Π² ΠΈΠ»ΠΈ Π΅Π³ΠΎ Π°Π³Π΅Π½Ρ‚ΠΎΠΌ; (Π±) Ρ‡Ρ‚ΠΎ всС информация, содСрТащаяся Π² вашСм Π£Π²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠΈ ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΈ, являСтся Ρ‚ΠΎΡ‡Π½ΠΎΠΉ, ΠΈ (c) ΠΏΠΎΠ΄ страхом наказания Π·Π° Π»ΠΆΠ΅ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, Ρ‡Ρ‚ΠΎ Π²Ρ‹ Π»ΠΈΠ±ΠΎ Π²Π»Π°Π΄Π΅Π»Π΅Ρ† авторских ΠΏΡ€Π°Π², Π»ΠΈΠ±ΠΎ Π»ΠΈΡ†ΠΎ, ΡƒΠΏΠΎΠ»Π½ΠΎΠΌΠΎΡ‡Π΅Π½Π½ΠΎΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΡ‚ ΠΈΡ… ΠΈΠΌΠ΅Π½ΠΈ.

ΠžΡ‚ΠΏΡ€Π°Π²ΡŒΡ‚Π΅ ΠΆΠ°Π»ΠΎΠ±Ρƒ Π½Π°ΡˆΠ΅ΠΌΡƒ ΡƒΠΏΠΎΠ»Π½ΠΎΠΌΠΎΡ‡Π΅Π½Π½ΠΎΠΌΡƒ Π°Π³Π΅Π½Ρ‚Ρƒ ΠΏΠΎ адрСсу:

Π§Π°Ρ€Π»ΡŒΠ· Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или Π·Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅ Ρ„ΠΎΡ€ΠΌΡƒ Π½ΠΈΠΆΠ΅:

ДискриминантноС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅


ΠœΡ‹ Π² Cuemath считаСм, Ρ‡Ρ‚ΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° β€” это ΠΆΠΈΠ·Π½Π΅Π½Π½Ρ‹ΠΉ Π½Π°Π²Ρ‹ΠΊ. 2-4ac \\ [0.2 + bx + c = 0 \) β€” значСния \ (x \), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ.

Π˜Ρ… ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния:

\ (x = \ dfrac {-b \ pm \ sqrt {D}} {2 a} \)

Π₯отя ΠΌΡ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΡ€Π½ΠΈ, просто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ дискриминант, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ ΠΊΠΎΡ€Π½Π΅ΠΉ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

  • Если \ (D> 0 \), ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° Ρ€Π°Π·Π½Ρ‹Ρ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… корня:
    \ [\ dfrac {-b \ pm \ sqrt {\ text {ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число}}} {2 a} \]
    Π΄Π°Π΅Ρ‚ Π΄Π²Π° корня
  • Если \ (D = 0 \), ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ:
    \ [\ dfrac {-b \ pm \ sqrt {0}} {2 a} = \ dfrac {-b} {2 a} \]
    это СдинствСнный ΠΊΠΎΡ€Π΅Π½ΡŒ
  • Если \ (D <0 \), ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ. Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° комплСксных корня:
    \ [\ dfrac {-b \ pm \ sqrt {\ text {ΠžΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число}}} {2 a} \]
    Π΄Π°Π΅Ρ‚ Π΄Π²Π° слоТных корня.

Π­Ρ‚ΠΎ ΠΏΠΎΡ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа Π΄Π°Π΅Ρ‚ ΠΌΠ½ΠΈΠΌΠΎΠ΅ число. Ρ‚.Π΅. \ (\ sqrt {-1} = i \)

ΠšΠΎΡ€Π΅Π½ΡŒ β€” это Π½Π΅ Ρ‡Ρ‚ΠΎ ΠΈΠ½ΠΎΠ΅, ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° x Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с x.

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· этих Ρ‚Ρ€Π΅Ρ… случаСв ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ.


ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ дискриминанта (с Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ)

Π’ΠΎΡ‚ «Дискриминантный ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Β».2-4ac \)

  • ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚:
    (i) Π΄Π²Π° Π½Π΅Ρ€Π°Π²Π½Ρ‹Ρ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… корня, ΠΊΠΎΠ³Π΄Π° \ (D> 0 \)
    (ii) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ, ΠΊΠΎΠ³Π΄Π° \ (D = 0 \)
    (iii) Π½Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈΠ»ΠΈ Π΄Π²Π° комплСксных корня, ΠΊΠΎΠ³Π΄Π° \ (D <0 \)
  • ΠŸΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅ своСму Ρ€Π΅Π±Π΅Π½ΠΊΡƒ Π½Π°Π±Ρ€Π°Ρ‚ΡŒ большС Π±Π°Π»Π»ΠΎΠ² с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π·Π°ΠΏΠ°Ρ‚Π΅Π½Ρ‚ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π‘Π•Π‘ΠŸΠ›ΠΠ’ΠΠžΠ“Πž диагностичСского тСста Cuemath. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ доступ ΠΊ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΌ ΠΎΡ‚Ρ‡Π΅Ρ‚Π°ΠΌ, ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠ»Π°Π½Π°ΠΌ обучСния ΠΈ Π‘Π•Π‘ΠŸΠ›ΠΠ’ΠΠžΠ™ ΠΊΠΎΠ½ΡΡƒΠ»ΡŒΡ‚Π°Ρ†ΠΈΠΈ. ΠŸΠΎΠΏΡ‹Ρ‚Π°ΠΉΡ‚Π΅ΡΡŒ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ сСйчас.


