Валентность f2: Валентность фтора (F), формулы и примеры

Содержание

Периодическая система химических элементов

Дидактический материал

Тренировочные тесты ЕГЭ по химии

 

 

Закономерности изменения свойств химических элементов и их соединений по периодам и группам. Общая характеристика металлов IA-IIIA групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов. Характеристика переходных элементов: меди, цинка, хрома, железа — по их положению в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов. Общая характеристика неметаллов VIA-VIIA групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов.

 

1. В ряду          Na —>Mg —>Al —>Si

1) увеличивается число энергетических уровней в атомах

2) усиливаются металлические свойства элементов

3) уменьшается высшая степень окисления элементов

4) ослабевают металлические свойства элементов

2. У   элементов   подгруппы   углерода   с   увеличением   атомного   номера уменьшается

1) атомный радиус

2) заряд ядра атома

3) число валентных электронов в атомах

4) электроотрицательность

3. В ряду элементов        азот — кислород — фтор возрастает

1) валентность по водороду

2) число энергетических уровней

3) число внешних электронов

4) число неспаренных электронов

4. В ряду химических элементов бор — углерод — азот возрастает

1) способность атома отдавать электроны

2) высшая степень окисления

3) низшая степень окисления

4) радиус атома

5. Какой элемент имеет более выраженные неметаллические свойства, чем кремний?

1) углерод           2) германий       3) алюминий         4) бор

 

6. С ростом заряда ядра атомов кислотные свойства оксидов в ряду

N2O5 —> P2O5 —> As2O5 —>  Sb2O5

1) ослабевают

2) усиливаются

3) не изменяются

4) изменяются периодически

7. В порядке возрастания неметаллических свойств элементы расположены в ряду:

1) O,N,C,B

2) Cl,S,P,Si

3) C,Si,Ge,Sn

4) B,C,O,F

8. В порядке усиления металлических свойств элементы расположены в ряду:

1) А1,Са,К         2) Ca.Ga.Fe       3) K,Al,Mg        4) Li,Be,Mg

9. В каком ряду элементы расположены в порядке возрастания их атомного радиуса?

1) Si,P, S.C1

2) O,S,Se,Te

3) At,I,Br,Cl

4) Mg,Al,Si, P

10. Какой     элемент    образует     газообразное     водородное     соединен соответствующее общей формуле RH

2?

1) бор         2) калий              3) сера               4) хром

 

11.  В    главных   подгруппах   периодической   системы   восстановительная способность атомов химических элементов растет с

1) уменьшением радиуса атомов

2) увеличением числа энергетических уровней в атомах

3) уменьшением числа протонов в ядрах атомов

4) увеличением числа валентных электронов

12. В какой группе периодической системы находится элемент Э, входящий в состав кислоты НЭО4?

1) IV                   2) V                    3) VI                  4) VII

 

13. В ряду оксидов SiO2 — Р2О5 — SO2 — Cl2O7 кислотные свойства

1)   возрастают

2)  убывают

3)  не изменяются

4) сначала уменьшаются, потом увеличиваются

 

14. В   каком   ряду   простые   вещества  расположены   в   порядке   усиления металлических свойств?

1)   Mg, Ca, Ва

2)   Na, Mg, A1

3)   K,Ca,Fe

4) Sc, Ca, Mg

 

15. По периоду слева направо уменьшается(-ются)

1)  атомный радиус элементов

2)   число валентных электронов в атомах

3)   электроотрицательность элементов

4) кислотные свойства гидроксидов

 

16. В   порядке  увеличения  электроотрицательности  химические  элементы расположены в раду:

1) С, N, О              2) Si. Al.Mg          3) Mg,Ca, Ва         4) Р, S, Si

 

17. Химический элемент расположен в IV периоде, IA группе. Распределению электронов в атоме этого элемента соответствует ряд чисел:

1)  2,8,8,2

2)  2, 8, 18, 1

3)  2, 8, 8, 1

4) 2,8, 18,2

 

18. Электроотрицательность химических элементов с возрастанием  заряда ядра атома

1)  увеличивается и в периодах, и в группах

2)  уменьшается и в периодах, и в группах

3)  увеличивается в периодах, а в группах уменьшается

4) уменьшается в периодах, а в группах увеличивается

 

19. В каком ряду химические элементы расположены в порядке возрастания их атомного радиуса?

1)  Rb,K,Na,Li

2)  Na,Mg,Al, S

3)  F, Cl, Br, I

4) C,N, О, F

 

20. Среди элементов третьего периода наименьший атомный радиус имеет

1)  натрий

2)   алюминий

3)   фосфор

4) сера

 

21. В    главных   подгруппах   периодической    системы   восстановительная способность атомов химических элементов растет с

1)  уменьшением радиуса атомов

2)  увеличением числа энергетических уровней в атомах

3)  уменьшением числа протонов в ядрах атомов

4) увеличением числа валентных электронов

 

22. По периоду слева направо уменьшается

1)  число валентных электронов в атомах

2)  атомный радиус элементов

3)  электроотрицательность элементов

4)  кислотность гидроксидов элементов

 

23. Наиболее сильное основание образует

1) цезий                 2)  натрий               3} литий                4)  цинк

 

24. Оксид с наиболее выраженными кислотными свойствами образует

1) кремний             2) фосфор              3)  сера                   4) хлор

 

25. Наиболее сильное основание образует

1) магний              2) стронций           3) барий                4) кадмий

 

26.

Кислотный характер наиболее выражен у высшего оксида, образованного элементом:

1) Sn                      2)  А1                      3)  С                       4)  S

 

27. Кислотный характер наиболее выражен у высшего оксида, образованного

1) бериллием         2) бором                3) фосфором          4)  кремнием

 

28. Сила бескислородных кислот неметаллов VIIА группы соответственно возрастанию заряда ядра атомов элементов

1)

увеличивается

2)

уменьшается

3)

не изменяется

4)

изменяется периодически

 

 

29. Одинаковое значение валентности в водородном соединении и высшем оксиде имеет элемент

 

1)

хлор

2)

германий

3)

мышьяк

4)

селен

 

30. Кислотные свойства оксидов в ряду     SiO2 —> P2O5 —>SО3

 

1) ослабевают

2) усиливаются

3) не изменяются

4) изменяются периодически

 

31. Газообразные водородные соединения состава ЭН3 образуют

1) Be, Ca, Sr           2) P, As, Sb             3) Ga, Al, B         4) Te, S, Sc

 

32. В ряду элементов

Cl ® S ® P ® Si

1) уменьшается число электронных слоев в атомах

2) увеличивается число внешних электронов в а томах

3) возрастают радиусы атомов

4) усиливаются неметаллические свойства

 

33. Неметаллические свойства наиболее выражены у

1) серы            2) кислорода     3) кремния      4) фосфора    

 

34. Наибольший радиус имеет атом

1) олова                 2} кремния             3) свинца               4) углерода

 

35. В ряду химических элементов

Li —>Be —> B —> C

1)   увеличивается число валентных электронов в атомах

2)   уменьшается число электронных слоев а атомах

3)  уменьшается число протонов в ядрах атомов

4)   увеличиваются радиусы атомов

 

36.Наибольший радиус имеет атом

1) брома                 2) мышьяка          3) бария                 4) олова

 

37. Электронную конфигурацию 1s22s263.s2Зр63d1 имеет ион

1) Са2+                    2) А13+                     3) K+                      4) Sc2+

 

38. Какую электронную конфигурацию имеет атом наиболее активного металла?

 

1)

1s22s22p1

2)

1s22s22p63s1

3)

1s22s2

4)

1s22s22p63s23p1

 

39. В    порядке    увеличения    восстановительной    способности    металлы расположены в ряду:

1) K,Al,Cr,Sn

2) Sn,Cr,Al,Zn
 3) Sn,Ca,Al,K

4) Au,Al,Ca,Li

 

40. В ряду элементов:      натрий —>магний —>алюминий

возрастает их

1) атомный радиус

2) восстановительная способность

3) химическая активность

4) электроотрицательность

 

41. У магния металлические свойства выражены

1) слабее, чем у бериллия

2) сильнее, чем у алюминия

3) сильнее, чем у кальция

4) сильнее, чем у натрия

 

42. В порядке уменьшения восстановительных свойств металлы расположены в ряду:

1) Al,Zn,Fe

2) Al,Na,K
3) Fе,Zn,Mg
4) Fe,Zn,Al

 

43. Наибольший радиус имеет атом

1) лития               2) натрия            3) кальция          4) калия

44. У элементов II А группы сверху вниз

1) уменьшаются радиусы атомов,

2) увеличивается число валентных электронов в атоме

3) увеличиваются радиусы атомов

4) уменьшается число валентных электронов в атоме

 

45. Сила оснований возрастает в ряду:

1) Ве(ОН)2, Mg(OH)2, Ca(OH)2

2) Ва(ОН)2, Са(ОН)2, Ве(ОН)2

3) Са(ОН)2, Mg(OH)2, Ве(ОН)2
 
4) Sr(OH)2, Ca(OH)2, Mg(OH)2

46. У элементов I А группы сверху вниз

1) усиливаются окислительные свойства

2) ослабевают восстановительные свойства

3) увеличиваются радиусы атомов

4) уменьшаются радиусы атомов

 

47. Валентные электроны наиболее легко отдают атомы

1) алюминия        2) натрия         3) бериллия     4) магния

 

48. Восстановительные свойства наиболее выражены у

1) алюминия   2) магния        3) натрия         4) калия

 

49. Основные свойства веществ ослабевают в ряду:

1)   NaОН —> КОН —>RbOH

2)   А1(ОН)3 —>Mg(OH)2 —> NaOH

3)   Са(ОН)2 —> Mg(OH)2 —>Be(OH)2

4)  В(ОН)3 —>Ве(ОН)2 —> LiOH

 

50. Верны ли следующие суждения?

А.  И хром, и железо образуют устойчивые оксиды в степени окисления +3.

Б.  Оксид хрома (III) является амфотерным.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны

 

51. Верны ли следующие суждения?

А. Только s-элементы содержит IA группа.