    Π Π΅ΡˆΠ΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

    Π’ΠΎΡ‚ нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² дискриминантов ΠΈ ΠΈΡ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. 2 + Bx + C = 0 \),

    \ [\ begin {align} A & = 9 \\ [0.4} \)

    CLUEless ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅? Π£Π·Π½Π°ΠΉΡ‚Π΅, ΠΊΠ°ΠΊ учитСля CUEMATH ΠΎΠ±ΡŠΡΡΠ½ΡΡ‚ Π²Π°ΡˆΠ΅ΠΌΡƒ Ρ€Π΅Π±Π΅Π½ΠΊΡƒ Дискриминант , ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ симуляции ΠΈ Ρ€Π°Π±ΠΎΡ‡ΠΈΠ΅ листы, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΠΌ большС Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΏΡ€ΠΈΡ…ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ-Π»ΠΈΠ±ΠΎ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅!

    Π˜Π·ΡƒΡ‡ΠΈΡ‚Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΈ пСрсонализированныС ΠΎΠ½Π»Π°ΠΉΠ½-классы Cuemath, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ΄Π΅Π»Π°ΡŽΡ‚ вашСго Ρ€Π΅Π±Π΅Π½ΠΊΠ° экспСртом ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π—Π°Π±Ρ€ΠΎΠ½ΠΈΡ€ΡƒΠΉΡ‚Π΅ Π‘Π•Π‘ΠŸΠ›ΠΠ’ΠΠžΠ• ΠΏΡ€ΠΎΠ±Π½ΠΎΠ΅ занятиС сСгодня!


    ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ вопросы

    Π’ΠΎΡ‚ нСсколько занятий для вас.{2} -24 x + 2 = 0} \) ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅.


    ΠžΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΎΠ»ΠΈΠΌΠΏΠΈΠ°Π΄Ρ‹ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

    IMO (ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Π°Ρ ΠΎΠ»ΠΈΠΌΠΏΠΈΠ°Π΄Π° ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅) β€” это конкурсный экзамСн ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½ΠΎ проводится для школьников. Он ΠΏΠΎΠ±ΡƒΠΆΠ΄Π°Π΅Ρ‚ Π΄Π΅Ρ‚Π΅ΠΉ Ρ€Π°Π·Π²ΠΈΠ²Π°Ρ‚ΡŒ свои Π½Π°Π²Ρ‹ΠΊΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ матСматичСских Π·Π°Π΄Π°Ρ‡ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния сорСвнований.

    Π’Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π‘Π•Π‘ΠŸΠ›ΠΠ’ΠΠž ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ ΠΎΡ†Π΅Π½ΠΊΠ°ΠΌ Π½ΠΈΠΆΠ΅:

    Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ большС ΠΎΠ± ΠΎΠ»ΠΈΠΌΠΏΠΈΠ°Π΄Π΅ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π½Π°ΠΆΠ°Ρ‚ΡŒ здСсь


    Часто Π·Π°Π΄Π°Π²Π°Π΅ΠΌΡ‹Π΅ вопросы (FAQ)

    1.2–4 (\ sqrt {3}) (10 \ sqrt {3}) \\ [0,2 см] & = 121-120 \\ [0,2 см] & = 1 \ end {Π²Ρ‹Ρ€ΠΎΠ²Π½Π΅Π½ΠΎ} \]

    Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, дискриминант Π΄Π°Π½Π½ΠΎΠ³ΠΎ уравнСния Ρ€Π°Π²Π΅Π½:

    \ (\ mathbf {D} \) ΠΈΠ»ΠΈ \ (\ mathbf {\ Delta = 1} \)

    3. Как ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ дискриминантной Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ?

    ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ дискриминант, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ ΠΊΠΎΡ€Π½Π΅ΠΉ.

    ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚:
    (i) Π΄Π²Π° Π½Π΅Ρ€Π°Π²Π½Ρ‹Ρ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… корня, ΠΊΠΎΠ³Π΄Π° \ (D> 0 \)
    (ii) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ, ΠΊΠΎΠ³Π΄Π° \ (D = 0 \)
    (iii) Π½Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈΠ»ΠΈ Π΄Π²Π° комплСксных корня, ΠΊΠΎΠ³Π΄Π° \ (D <0 \)

    Дискриминант | ΠŸΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Π°Ρ Π°Π»Π³Π΅Π±Ρ€Π°

    Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ обучСния

    • ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ дискриминант ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ Π΅Π³ΠΎ для классификации Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ

    Дискриминант

    ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния, Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ сообщаСт Π½Π°ΠΌ ΠΎ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ. {2} -4ac <0 [/ latex], Ρ‚ΠΎΠ³Π΄Π° число ΠΏΠΎΠ΄ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΠΎΠΌ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π²Ρ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа, Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π½Π΅ сущСствуСт. Однако Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈ ΠΌΠ½ΠΈΠΌΡ‹Π΅ числа. Π’ΠΎΠ³Π΄Π° Ρƒ вас Π±ΡƒΠ΄Π΅Ρ‚ Π΄Π²Π° слоТных Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ: ΠΎΠ΄Π½ΠΎ ΠΏΡƒΡ‚Π΅ΠΌ слоТСния ΠΌΠ½ΠΈΠΌΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня, Π° Π΄Ρ€ΡƒΠ³ΠΎΠ΅ - ΠΏΡƒΡ‚Π΅ΠΌ Π΅Π³ΠΎ вычитания.

    Π’ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ Π½ΠΈΠΆΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ дискриминанта ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡΠΌΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

    {2} -4ac [/ latex].{2} -4 \ left (1 \ right) \ left (10 \ right) = 16-40 = -24 \ end {array} [/ latex]

    Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ β€” ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число. Дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, поэтому ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° комплСксных Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ.