Б. Все элементы IA группы взаимодействуют с водой при комнатной температуре.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4) оба суждения неверны

 

52. Оксид хрома (VI) является

1) основным

2) кислотным

3)   амфотерным

4) несолеобразующим

 

53. Только основные свойства проявляет

1) Сr2O3                 2) Сr(ОН)2            3) СrO3              4) Сr(ОН)3

 

54. Сильные окислительные свойства характерны для

1)   оксида меди (I)

2)   оксида железа (II)

3)   оксида хрома (III)

4) оксида хрома (VI)

 

55. Верны ли следующие суждения об оксидах железа?

А.  Степень окисления железа в высшем оксиде равна   + 3.

Б.  Высший оксид железа относится к основным оксидам.

1)   верно только А

2)   верно только Б

3)  верны оба суждения

4) оба суждения неверны

 

56.  В ряду оксидов

CrO — Сr2О3 — СrОз

происходит

1) уменьшение степени окисления хрома

2) усиление восстановительных свойств

3) увеличение массовой доли хрома

4) усиление кислотных свойств

 

57. Оцените справедливость суждений о металлах:

 

А. Чем сильнее атом удерживает валентные электроны, тем ярче

выражены металлические свойства элемента.

Б. Чем сильнее выражены металлические свойства элемента, тем

более основный характер имеет его гидроксид.

 

1) верно только А

2) верно только Б

3) верны оба суждения

4) оба суждения неверны

 

58. Оцените справедливость суждений о металлах:

 

А. Для атомов металлов характерно малое число валентных

электронов и слабое их притяжение к ядру.

Б. Чем выше степень окисления металла в его гидроксиде, тем

более основными свойствами обладает гидроксид.

 

1) верно только А

2) верно только Б

3) верны оба суждения

4) оба суждения неверны

 

59. Оцените справедливость суждений о металлах:

А. Атомы металла могут образовывать только ионные связи.

Б. Оксиды и гидроксиды металлов всегда имеют основный

характер.

1) верно только А

2) верно только Б

3) верны оба суждения

4) оба суждения неверны

 

60. Верны ли следующие суждения о неметаллах?

А. В периодической системе химических элементов Д.И. Менделеева все неметаллы располагаются в главных подгруппах.

Б.  Все неметаллы являются р-элементами.

1) верно только А

2) верно только Б

3) верны оба суждения

4) оба суждения неверны

61. У атомов химических элементов, расположенных в ряду:       P-S-C1, увеличивается

1) радиус

2) окислительная способность

3) восстановительная способность

4) число неспаренных электронов

 

62. Соединения состава NaHЭO3 и NaHЭO4 может образовать

1) углерод              2) сера                3) хлор                4) фосфор

63. Наиболее сильными кислотными свойствами обладает

1) НС1О4              2) H2SO3              3) Н3РО4               4) H2SiО3

64 Соединения состава КЭО2 и КЭО3 образует элемент

1) азот                2) фосфор         3) сера               4) марганец

65. Способность   атомов   химических   элементов   принимать   электроны усиливается в ряду:

1)F —>O —>N

2) N —>F —>О

3) N —>O —>F

4) O —>N —>F

66. Степени окисления хлора, брома и йода в высших оксидах и водородных соединениях соответственно равны:

1)+1и-1            2)+7и-1         3)+7и-7         4)+5и-1

 

67. Сера проявляет как окислительные, так и восстановительные свойства при взаимодействии с

1)   водородом и железом

2)  углеродом и цинком

3)   хлором и фтором

4) натрием и кислородом

 

68. В ряду:                           Si —>Р —> S —> С1

электроотрицательность элементов

1)   увеличивается

2)   уменьшается

3)   не изменяется

4) сначала уменьшается, потом увеличивается

 

69. В ряду элементов мышьяк —>селен —> бром возрастает

1)   атомный радиус

2)   число неспаренных электронов в атоме

3) число электронных слоев в атоме

4) электроотрицательность

 

70. Водородное соединение состава Н2Э2 образует

1)   углерод

2)   кремний

3)   бор

4) азот

 

71. Высшему гидроксиду элемента VIIA группы соответствует формула

1) Н2ЭО3                2) Н2ЭО4                3) НЭО3                 4) НЭО4

 

72. Фосфор проявляет окислительные свойства при реакции с

1) кальцием           2) серой                3) хлором              4) кислородом

 

73. При взаимодействии высшего оксида хлора с водой образуется кислота

1) НС1O                 2) НС1O2                3) НСlO3                4) HClO4

 

74. Характерными степенями окисления хлора в его соединениях являются:

1)   -1,  +1, +3, +5, +7

2)   — 2,  +4,  +6, +8

3)   -3,  +3,  +5

4)   -1,  +2,  +5

 

75. Кислотные свойства наиболее выражены у высшего гидроксида

1) азота

2) фосфора

3) мышьяка

4) сурьмы

 

76. Только восстановительные свойства азот проявляет в соединении

1) N2

2) NНз

3) NО2

4) НNОз

 

 

77. Верны   ли   следующие   суждения   о   свойствах   соединений   элемента, электронная конфигурация атома которого 1s22s22p6 3s2 Зр1 ?

А. Этот элемент образует гидроксид с ярко выраженными кислотными свойствами.

Б. Степень окисления этого элемента в высшем гидроксиде равна  (+ 4).

1)  верно только А

2)   верно только Б

3)   верны оба суждения

4) оба суждения неверны

 

78. Верны ли следующие суждения о соединениях натрия и бериллия?

А. Оксид натрия проявляет основные свойства

Б. Гидроксид бериллия проявляет амфотерные свойства

1)  верно только А

2)   верно только Б

3)   верны оба суждения

4) оба суждения неверны

 

 

Ответы 1-4, 2-4, 3-3, 4-2, 5-1, 6-1, 7-4, 8-1, 9-2, 10-3, 11-2, 12-4, 13-1, 14-1, 15-1, 16-1, 17-3, 18-3, 19-3, 20-4, 21-2, 22-2, 23-1, 24-4, 25-3, 26-4, 27-3, 28-1, 29-2, 30-2, 31-2, 32-3, 33-2, 34-3, 35-1, 36-3, 37-4, 38-2, 39-4, 40-4, 41-2, 42-1, 43-4, 44-3, 45-1, 46-3, 47-2, 48-4, 49-3, 50-3, 51-1, 52-2, 53-2, 54-4, 55-1, 56-4, 57-2, 58-1, 59-4, 60-1, 61-2, 62-2, 63-1,64-1, 65-3, 66-2, 67-4, 68-1, 69-4, 70-1, 71-4, 72-1, 73-4, 74-1, 74-3, 76-2, 77-4, 78-3

Вопрос А2.

Периодический закон и Периодическая система химических элементов Д.И. Менделеева

1. В ряду химических элементов О → S → Sе:

1)       уменьшается радиус атомов

2)       уменьшается электроотрицательность

3)       усиливаются неметаллические свойства

4)       увеличиваются заряды ядер атомов

5)       уменьшается число заполненных электронных слоев в атомах

 

2. В ряду химических элементов   Na  → Al  → P   происходит увеличение (усиление):

1)       числа нейронов в ядрах атомов

2)       восстановительных свойств

3)       степени окисления в высших оксидах

4)       радиуса  атома

5)       металлических свойств

 

3. В ряду химических элементов   Cl  → Si  → Al:

1)       уменьшаются заряды ядер атомов

2)       возрастают кислотные свойства летучих водородных соединений

3)       высшая степень окисления уменьшается

4)       уменьшается радиус  атомов

5)       усиливаются металлические свойства

 

4.        4.В ряду химических элементов Sе → S → О:

1)       уменьшается валентность в высших оксидах

2)       возрастают радиусы атомов  хим. элементов

3)       усиливаются неметаллические свойства

4)       увеличивается электроотрицательность

5)       увеличивается число электронных слоев в атомах

 

5.       5.В ряду химических элементов Si → Р → S:

1)       уменьшается число протонов в ядре

2)       уменьшается электроотрицательность

3)       увеличивается радиус атомов

4)       увеличивается число электронов во внешнем электронном слое

5)       усиливаются неметаллические свойства

 

6.       6.В ряду химических элементов Ве → Мg → Са:

1)       уменьшается радиус атомов

2)       возрастает способность атомов отдавать электроны

3)       увеличиваются заряды ядер атомов

4)       уменьшается относительная атомная масса

5)       увеличивается степень окисления в высших гидроксидах

 

7.        7.В ряду химических элементов N → Р → Аs:

1)       уменьшается электроотрицательность

2)       уменьшаются радиусы атомов

3)       ослабевают неметаллические свойства

4)       увеличивается валентность в высших оксидах

5)       уменьшается число заполненных электронных слоев в атомах

 

8.       8.В порядке ослабевания металлических свойств расположены элементы в рядах:

1)       1, Be → Mg → Ca               4, B → Be → Li

2)       2, Na → Mg → Al               5, Mg → Ca → Sr

3)       3, Rb → K → Na

 

9. Способность отдавать электроны возрастает у элементов следующих рядов:

1)       Na → Al → P

2)       Sr → Ca → Mg

3)       C → N → O

4)       Si → Al → Mg

5)       B → Be → Li

 

10. В ряду химических элементов Al → Mg →Na:

1)       усиливается электроотрицательность

2)       усиливаются металлические свойства

3)       усиливается основный характер их высших оксидов

4)       уменьшается радиус атомов

5)       усиливается кислотный характер их высших оксидов

 

11. В ряду химических элементов N → С → В:

1)       увеличивается число протонов в ядре

2)       увеличивается электроотрицательность

3)       уменьшается радиус атомов

4)       уменьшается число электронов во внешнем электронном слое

5)       ослабевают неметаллические свойства

 

12. В порядке уменьшения числа электронов во внешнем слое расположены элементы  следующих рядов:

1)       N → O → F

2)       С → Si → Ge

3)       P → Si → Al

4)       C → N → O

5)       Br → Se → As

 

13.  В ряду химических элементов Si → Ge → Sn:

1)       увеличивается радиус атома

2)       ослабевают металлические свойства соответствующих им простых веществ

3)       ослабевает основный характер их высших оксидов

4)       возрастает значение валентности в их высших оксидах

5)       увеличивается число электронных слоёв в их атомах

 