    Π’ послСднСм ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΌΡ‹ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΊΠΎΡ€Ρ€Π΅Π»ΡΡ†ΠΈΡŽ ΠΌΠ΅ΠΆΠ΄Ρƒ количСством ΠΈ Ρ‚ΠΈΠΏΠΎΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

    ΠŸΡ€ΠΈΠΌΠ΅Ρ€

    Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, сколько ΠΈ ΠΊΠ°ΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π±ΡƒΠ΄Π΅Ρ‚ Ρƒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния [latex] f (x) = 0 [/ latex].{2}} β€” 4ac [/ латСкс]. Он опрСдСляСт количСство ΠΈ Ρ‚ΠΈΠΏ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Если дискриминант ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ [latex] 2 [/ latex] вСщСствСнныС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Если это [latex] 0 [/ latex], сущСствуСт [latex] 1 [/ latex] Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰Π΅Π΅ΡΡ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. Если дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ [latex] 2 [/ latex] комплСксныС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ (Π½ΠΎ Π½Π΅Ρ‚ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ).

    Дискриминант Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°ΡΡΠΊΠ°Π·Π°Ρ‚ΡŒ Π½Π°ΠΌ ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

    Дискриминант Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… уравнСниях β€” наглядноС пособиС с ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ, практичСскими Π·Π°Π΄Π°Ρ‡Π°ΠΌΠΈ ΠΈ бСсплатным PDF-Ρ„Π°ΠΉΠ»ΠΎΠΌ для ΠΏΠ΅Ρ‡Π°Ρ‚ΠΈ

    Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π΄Π΅Π»Π°Π΅Ρ‚ дискриминант, Π²Π°ΠΆΠ½ΠΎ Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ:

    ΠŸΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅ 2: КакоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:
    ΠžΡ‚Π²Π΅Ρ‡Π°Ρ‚ΡŒ

    РСшСниС ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ двумя Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ способами.2 + \ blue bx + \ color {green} c $$.

  • ГрафичСски, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ y = 0 β€” ось x, Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ находится Ρ‚Π°ΠΌ, Π³Π΄Π΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось x. (Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ) .
  • На рисункС Π½ΠΈΠΆΠ΅ лСвая ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ‚ 2 Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ (красныС Ρ‚ΠΎΡ‡ΠΊΠΈ), срСдняя ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ‚ 1 Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ (красная Ρ‚ΠΎΡ‡ΠΊΠ°), Π° самая правая ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ (Π΄Π°, Ρƒ Π½Π΅Π΅ Π΅ΡΡ‚ΡŒ ΠΌΠ½ΠΈΠΌΡ‹Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ).

    Как выглядит дискриминант?
    ΠžΡ‚Π²Π΅Ρ‡Π°Ρ‚ΡŒ

    ΠŸΠΎΡ…ΠΎΠΆΠ΅ Π½Π° . .. число.

    5, 2, 0, -1 β€” ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· этих чисСл являСтся дискриминантом для 4 Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

    Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ дискриминант?
    ΠžΡ‚Π²Π΅Ρ‡Π°Ρ‚ΡŒ

    Дискриминант β€” это число , ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΈΠ· любого ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.2-4 \ cdot \ красный 3 \ cdot \ color {Π·Π΅Π»Π΅Π½Ρ‹ΠΉ} 5 \\ \ text {Дискриминант} = \ Π² ΠΊΠΎΡ€ΠΎΠ±ΠΊΠ΅ {6} $

    Π§Ρ‚ΠΎ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ Π½Π°ΠΌ эта Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°?
    ΠžΡ‚Π²Π΅Ρ‡Π°Ρ‚ΡŒ

    Дискриминант сообщаСт Π½Π°ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ:

    • Если Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ β€” Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число ΠΈΠ»ΠΈ ΠΌΠ½ΠΈΠΌΠΎΠ΅ число.
    • Если Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅.2 + 2x + 1 $$.

      ΠŸΡ€Π°ΠΊΡ‚ΠΈΠΊΠ° 1

      ВычислитС дискриминант, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ количСство ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния: $$ y = xΒ² β€” 2x + 1 $$. 2-4 \ cdot \ красный 1 \ cdot \ color {Π·Π΅Π»Π΅Π½Ρ‹ΠΉ} 1 \\ & = \ Π² ΠΊΠΎΡ€ΠΎΠ±ΠΊΠ΅ {0} \ end {Π²Ρ‹Ρ€ΠΎΠ²Π½Π΅Π½} $$

      ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, ΠΌΡ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΎΠΆΠΈΠ΄Π°Ρ‚ΡŒ 1 Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Π½ΠΈΠΆΠ΅.

      ΠŸΡ€Π°ΠΊΡ‚ΠΈΠΊΠ° 2

      Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ дискриминантом, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ ΠΈ количСство Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ: $$ y = xΒ² β€” x β€” 2 $$.2-4 \ cdot \ red 1 \ cdot \ color {green} {-2} \\ & = 1 β€” -8 \\ & = 1 + 8 = \ 9 Π² ΡˆΡ‚ΡƒΡ‡Π½ΠΎΠΉ ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠ΅ \ end {Π²Ρ‹Ρ€ΠΎΠ²Π½Π΅Π½} $$

      ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ дискриминант ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ, Ρƒ этого уравнСния Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ 2 Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Как Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π²ΠΈΠ΄Π΅Ρ‚ΡŒ Π½ΠΈΠΆΠ΅, Ссли Π²Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для поиска фактичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ, Π²Ρ‹ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ 2 Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ.

      ΠŸΡ€Π°ΠΊΡ‚ΠΈΠΊΠ° 3

      ВычислитС дискриминант, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΈ количСство Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ: y = xΒ² β€” 1.2} β€” 4 \ color {Magenta} {(1)} \ color {Blue} {(- 1)} = 4 $$

      ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ дискриминант ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ прСдставляСт собой ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρƒ нас Π΅ΡΡ‚ΡŒ Π΄Π²Π° вСщСствСнных Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ.

      ΠžΠΏΡΡ‚ΡŒ ΠΆΠ΅, Ссли Π²Ρ‹ Ρ…ΠΎΡ‚ΠΈΡ‚Π΅ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ, просто посмотритС Π½ΠΈΠΆΠ΅:

      ΠŸΡ€Π°ΠΊΡ‚ΠΈΠΊΠ° 4

      ВычислитС дискриминант, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΈ количСство Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ: y = xΒ² + 4x β€” 5. 2} β€” 4 \ color {Magenta} {(1)} \ color {Blue} {(- 5)} \\ 16-4 (-5) = 16 +20 \\ = 36 $$

      ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ дискриминант этого ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния являСтся ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ прСдставляСт собой ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ.