14. В ряду химических элементов Cl → S → P → Si:

1)       увеличиваются неметаллические свойства

2)       уменьшается радиус атома

3)       увеличивается число электронов во внешнем электронном слое

4)       уменьшается низшая степень окисления

5)       ослабевают неметаллические свойства

 

15. В ряду химических элементов Si → Аl → Мg:

1)       уменьшается электроотрицательность

2)       увеличиваются заряды ядер атомов

3)       ослабевают неметаллические свойства

4)       уменьшаются радиусы атомов

5)       увеличивается число заполненных электронных слоев атомов

 

16. В ряду химических элементов   Cl → P → Si:

1)       уменьшаются заряды ядер атомов 

2)       уменьшается число электронных слоев

3)       увеличивается атомный радиус

4)       уменьшается низшая степень окисления

5)       усиливаются неметаллические свойства 

 

 

17. В ряду химических элементов I → Вr → Сl:

1)       увеличивается степень окисления в высших оксидах

2)       уменьшается число валентных электронов в атомах

3)       увеличиваются заряды ядер атомов

4)       усиливаются неметаллические свойства

5)       уменьшается радиус атомов

 

18. В ряду химических элементов F → О → N:

1)       увеличивается число электронных слоев в атомах

2)       уменьшаются заряды ядер атомов

3)       усиливаются неметаллические свойства

4)       уменьшается радиус атомов

5)       уменьшается число электронов во внешнем электронном слое

 

19. В ряду химических элементов Аl → Р → Сl:

1)       увеличивается электроотрицательность

2)       уменьшаются заряды ядер атомов

3)       возрастают металлические свойства

4)       уменьшаются радиусы атомов

5)       уменьшается число электронов во внешнем электронном слое

 

20. В ряду химических элементов Li → Ве → В:

1)       увеличивается электроотрицательность

2)       уменьшаются металлические свойства

3)       уменьшаются заряды ядер атомов

4)       уменьшается число электронов во внешнем электронном слое

5)       увеличивается число заполненных электронных слоев

 

Химия 8 класс, муниципальный этап (2 этап), г.

Москва, 2017-2018 учебный год

Задания, ответы, критерии оценивания

Общие указания: если в задаче требуются расчёты, они обязательно должныбыть приведены в решении. Ответ, приведённый без расчётов или иногообоснования, не засчитывается.

Решения и система оценивания. В итоговую оценку из 6 задач засчитываются 5 решений, за которые участник набрал наибольшие баллы, то есть одна из задач с наименьшим баллом не учитывается.

Содержание

  1. Задание 1. «Хорошо растворимый газ»
  2. Задание 2. «Неполные уравнения»
  3. Задание 3. «Горение во фторе»
  4. Задание 4. «Хлористый этил»
  5. Задание 5. «Гидразин – формулы и свойства»
  6. Задание 6. «Простой эксперимент»

Задание 1. «Хорошо растворимый газ»

Содержание ↑

В воде растворили неизвестный газ и получили раствор с массовой долей вещества 40 %. В этом растворе на две молекулы газа приходится 5 молекул воды. Установите относительную молекулярную массу газа и определите его формулу, если известно, что он состоит из атомов водорода, кислорода и ещё одного элемента.

Решение

Обозначим молекулярную массу газа Mr и составим пропорцию:

5 молекул H2O – 90 а. е. м – 60 %

2 молекулы газа – 2Mr а. е. м. – 40 %.

Mr = 40⋅90 / (2⋅60) = 30.

В состав молекулы газа входит не более одного атома кислорода (16 а. е. м.), тогда на водород и другой элемент приходится 14 а. е. м., это может быть только CH2.

Формула газа – CH2O.

Критерии оценивания

  1. Молекулярная масса газа – 6 баллов.
  2. Молекулярная формула – 4 балла.

Засчитывать только те ответы, в которых приведены расчеты молекулярноймассы газа.

За ответ, в котором написана только формула CH2O и не приведены расчеты, ставить 0 (ноль).

Итого 10 баллов.

Задание 2. «Неполные уравнения»

Содержание ↑

Восстановите пропуски в уравнениях реакций, не изменяя коэффициентов:

а) SiH4 + 2… = SiO2 + 2H2O

б) 4H2O2 + … = PbSO4 + 4H2O

в) 2Pb3O4 = 6PbO + …

г) P4 + 10… = 4PCl5

д) Ca(HCO3)2 = CaCO3 + CO2 + …

 

Решение

а) SiH4 + 2O2 = SiO2 + 2H2O

б) 4H2O2 + PbS = PbSO4 + 4H2O

в) 2Pb3O4 = 6PbO + O2

г) P4 + 10Cl2 = 4PCl5

д) Ca(HCO3)2 = CaCO3 + CO2 + H2O

Критерии оценивания

Каждое уравнение – по 2 балла.

Итого 10 баллов.

 

Задание 3. «Горение во фторе»

Содержание ↑

Одно из самых активных химических веществ – газообразный фтор, F2. В нём горит даже вода, а многие другие простые и сложные вещества сгорают уже при комнатной температуре. При этом в большинстве реакций продуктами являются только фториды – соединения, в которых фтор имеет валентность I,а остальные элементы проявляют типичные для них валентности. Составьте уравнения сгорания во фторе следующих веществ:

  • а) водорода,
  • б) углерода,
  • в) воды,
  • г) метана CH4,
  • д) аммиака NH3.

 

Решение

а) H2 + F2 = 2HF

б) C + 2F2 = CF4

в) H2O + 2F2 = 2HF + OF2

г) CH4 + 4F2 = CF4 + 4HF

д) NH3 + 3F2 = NF3 + 3HF

Критерии оценивания

Каждое уравнение – по 2 балла (1 балл, если правильные продукты, но не уравнено).

Итого 10 баллов.

 

Задание 4. «Хлористый этил»

Содержание ↑

В состав некоторых органических веществ, помимо углерода, входят хлор иводород.

  1. Изобразите структурную формулу вещества состава С2H5Cl (хлористый этил), зная, что углерод имеет валентность IV, а водород и хлор – валентность I.Обозначьте связи между атомами черточками.
  2. Хлористый этил горит красивым жёлтым пламенем. Запишите уравнение реакции горения, если известно, что при этом образуются углекислый газ, вода и хлороводород.
  3. Изобразите структурные формулы всех продуктов реакции горения.

 

Решение

1. 

2. C2H5Cl + 3O2 = 2CO2 + HCl + 2H2O

3.

 

Критерии оценивания

  1. За правильную формулу – 3 балла.
  2. За уравнение реакции – 4 балла.
  3. По 1 баллу за каждую структурную формулу, всего – 3 балла.

Итого 10 баллов.

 

Задание 5. «Гидразин – формулы и свойства»

Содержание ↑

Сложное вещество гидразин, в молекуле которого на один атом азота приходится два атома водорода, представляет собой горючую жидкость,неограниченно смешивающуюся с водой.

  1. Составьте молекулярную и структурную формулы этого вещества, зная,что азот в нём имеет такую же валентность, как и в аммиаке.
  2. Запишите уравнение реакции горения гидразина на воздухе, зная, чтов продуктах реакции есть одно простое вещество.
  3. При горении гидразина в оксиде азота(IV) образуются те же продукты,что и при горении на воздухе. Запишите уравнение реакции.
  4. С хлороводородом гидразин вступает в реакцию соединения. Составьте уравнение реакции, если известно, что её продукт содержит равное число атомов азота и хлора.

 

Решение и критерии оценивания

  1. Вещество, о котором идёт речь, имеет молекулярную формулу N2H4 (2 балла). Чтобы её составить, достаточно знать, что атом азота трёхвалентен.

Структурная формула:

 2 балла

Уравнения реакций:

  1. N2H4 + O2 = N2 + 2H2O 2 балла
  2. 2N2H4 + 2NO2 = 3N2 + 4H2O 2 балла
  3. N2H4 + 2HCl = N2H6Cl22 балла

Итого 10 баллов.

 

Задание 6. «Простой эксперимент»

Содержание ↑

В пробирку поместили порошкообразное вещество М зелёного цвета (см. рис. 1), состав которого можно выразить формулой Cu2(OH)2CO3, и нагрели. В результате реакции получили твёрдое вещество X чёрного цвета. На стенках пробирки сконденсировались капли бесцветной прозрачной жидкости Y. Выделился бесцветный газ Z, который пропустили в стакан с известковой водой, при этом наблюдали её помутнение.

Затем порошок вещества X перенесли в трубку и нагрели в токе водорода (см. рис. 2). В результате реакции вещество X превратилось в металл красного цвета. На стенках трубки снова сконденсировались капли бесцветной прозрачной жидкости Y.

Рисунок 1
Рисунок 2

Определите вещества X, Y и Z, которые образовались при разложении Cu2(OH)2CO3. Приведите соответствующее уравнение реакции.

Проводя данную реакцию, пробирку с исходным веществом закрепляют с небольшим наклоном в сторону отверстия (см. рис. 1). С какой целью это делают?

Какая реакция протекала при пропускании водорода над нагретым порошком X? Составьте уравнение данной реакции.

Как можно металлический порошок красного цвета, полученный во втором опыте, снова превратить в вещество X? Напишите соответствующее уравнение реакции.

 

Решение и критерии оценивания

  1. X — CuO; Y — H2O; Z — CO2. По 1 баллу за каждое вещество

Cu2(OH)2CO3 2CuO + H2O + CO22 балла

  1. Одним из продуктов разложения М является вода, пары которой конденсируются на внутренних стенках пробирки. Из-за небольшого наклона в сторону отверстия капли конденсата оттекают от зоны реакции, где стекло сильно нагрето. В противном случае капли воды попадут на нагретое стекло и пробирка лопнет. 2 балла
  2. H2 + CuO  Cu + H2O 2 балла
  3. Порошок красного цвета – металлическая медь. Для её превращения в оксидследует провести реакцию с кислородом:

2Cu + O2 = 2CuO 1 балл

Итого 10 баллов.