      ΠŸΡ€Π°ΠΊΡ‚ΠΈΠΊΠ° 5

      ВычислитС дискриминант, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΈ количСство Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ: y = xΒ² β€” 4x + 5.

      ПокаТи ΠΎΡ‚Π²Π΅Ρ‚

      Π’ этом ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ y = xΒ² β€” 4x + 5. 2} β€” 4 \ color {Magenta} {(1)} \ color {Blue} {(5)} \\ = 16-20 = -4 $$

      ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Ρƒ этого ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π½Π΅Ρ‚ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ. ЕдинствСнныС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΌΠ½ΠΈΠΌΡ‹Π΅.

      НиТС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ этого ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°.

      ΠŸΡ€Π°ΠΊΡ‚ΠΈΠΊΠ° 6

      НайдитС дискриминант, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ ΠΈ количСство Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ: y = xΒ² + 4. 2} β€” 4 \ color {Magenta} {(1)} \ color {Blue} {(4)} = -16 $$

      ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Ρƒ этого ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π΅ΡΡ‚ΡŒ Π΄Π²Π° ΠΌΠ½ΠΈΠΌΡ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ.

      РСшСния: 2i и -2i.

      НиТС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ этого Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

      ΠŸΡ€Π°ΠΊΡ‚ΠΈΠΊΠ° 7

      НайдитС дискриминант, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ ΠΈ количСство Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ: y = xΒ² + 25.2} β€” 4 \ color {Magenta} {(1)} \ color {Blue} {(25)} = -100 $$

      ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Ρƒ этого ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π΅ΡΡ‚ΡŒ Π΄Π²Π° ΠΌΠ½ΠΈΠΌΡ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ.

      РСшСния 5i и -5i.

      ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°: Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΈ дискриминант

      Purplemath

      ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Π΅Ρ‰Π΅ нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ².

      • Π Π΅ΡˆΠΈΡ‚Π΅
        x ( x β€” 2) = 4. ΠžΠΊΡ€ΡƒΠ³Π»ΠΈΡ‚Π΅ ΠΎΡ‚Π²Π΅Ρ‚ Π΄ΠΎ Π΄Π²ΡƒΡ… дСсятичных Π·Π½Π°ΠΊΠΎΠ².

      Π― Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π΅ ΠΌΠΎΠ³Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ этапС, Π½ΠΎ ΠΈ Π½Π΅ ΠΌΠΎΠ³Ρƒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ. ΠŸΠΎΡ‡Π΅ΠΌΡƒ? ΠŸΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ° Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅.

      И я, , разумССтся, Π½Π΅ ΠΌΠΎΠ³Ρƒ с Π½Π΅Π²ΠΎΠ·ΠΌΡƒΡ‚ΠΈΠΌΡ‹ΠΌ Π²ΠΈΠ΄ΠΎΠΌ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Β« x = 4, x β€” 2 = 4Β», ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ это , Π° Π½Π΅ , ΠΊΠ°ΠΊ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Β«Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ с Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΈΠ½Π³ΠΎΠΌΒ».

      НСзависимо ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ я ΡΠΎΠ±ΠΈΡ€Π°ΡŽΡΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ β€” Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΈΠ·ΡƒΡŽ Π»ΠΈ я Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ ΠΈΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для поиска ΠΎΡ‚Π²Π΅Ρ‚ΠΎΠ² β€” я Π΄ΠΎΠ»ΠΆΠ΅Π½ сначала ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² Ρ„ΠΎΡ€ΠΌΡƒ Β«(ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹ΠΉ) = 0Β».

      MathHelp.com

      ΠŸΠ΅Ρ€Π²ΠΎΠ΅, Ρ‡Ρ‚ΠΎ я сдСлаю здСсь, это ΡƒΠΌΠ½ΠΎΠΆΡƒ Π½Π° Π»Π΅Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ, Π° Π·Π°Ρ‚Π΅ΠΌ пСрСмСсту 4 ΠΈΠ· ΠΏΡ€Π°Π²ΠΎΠΉ части Π² Π»Π΅Π²ΡƒΡŽ:

      x ( x β€” 2) = 4

      x 2 β€” 2 x = 4

      x 2 β€” 2 x β€” 4 = 0

      ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½Π΅Ρ‚ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΏΡ€ΠΈ (1) (- 4) = –4, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² суммС Π΄Π°ΡŽΡ‚ –2, Ρ‚ΠΎ эта квадратичная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π½Π΅ мноТится.(Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ с искусствСнным Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΈΠ½Π³ΠΎΠΌ Β« x = 4, x β€” 2 = 4Β» ΠΌΠΎΠ³Π»ΠΎ Π±Ρ‹Ρ‚ΡŒ Ρ…ΠΎΡ‚ΡŒ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ.)

      Π—Π½Π°Ρ‡ΠΈΡ‚, Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΈΠ½Π³ Π½Π΅ сработаСт, Π½ΠΎ я ΠΌΠΎΠ³Ρƒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ; Π² этом случаС я Π²ΡΡ‚Π°Π²Π»ΡŽ значСния a = 1, b = –2 ΠΈ c = –4:

      Π’ΠΎΠ³Π΄Π° ΠΎΡ‚Π²Π΅Ρ‚:

      x = –1.24, x = 3,24 с ΠΎΠΊΡ€ΡƒΠ³Π»Π΅Π½ΠΈΠ΅ΠΌ Π΄ΠΎ Π΄Π²ΡƒΡ… дСсятичных Π·Π½Π°ΠΊΠΎΠ².