Содержание ↑

Метод молекулярных орбиталей (МО). Молекулярно-орбитальные диаграммы

Мы уже знаем, что в атомах электроны находятся на разрешенных энергетических состояниях – атомных орбиталях (АО). Аналогичным образом, электроны в молекулах  существуют в разрешенных энергетических состояниях – молекулярных орбиталях (МО).

Молекулярная орбиталь


Молекулярная орбиталь устроена намного сложнее атомной орбитали. Приведем несколько правил, которыми мы будем руководствоваться при построении МО из АО:

  • При составлении МО из набора атомных орбиталей, получается такое же число МО, сколько АО в данном наборе.
  • Средняя энергия МО, полученных из нескольких АО, примерно равна (но может быть больше или меньшее) средней энергии взятых АО.
  • МО подчиняются принципу запрета Паули: на каждой МО не может находиться более двух электронов, которые должны иметь противоположные спины.
  • АО, которые обладают сопоставимой энергией, комбинируются наиболее эффективно.
  • Эффективность, с которой комбинируют две атомные орбитали, пропорциональна их перекрыванию друг с другом.
  • При образовании МО при перекрывании двух неэквивалентных АО связывающая МО содержит больший вклад АО с наиболее низкой энергией, а разрыхляющая орбиталь – вклад АО с более высокой энергией.

Введем понятие порядок связи. В двухатомных молекулах, порядок связи показывает насколько число связывающих электронных пар превышает число разрыхляющих электронных пар:

Теперь на примерах рассмотрим как строить молекулярные орбитали с применением этих правил.

Молекулярно-орбитальные диаграммы элементов первого периода

Диаграмма МО молекулы Н

2

Пример образования молекулы водорода из двух атомов водорода.

В результате взаимодействия 1s-орбиталей каждого из атомов водорода, образуются две молекулярные орбитали.

При взаимодействии, когда электронная плотность концентрируется в пространстве между ядрами, образуется связывающая сигма – орбиталь (σ). Эта комбинация имеет более низкую энергию, чем исходные атомы. При взаимодействии, когда электронная плотность концентрируется за пределами межъядерной области, образуется разрыхляющая сигма – орбиталь*). Эта комбинация имеет более высокую энергию, чем исходные атомы.

диаграммы МО молекул водорода и гелия

Электроны, в соответствии с принципом Паули, занимают сначала орбиталь с самой низкой энергией σ-орбиталь.

Диаграмма МО молекулы Не

2

Теперь рассмотрим пример образования молекулы гелия He2, при сближении двух атомов гелия. В этом случае тоже происходит взаимодействие 1s-орбиталей и образование и σ*-орбиталей, при этом два электрона занимают связывающую орбиталь, а другие два электрона – разрыхляющую.

σ *— орбиталь дестабилизирована в такой же мере, насколько стабилизирована σ –орбиталь, поэтому два электрона, занимающие σ*— орбиталь, дестабилизируют молекулу He2. Действительно, экспериментально доказано, что молекула He2 очень неустойчива.

Как узнать несколько велика прочность молекулы? Чем больше разница в заполненности связывающей и разрыхляющей орбиталей, тем молекула более прочная. Как видно из диаграммы разница в заполненности орбиталей молекулы водорода больше, чем молекулы гелия, поэтому молекула водорода намного более прочная, чем молекула гелия.

Молекулярно-орбитальные диаграммы элементов второго периода

Рассмотрим, как взаимодействуют два одинаковых атома второго периода между собой, имеющие набор из s- и p-орбиталей. Следует ожидать, что 2s-орбитали будут соединяться только друг с другом, а 2p-орбитали – только с а 2p-орбиталями.

Т.к. 2p-орбитали могут взаимодействовать друг с другом двумя различными способами, то образуют σ- и π-молекулярные орбитали. Пользуясь обобщенной диаграммой, показанной ниже, можно установить электронные конфигурации двухатомных молекул второго периода, которые приведены в таблице.

Так, образование молекулы, например, фтора F2 из атомов в системе обозначений теории молекулярных орбиталей может быть записано следующим образом:

2F [1s22s22p5] =F2[(σ1s)2*1s)22s)2*2s)22px)22py)22pz)2*2py)2*2pz)2].

Т.к. перекрывание 1s-облаков незначительно, то участием электронов на этих орбиталях можно пренебречь. Тогда электронная конфигурация молекулы фтора будет такой:

F2[KK(σs)2*s)2x)2y)2z)2*y)2*z)2],

где К — электронная конфигурация К-слоя.

В таблице приведены молекулярные орбитали двухатомных молекул элементов второго периода бора (B2), углерода (C2), азота (N2), кислорода (O2), фтора (F2)

Рассмотрим подробнее пример образования молекулы лития Li2, принимая во внимание, что 1s- и 2s-орбитали слишком сильно отличаются по энергии и поэтому между ними не возникает сильного взаимодействия.

Диаграмма энергетических уровней молекулы Li2 показана ниже, где электроны, находящиеся на 1s-связывающих и 1s-разрыхляющих орбиталях не вносят значительного вклада в связывание. Поэтому за образование химической связи в молекуле Li2 отвечают 2s-электроны.

диаграмма МО молекулы лития

Это действие распространяется и на образование других молекул, в которых заполненные атомные подоболочки (s, p, d) не дают вклада в химическую связь. Таким образом, рассматриваются только валентные электроны.

В итоге, для щелочных металлов, молекулярно-орбитальная диаграмма будет иметь вид подобный рассмотренной нами диаграмме молекулы Li2.

Порядок связи в молекуле Li2 равен 1

Молекулярные орбитали полярных двухатомных молекул

Учение о МО позволяет объяснить и образование двухатомных гетероядерных молекул. Если атомы в молекуле не слишком отличаются друг от друга (например, NO, CO, CN), то можно воспользоваться диаграммой, приведенной выше для элементов 2 периода.

При значительных различиях между атомами, входящих в состав молекулы, диаграмма видоизменяется.

Чем больше электроотрицательность атома, тем более низко на диаграмме обозначают атомные орбитали.

Диаграмма МО молекулы HF

Рассмотрим молекулу HF, в которой атомы сильно отличаются по электроотрицательности.

Энергия 1s-орбитали атома водорода выше энергии самой высокой из валентных орбиталей фтора – 2p — орбитали. Взаимодействие 1s-орбитали атома водорода и 2p — орбитали фтора приводит к образованию связывающей и разрыхляющей орбиталей, как показано на рисунке. Пара электронов, находящиеся на связывающей орбитали молекулы HF, образуют полярную ковалентную связь.

Для связывающей орбитали молекулы HF 2p — орбиталь атома  фтора играет более важную роль, чем 1s — орбиталь атома водорода.

Для разрыхляющей орбитали молекулы HF наоборот: 1s — орбиталь атома водорода играет более важную роль, чем 2p — орбиталь атома  фтора

Диаграмма МО молекулы HF

Т.к. электроотрицательность фтора больше, чем электроотрицательность водорода, то на диаграмме, атомные орбитали фтора расположени ниже, чем атомная орбиталь водорода.

Определим порядок связи, т.е. кратность связи:

Т.о. в молекуле H-F связь одинарная.

Диаграмма МО молекулы СО

Электронная конфигурация внешнего слоя атомов углерода и кислорода:

С+6 1s2 2s2 2p2

O+8 1s2 2s2 2p4

Кислород более электроотрицательный элемент, поэтому его атомная орбиталь на диаграмме расположена ниже орбитали углерода.

Диаграмма МО молекулы СО имеет вид:

СO[KK(σs)2*s)2x)2y)2z)2*y)]

Кратность связи равна:

n=(8-2)/2 = 3

Диаграмма молекулы NO приведена в разделе Задачи к разделу Химическая связь и строение молекул

Метод молекулярных орбиталей (МО) | Задачи 241

 

Задача 241. 
Описать электронное строение молекул СО и СN с позиций методов ВС и МО. Какая из молекул характеризуется большей кратностью связи? 
Решение:
а) Электронное строение молекул CO и CN с позиции метода ВС.
Электронная конфигурация атома углерода 1s22s22p2, атома кислорода 1s22s22p4, атома азота 1s22s22p3. Электронное строение их валентных орбиталей в невозбуждённом состоянии может быть представлено следующими графическими схемами:
а) атом углерода:      

б) атом азота: 

При возбуждении атом углерода переходит в состояние 1s22s12p3, а электронное строение его валентных орбиталей соответствует схеме:

Два неспаренных электрона невозбуждённого атома углерода могут участвовать в образовании двух ковалентных связей по обычному механизму с атомом кислорода, имеющем два неспаренных электрона, с образованием молекулы СО. При образовании молекулы CN образуются две ковалентные связи по обычному механизму за счёт двух неспаренных электрона атома углерода и двух неспаренных электронов атома азота. Электронные схемы CO и CN:

б) Электронное строение молекул CO и CN с позиции метода МО.

Энергетические схемы образования молекул а) CO и б) CN:

Из приведённых схем следует, что кратность связи в молекуле СО равна 3 [(6 — 0)/2 = 3], а в молекуле NO – 2,5[(5 – 0)/2 = 2,5]. Следовательно, молекула СО по отношению к молекуле NO характеризуется большей устойчивостью, чем больше кратность связи, тем короче связь. Молекула СN имеет один неспаренный электрон на связывающей орбитали, следовательно, она парамагнитна. Молекула СО не имеет неспаренных электронов на связывающих и разрыхляющих орбиталях, значит, она диамагнитна


Задача 242. 
Рассмотреть с позиций метода МО возможность образования молекул В2, F2, BF. Какая из этих молекул наиболее устойчива?
Решение:
Энергетические схемы образования молекул а)В2, б) F2, в) BF:

Из составленных энергетических схем В2, F2, BF вытекает, что разность между числом связывающих и разрыхляющих электронов соответственно равны 2, 2 и 6, что отвечает кратности связи соответственно 1, 1 и 3. Следовательно, молекула BF характеризуется большей кратностью связи между атомами, она должна быть более прочной, чем у В2 и F2.


Ошибка разрыва связи

    Приборная доска

    ХИМ IA-Dillman-3 (A-E)

    Перейти к содержанию Приборная доска
    • Авторизоваться

    • Панель приборов

    • Календарь

    • Входящие

    • История

    • Помощь

    Закрывать