      Для справки, Π²ΠΎΡ‚ ΠΊΠ°ΠΊ выглядит Π³Ρ€Π°Ρ„ΠΈΠΊ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ, y = x 2 β€” 2 x β€” 4, выглядит Ρ‚Π°ΠΊ:

      Как Π²ΠΈΠ΄ΠΈΡ‚Π΅, Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ с интСрцСпциями x . Π’ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° с осью x Π΄Π°ΡŽΡ‚ значСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π΅ΡˆΠ°ΡŽΡ‚ исходноС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.

      БущСствуСт Π΅Ρ‰Π΅ ΠΎΠ΄Π½Π° связь ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡΠΌΠΈ ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹: Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, сколько ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ² x Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅, исходя ΠΈΠ· значСния Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня. АргумСнт (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ содСрТаниС) ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня, ΡΠ²Π»ΡΡŽΡ‰ΠΈΠΉΡΡ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ b 2 β€” 4 ac , называСтся «дискриминантом», ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Β«Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒΒ» (Ρ‡Ρ‚ΠΎ ΡƒΠΌΠ΅Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒ) Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Ρ‚ΠΈΠΏΡ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ.

      Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ дискриминанта b 2 -4 ac Π±Ρ‹Π»ΠΎ 20; Π² частности, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ , Π° Π½Π΅ ноль, ΠΈ Π±Ρ‹Π»ΠΎ , Π° Π½Π΅ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ Π±Ρ‹Π»ΠΎ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ ΠΈΠΌΠ΅Ρ‚ΡŒ ΠΏΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅Ρ€Π΅ ΠΎΠ΄Π½ΠΎ (Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅) Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅; ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ Π±Ρ‹Π»ΠΎ Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ, Π΄Π²Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Π»ΠΈ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΠ½ΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Π»ΠΈ ΠΎΡ‚Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π°).


      • Π Π΅ΡˆΠΈΡ‚ΡŒ 9
        x 2 + 12 x + 4 = 0.ΠžΡΡ‚Π°Π²ΡŒΡ‚Π΅ свой ΠΎΡ‚Π²Π΅Ρ‚ Π² Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅.

      Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ a = 9, b = 12 ΠΈ c = 4, квадратичная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π°Π΅Ρ‚ ΠΌΠ½Π΅:

      Π’ΠΎΠ³Π΄Π° ΠΎΡ‚Π²Π΅Ρ‚:


      Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π½Π° этой страницС я ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» Π΄Π²Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ дискриминанта (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня) Π±Ρ‹Π»ΠΎ Π½Π΅Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ.Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ‡Π°ΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ «плюс-минус» Π΄Π°Π»Π° ΠΌΠ½Π΅ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… значСния; ΠΎΠ΄ΠΈΠ½ для «плюсовой» части числитСля ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠΉ для «минусовой» части. Однако Π² этом случаС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΠ»ΡΡ Π΄ΠΎ нуля, поэтому плюс-минус Π½ΠΈ для Ρ‡Π΅Π³ΠΎ Π½Π΅ учитывался.

      Π’Π°ΠΊΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ «плюс-минус ноль» Π½ΠΈΡ‡Π΅Π³ΠΎ Π½Π΅ мСняСт, называСтся Β«ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΠΌΡΡΒ» ΠΊΠΎΡ€Π½Π΅ΠΌ, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ x Ρ€Π°Π²Π½ΠΎ

      –2 / 3 , Π½ΠΎ ΠΎΠ½ΠΎ Ρ€Π°Π²Π½ΠΎ этому Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΊΠ°ΠΊ Π±Ρ‹ Π²Π΄Π²ΠΎΠ΅: –2 / 3 + 0 ΠΈ –2 / 3 β€” 0.

      Π’Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π»ΡƒΡ‡ΡˆΠ΅ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ это ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π΅Π½ΠΈΠ΅, Ссли Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹ΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ (ΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π±Ρ‹Π»ΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌΠΈ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ дробями, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹ΠΉ Π΄ΠΎΠ»ΠΆΠ΅Π½ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ ): 9 x 2 + 12 x + 4 = (3 x + 2) (3 x + 2) = 0, поэтому ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ Π΄Π°Π΅Ρ‚ Π½Π°ΠΌ 3 x + 2 = 0, поэтому

      x = –2 / 3 , ΠΈ (ΠΈΠ· Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ, ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½Ρ‹ΠΉ коэффициСнт) 3 x + 2 = 0, поэтому x = –2 / 3 снова.

      ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ Ρ€Π°Π·, ΠΊΠΎΠ³Π΄Π° Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚Π΅ ноль Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ уравнСния Π² смыслС получСния ΠΎΠ΄Π½ΠΎΠ³ΠΎ числа, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅. Но Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ Π΄Π²Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² Ρ‚ΠΎΠΌ смыслС, Ρ‡Ρ‚ΠΎ ΠΎΠ΄Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ подсчитано Π΄Π²Π°ΠΆΠ΄Ρ‹. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, дискриминант (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ b 2 β€” 4 ac ) с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ ΠΎΠ΄Π½ΠΎ Β«ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰Π΅Π΅ΡΡΒ» Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ.


      НиТС ΠΏΠΎΠΊΠ°Π·Π°Π½ Π³Ρ€Π°Ρ„ΠΈΠΊ связанной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, y = 9 x 2 + 12 x + 4, выглядит Ρ‚Π°ΠΊ:

      ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° Ρ‚ΠΎΠ»ΡŒΠΊΠΎ касаСтся оси x ΠΏΡ€ΠΈ

      x = –2 / 3 ; это Π½Π° самом Π΄Π΅Π»Π΅ Π½Π΅ пСрСсСкаСтся.Π­Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ всСгда Π²Π΅Ρ€Π½ΠΎ: Ссли Ρƒ вас Π΅ΡΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ встрСчаСтся Ρ€ΠΎΠ²Π½ΠΎ Π΄Π²Π°ΠΆΠ΄Ρ‹ (ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎ ΠΆΠ΅ самоС, Ссли Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚Π΅ ноль Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня), Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Π±ΡƒΠ΄Π΅Ρ‚ Β«Ρ†Π΅Π»ΠΎΠ²Π°Ρ‚ΡŒΒ» ось Π² Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, Π½ΠΎ ΠΎΠ½ Π½Π΅ ΠΏΡ€ΠΎΠΉΠ΄Π΅Ρ‚ Ρ‡Π΅Ρ€Π΅Π· ось.

      ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½Π΅Ρ‚ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΏΡ€ΠΈ (3) (2) = 6, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² суммС Π΄Π°ΡŽΡ‚ 4, эта квадратичная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π½Π΅ мноТится. Но квадратичная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ всСгда; Π² этом случаС я Π²ΡΡ‚Π°Π²Π»ΡŽ значСния a = 3, b = 4 ΠΈ c = 2:

      На Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Ρƒ мСня Π΅ΡΡ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня.Если Π²Ρ‹ Π΅Ρ‰Π΅ Π½Π΅ ΡƒΠ·Π½Π°Π»ΠΈ ΠΎ комплСксных числах, Π²Π°ΠΌ придСтся ΠΎΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒΡΡ Π½Π° этом, ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ Π±ΡƒΠ΄Π΅Ρ‚ Β«Π½Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡΒ»; Ссли Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅ комплСксныС числа, Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚ΡŒ вычислСния:

      Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π² зависимости ΠΎΡ‚ вашСго уровня обучСния, ваш ΠΎΡ‚Π²Π΅Ρ‚ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ…:

      Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² Π²ΠΈΠ΄Π΅ вСщСствСнных чисСл: Π½Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

      комплСксно-числовых Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ:


      ΠŸΠ°Ρ€Ρ‚Π½Π΅Ρ€


      Но Π·Π½Π°Π΅Ρ‚Π΅ Π»ΠΈ Π²Ρ‹ ΠΎ комплСксах ΠΈΠ»ΠΈ Π½Π΅Ρ‚, Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅, Ρ‡Ρ‚ΠΎ Π²Ρ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ свой ΠΎΡ‚Π²Π΅Ρ‚, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π²Ρ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа Π½Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΌ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΌ мСстС.На оси x Ρ‚Π°ΠΊΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π΅Ρ‚. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π²Ρ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π½Π°ΠΉΡ‚ΠΈ графичСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ Ρ€Π°Π·ΡƒΠΌΠ½ΠΎ Π½Π΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Π½ΠΈΠΊΠ°ΠΊΠΈΡ… ΠΏΠ΅Ρ€Π΅Ρ…Π²Π°Ρ‚ΠΎΠ² x (ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ с ΠΏΠ΅Ρ€Π΅Ρ…Π²Π°Ρ‚ΠΎΠΌ x ).


      Π’ΠΎΡ‚ Π³Ρ€Π°Ρ„ΠΈΠΊ связанной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, y = 3 x 2 + 4 x + 2:

      Как Π²ΠΈΠ΄ΠΈΡ‚Π΅, Π³Ρ€Π°Ρ„ΠΈΠΊ Π½Π΅ пСрСсСкаСт ΠΈ Π΄Π°ΠΆΠ΅ Π½Π΅ касаСтся оси x .Π­Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ всСгда Π²Π΅Ρ€Π½ΠΎ: Ссли Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня, Ρ‚ΠΎΠ³Π΄Π° Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ для Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠ΅Ρ€Π΅Ρ…Π²Π°Ρ‚ΠΎΠ² x . Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, Ссли дискриминант (ΡΠ²Π»ΡΡŽΡ‰ΠΈΠΉΡΡ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ b 2 β€” 4 ac ) ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Ρ‚ΠΎ Ρƒ вас Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ графичСских Π½ΡƒΠ»Π΅ΠΉ .

      (взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ дискриминантом (ΡΠ²Π»ΡΡŽΡ‰ΠΈΠΌΡΡ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня), Ρ‚ΠΈΠΏΠΎΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ (Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, ΠΎΠ΄Π½ΠΎ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰Π΅Π΅ΡΡ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ отсутствиС Π³Ρ€Π°Ρ„ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ) ΠΈ числом x -ΠΏΠ΅Ρ€Π΅Ρ…Π²Π°Ρ‚Ρ‹Π²Π°Π½ΠΈΠΉ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ (Π΄Π²Π° , ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ Π½Π΅Ρ‚) свСдСны Π² Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡƒ Π½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ страницС.)


      URL: https://www.purplemath.com/modules/quadform2.htm

      Дискриминант: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ объяснСниС | Study.com

    Π­Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для нахоТдСния дискриминанта.

    ИспользованиС дискриминанта

    Дискриминант сообщаСт Π²Π°ΠΌ, сколько Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.Однако, ΠΏΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΠΌΡ‹ смоТСм ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΠΌΡ‹ сначала Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π΅Π³ΠΎ Π½Π° ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ . Бтандартная Ρ„ΠΎΡ€ΠΌΠ° β€” это ΠΊΠΎΠ³Π΄Π° всС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΈ константы находятся Π½Π° ΠΎΠ΄Π½ΠΎΠΉ сторонС уравнСния, Π° другая сторона Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Выглядит это Ρ‚Π°ΠΊ:

    Π­Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² стандартной Ρ„ΠΎΡ€ΠΌΠ΅.

    Когда Ρƒ вас Π΅ΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² стандартной Ρ„ΠΎΡ€ΠΌΠ΅, Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ числа ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π±ΡƒΠΊΠ²Π°ΠΌΠΈ ΠΈ Π²ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ значСния Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для поиска дискриминанта.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вашСго дискриминанта Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ Π²Π°ΠΌ, сколько Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ ваша квадратичная.

    ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

    Π”Π°Π²Π°ΠΉΡ‚Π΅ посмотрим Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

    ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

    Π’ нашСм ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π°Π΅Ρ‚ Π½Π°ΠΌ 1 для Π±ΡƒΠΊΠ²Ρ‹ a , 5 для Π±ΡƒΠΊΠ²Ρ‹ b ΠΈ 4 для Π±ΡƒΠΊΠ²Ρ‹ c . ΠœΡ‹ Π±Π΅Ρ€Π΅ΠΌ эти значСния ΠΈ вставляСм ΠΈΡ… Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ мСста Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ дискриминанта, ΠΈ ΠΌΡ‹ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ наш дискриминант Ρ€Π°Π²Π΅Π½ 9, ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ числу.Π­Ρ‚ΠΎ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ Π½Π°ΠΌ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρƒ нашСго ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π΅ΡΡ‚ΡŒ Π΄Π²Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… вСщСствСнных Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Π Π΅Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ β€” это Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Когда Π²Ρ‹ построитС Π³Ρ€Π°Ρ„ΠΈΠΊ этого ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния, Π²Ρ‹ ΡƒΠ²ΠΈΠ΄ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ кривая пСрСсСкаСт ось x Π² Π΄Π²ΡƒΡ… мСстах, ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‚Π°ΠΌ, Π³Π΄Π΅ находятся ваши Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ.

    Π₯отя дискриминант сообщаСт Π½Π°ΠΌ количСство Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ, ΠΎΠ½ Π½Π΅ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ Π½Π°ΠΌ, Ρ‡Ρ‚ΠΎ это Π·Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Но это Π΄Π°Π΅Ρ‚ Π½Π°ΠΌ прСдставлСниС ΠΎ Ρ‚ΠΎΠΌ, сколько Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΈΡΠΊΠ°Ρ‚ΡŒ.

    ΠŸΠΎΠΌΠ½ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ссли ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ Π½Π΅Ρ‚ чисСл, прСдполагаСтся, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅Π΄ Π½ΠΈΠΌΠΈ стоит 1. ΠœΡ‹ Π½Π΅ пишСм 1, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ это матСматичСскоС соглашСниС ΠΈ ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ это выглядит Π°ΠΊΠΊΡƒΡ€Π°Ρ‚Π½Π΅Π΅, особСнно ΠΊΠΎΠ³Π΄Π° Ρƒ вас ΠΌΠ½ΠΎΠ³ΠΎ Π±ΡƒΠΊΠ², с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ Π½ΡƒΠΆΠ½ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ.

    Рассмотрим Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

    ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

    ΠœΡ‹ присвоили нашим Π±ΡƒΠΊΠ²Π°ΠΌ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ значСния. ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠ² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ значСния Π² Π½Π°ΡˆΡƒ Π΄ΠΈΡΠΊΡ€ΠΈΠΌΠΈΠ½Π°Π½Ρ‚Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, ΠΌΡ‹ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ наш дискриминант Ρ€Π°Π²Π΅Π½ -31, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число.Π₯ΠΌ … Ρ‡Ρ‚ΠΎ это ΠΌΠΎΠ³Π»ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ΡŒ? Когда дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π½Π΅Ρ‚. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ построСнии Π³Ρ€Π°Ρ„ΠΈΠΊΠ° уравнСния Π²Ρ‹ ΡƒΠ²ΠΈΠ΄ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΎ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ пСрСсСкаСт ось x ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ.

    Π•ΡΡ‚ΡŒ Π΅Ρ‰Π΅ ΠΎΠ΄Π½Π° возмоТная ситуация β€” ΠΊΠΎΠ³Π΄Π° дискриминант Ρ€Π°Π²Π΅Π½ 0. Когда Π²Ρ‹ Π²ΠΈΠ΄ΠΈΡ‚Π΅ это, это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ сущСствуСт Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. На Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ касаСтся оси x Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅.

    Π’ΠΎΡ‚ Ρ‚Π°Π±Π»ΠΈΡ†Π°, которая ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π²Π°ΠΌ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ дискриминантныС ситуации ΠΈ ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅:

    Дискриминант ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ
    > 0 Π”Π²Π° Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ
    = 0 Одно Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅
    <0 Π Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π½Π΅Ρ‚

    РСзюмС ΡƒΡ€ΠΎΠΊΠ°

    Подводя ΠΈΡ‚ΠΎΠ³, дискриминант ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Π²Π°ΠΌ, сообщая Π²Π°ΠΌ, сколько Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.Π€ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ, посмотрСв Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ Ρ‚Ρ€ΠΈ сцСнария. Если дискриминант ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄Π²Π° Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Если дискриминант Ρ€Π°Π²Π΅Π½ 0, Ρ‚ΠΎ сущСствуСт Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. Если дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число, Ρ‚ΠΎ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π½Π΅Ρ‚.

    Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ обучСния

    ПослС этого ΡƒΡ€ΠΎΠΊΠ° Π²Ρ‹ смоТСтС:

    • ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ дискриминант ΠΈ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Π΅Π³ΠΎ Π½Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅
    • ΠžΠ±ΡŠΡΡΠ½ΠΈΡ‚Π΅, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ дискриминант
    • ΠžΠΏΠΈΡˆΠΈΡ‚Π΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ сцСнарии использования дискриминанта

    Дискриминант кубичСского уравнСния

    Дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

    a x Β² + bx + c = 0

    это

    Ξ” = b Β² β€” 4 ac .

    Если дискриминант Ξ” Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²ΠΎΠΉΠ½ΠΎΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ сущСствуСт ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ x , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π΄Π΅Π»Π°Π΅Ρ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ, ΠΈ ΠΎΠ½ Π΄Π²Π°ΠΆΠ΄Ρ‹ считаСтся ΠΊΠΎΡ€Π½Π΅ΠΌ. Если дискриминант Π½Π΅ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Π΅ΡΡ‚ΡŒ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… корня.

    ΠšΡƒΠ±ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠΌΠ΅ΡŽΡ‚ дискриминант. Для кубичСского уравнСния

    a x Β³ + bx Β² + cx + d = 0

    дискриминант Ρ€Π°Π²Π΅Π½

    Ξ” = 18 abcd β€” 4 b Β³ d + b Β²cΒ² β€” 4 acΒ³ β€” 27 a Β² d Β².

    Если Ξ” = 0, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΡ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ, Π½ΠΎ Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС ΠΎΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Ρ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… корня.

    Π—Π°ΠΌΠ΅Π½Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ свСсти ΠΎΠ±Ρ‰Π΅Π΅ кубичСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΌΡƒ Β«Π²Π΄Π°Π²Π»Π΅Π½Π½ΠΎΠΌΡƒΒ» кубичСскому ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ Π²ΠΈΠ΄Π°

    x ³ + пиксСлСй + q = 0

    , Π² этом случаС дискриминант упрощаСтся Π΄ΠΎ

    Ξ” = β€” 4 pΒ³ β€” 27 q Β².

    Π’ΠΎΡ‚ ΠΏΠ°Ρ€Π° интСрСсных связСй. ИдСя свСдСния кубичСского уравнСния ΠΊ кубичСскому с ΡƒΠ³Π»ΡƒΠ±Π»Π΅Π½ΠΈΠ΅ΠΌ восходит ΠΊ ΠšΠ°Ρ€Π΄Π°Π½ΠΎ (1501–1576).Π’ΠΎ, Ρ‡Ρ‚ΠΎ Π² этом контСкстС называСтся ΡƒΠ³Π»ΡƒΠ±Π»Π΅Π½Π½ΠΎΠΉ ΠΊΡƒΠ±ΠΈΠΊΠΎΠΉ, извСстно ΠΊΠ°ΠΊ Ρ„ΠΎΡ€ΠΌΠ° Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠ° (1815–1897) Π² контСкстС эллиптичСских ΠΊΡ€ΠΈΠ²Ρ‹Ρ…. Π’ΠΎ Π΅ΡΡ‚ΡŒ эллиптичСская кривая Π²ΠΈΠ΄Π°

    y Β² = x Β³ + ax + b

    БчитаСтся, Ρ‡Ρ‚ΠΎ

    находится Π² Ρ„ΠΎΡ€ΠΌΠ΅ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠ°. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, эллиптичСская кривая ΠΈΠΌΠ΅Π΅Ρ‚ Ρ„ΠΎΡ€ΠΌΡƒ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠ°, Ссли правая Ρ‡Π°ΡΡ‚ΡŒ прСдставляСт собой ΡƒΠ³Π»ΡƒΠ±Π»Π΅Π½Π½ΡƒΡŽ ΠΊΡƒΠ±ΠΈΠΊΡƒ.

    ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, эллиптичСская кривая Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ Π½Π΅Π²Ρ‹Ρ€ΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠΉ, Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ½Π° Π΄ΠΎΠ»ΠΆΠ½Π° ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡ‚ΡŒ трСбованиям

    4 aΒ³ + 27 b Β² β‰  0.

    Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, дискриминант ΠΏΡ€Π°Π²ΠΎΠΉ части ΠΎΡ‚Π»ΠΈΡ‡Π΅Π½ ΠΎΡ‚ нуля. Π’ контСкстС эллиптичСских ΠΊΡ€ΠΈΠ²Ρ‹Ρ… дискриминант опрСдСляСтся ΠΊΠ°ΠΊ

    Ξ” = -16 (4 aΒ³ + 27 b Β²)

    , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ совпадаСт с дискриминантом Π²Ρ‹ΡˆΠ΅, Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ коэффициСнта 16, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΡƒΠΏΡ€ΠΎΡ‰Π°Π΅Ρ‚ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ вычислСния с эллиптичСскими ΠΊΡ€ΠΈΠ²Ρ‹ΠΌΠΈ.

    ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ ΠΏΠΎ полям

    Π’ контСкстС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΠΈ кубичСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΡ‹ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ нСявно Ρ€Π°Π±ΠΎΡ‚Π°Π΅ΠΌ с Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈΠ»ΠΈ комплСксными числами.ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ всС коэффициСнты ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹. Если дискриминант ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π΅ΡΡ‚ΡŒ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… корня. Если дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π΅ΡΡ‚ΡŒ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… комплСксных корня, ΠΈ эти ΠΊΠΎΡ€Π½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ комплСксно сопряТСнными Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ.

    АналогичныС замСчания справСдливы для кубичСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, ΠΊΠΎΠ³Π΄Π° всС коэффициСнты Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹. Если дискриминант ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, сущСствуСт Ρ‚Ρ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… корня. Если дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, имССтся ΠΎΠ΄ΠΈΠ½ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈ комплСксно сопряТСнная ΠΏΠ°Ρ€Π° комплСксных ΠΊΠΎΡ€Π½Π΅ΠΉ.

    Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΌ Ρ€Π°Π·Π΄Π΅Π»Π΅ я рассмотрСл Ρ‚ΠΎΠ»ΡŒΠΊΠΎ, Π±Ρ‹Π» Π»ΠΈ дискриминант Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ, ΠΈ поэтому утвСрТдСния Π½Π΅ зависят ΠΎΡ‚ поля, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ бСрутся коэффициСнты.

    Для эллиптичСских ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ с мноТСством ΠΏΠΎΠ»Π΅ΠΉ. ΠœΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ, Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ комплСксныС числа, Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Π΅ поля. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ сообщСний Π±Π»ΠΎΠ³Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ я писал ΠΎΠ± эллиптичСских ΠΊΡ€ΠΈΠ²Ρ‹Ρ…, ΠΏΠΎΠ»Π΅ прСдставляСт собой Ρ†Π΅Π»Ρ‹Π΅ числа ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ большого простого числа.

    Π‘ΠΎΠ»ΡŒΡˆΠ΅ сообщСний, связанных с кубичСскими уравнСниями

    .

    Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

    Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *