Вещества химия – «Чем химический элемент отличается от вещества?» – Яндекс.Знатоки

Обсуждение:Вещество (химия) — Википедия

Дефиниция термина «Химическое вещество»[править код]

Будучи основным понятием химии, в рамках этой науки понятие «Химическое вещество» есть понятие неопределяемое, т. е., не выходя за рамки химии, мы можем дать только пояснения:

Все замечаемое нами мы ясно различаем или как вещество, или как явление. Вещество занимает пространство и имеет вес, а явление есть то, что происходит во времени. Каждое вещество оказывает разнообразные явления, и нет ни одного явления, совершающегося без вещества. Разнообразие веществ и явлений не может ускользнуть от внимания каждого. Открывать законность, т. е. простоту и правильность в этом разнообразии, значит изучать природу. Это изучение составляет предмет естественных наук. Химия как одна из них занимается некоторыми веществами и явлениями.

Менделеев Д. И. Основы химии

Каждый отдельный вид материальной основы тел, обладающий определенными физическими свойствами, как то: вода, железо, медь, сера, известь, уголь, кислород и т.д., в химии называют

веществом.

Глинка Н. Л. Общая химия. — М.: Юрайт, 2014

ИЮПАКовское определение химического вещества:

chemical substance Matter of constant composition best characterized by the entities (molecules, formula units, atoms) it is composed of. Physical properties such as density, refractive index, electric conductivity, melting point etc. characterize the chemical substance.

С точки зрения физики вещество есть материя, состоящая из частиц с ненулевой массой покоя. Среди множества всех веществ химические вещества образуют подмножество, в которое не входят, например, ни плазма, ни звёзное вещество. Отсюда следует, что

Химические вещества состоят из атомов; материя, в которой выделение атомов теряет физический смысл (например, плазма), в качестве химического вещества обычно не рассматривается, хотя является, конечно, веществом в более широком смысле слова.

Зоркий П. М. Критический взгляд на основные понятия химии

В соответствии с европейским регламентом REACH химическому веществу как товарному продукту даётся такое определение

Вещество(substance) — это химические элементы и их соединения, находящиеся в естественном состоянии или полученные в результате любого производственного процесса, включая любую добавку, необходимую для обеспечения стабильности, и любые примеси, обусловленные процессом получения, но исключая любой растворитель, который можно отделить без нарушения стабильности вещества или изменения его состава.

Данное определение используется также в Таможенном союзе (см. Сводка отзывов по проекту технического регламента Таможенного союза «О безопасности химической продукции» (ТР 201_/00_/ТС). —Mayyskiyysergeyy 15:42, 18 декабря 2015 (UTC)

Понимаете, «есть понятие неопределяемое» — это такое углубление в философию, в какие-то тонкости, которые могут быть сколь угодно реальны, но совершенно неважны, когда нам
таки надо
предложить читателю какую-то внятную дефиницию. То, что вы написали, не помешало в английской Википедии дать именно то определение, перевод которого на русский я предложил в откаченной вами правке.
На обычном уровне если мы говорим «химическое вещество», то мы уже что-то имеем в виду, значит у этого чего-то должно быть определение. Мы можем рассказать, что в разных случаях под веществом имеется в виду разное или что определения отличаются (как часто делается в энциклопедиях), но определение должно быть. Общее, а не отдельно для простых, сложных и т. д. веществ. Даже если представить, что вы настроены решительно против всяких определений, то в таком случае так это и надо написать открытым текстом. Читатель ждет определения, а ему по сути, если совместить первые два предложения, предлагается следующее: «Основной объект изучения химии подразделяется на A и B». Это лишь поселяет путаницу в головах. — Джек, который построил дом 20:13, 18 декабря 2015 (UTC)

Понимаете, «есть понятие неопределяемое» — это такое углубление в философию, в какие-то тонкости, которые могут быть сколь угодно реальны, но совершенно неважны…

Понятию «Химическое вещество» невозможно дать строгую дефиницию без привлечения понятий о строении вещества, выходящих за рамки собственно химии.

…нам таки надо предложить читателю какую-то внятную дефиницию.

Сделано. С Вашей, кстати, подачи.

То, что вы написали, не помешало в английской Википедии дать именно то определение, перевод которого на русский я предложил в откаченной вами правке.

В английской Википедии написано совсем не то, что написали Вы: там дано химически грамотное пояснение, а не строгая дефиниция, требующая выхода — по указанной ранее причине — за пределы чистой химии. Кстати, там дана ссылка на авторитетнейший для химиков АИ — IUPAC Gold Book, — где чётко сказано: «

chemical substance Matter of constant composition best characterized by the entities (molecules, formula units, atoms) it is composed of. Physical properties such as density, refractive index, electric conductivity, melting point etc. characterize the chemical substance».

Даже если представить, что вы настроены решительно против всяких определений…

Как я могу быть против определений, тем более в энциклопедии, но я за грамотные дефиниции. Вы привели такое определение химического вещества, под которое не попадают ни бертоллиды, ни смеси. Ошибка, простительная для непрофессионала, от этого не перестаёт быть ошибкой. —Mayyskiyysergeyy 21:11, 18 декабря 2015 (UTC)

Если я правильно вас понял, разница между этими определениями лишь в том, что я перевел «characteristic properties» как «химические свойства», а надо было физические? Других отличий не вижу. С выходом за пределы, без выхода (я, кстати, вообще не уверен, что это такой редкий случай, когда определение нельзя дать без выхода за пределы области знаний) — определение теперь есть, и это главное. Просто часто в Википедии некоторые разрождаются на богатую философию на тему того, как тому или иному понятию нельзя дать определение (информации какой-нибудь), а потому якобы надо плясать вокруг да около, и приходится убеждать людей, что нет невозможных случаев, а есть неумение дать аккуратное определение (это вообще целое искусство). Хорошо, что это не тот случай.
Что касается определения в англовики, то, если уж на то пошло со смесями, — определение «It cannot be separated into components by physical separation methods, i.e., without breaking chemical bonds» разве включает смеси, которые могут быть разделены на компоненты без разрушения химических связей? И к «constant chemical composition» у вас, стало быть, претензий нет, это включает смеси? (Я, кстати, думаю, что вполне может включать, но я не химик, а интересующийся, так что вам лучше знать.) Ну и такая мелочь, что там «chemical composition» ссылается на страницу en:Chemical compound, а не все химические вещества являются соединениями (на что я давным-давно указал в обсуждении, но так никто и не ответил). — Джек, который построил дом 21:57, 18 декабря 2015 (UTC)
P.S. Текущее определение химического вещества — «вещество, состоящее из атомов» — относится скорее к химическому веществу как единому целому, то есть к конкретным веществам оно относится лишь по касательной. Поэтому определение из англовики мне все-таки ближе. — Джек, который построил дом 22:10, 18 декабря 2015 (UTC)

Должен сознаться, что к нашей дискуссии я отнёсся несколько небрежно, писал на скорую руку, а профессионализм сыграл со мной злую шутку. Приношу Вам свои извинения и попытаюсь расставить точки над ё. Дело в том, что на сегодняшний день русскому термину Химическое вещество соответствуют немецкий термин de:Chemischer Stoff и английское словосочетание (привожу множественное число)

Chemical substances and mixtures. Английский термин en:Chemical substance соответствует немецкому термину de:Reinstoff, а на русский язык переводится как Индивидуальное вещество (в химии), т. е. в данном случае требуется смысловой, а не буквальный перевод с английского. В этом первопричина имевших место быть недоразумений.

…не все химические вещества являются соединениями…

Совершенно верно. Если кто-то считает иначе, то его следует поправить. Успехов! —Mayyskiyysergeyy 22:52, 18 декабря 2015 (UTC)

ru.wikipedia.org

«Химические соединения» — Яндекс.Знатоки

Напишу негласные правила:

1) Во всех молекулах должен соблюдаться принцип электронейтральности.

Что это значит? — АЛгебраическая сумма зарядов должна равняться нулю в молекуле.

2) Степень окисления атомов вне химического соединения равна нулю. Это правило справедливо как для простых веществ, образованных из отдельных свободных атомов, так и для таких, которые состоят из двух, либо многоатомных молекул одного элемента.

  • Например, Al(s) и Cl2 имеют степень окисления 0, поскольку оба находятся в химически несвязанном элементарном состоянии.

3) Начинать рекомендуется с атомов с постоянной или «распространенной» степенью окисления.

Такими атомами являтся:

Однако будь-те внимательны, у атомов водорода и кислорода есть исключения: для H — металгидриды, там водород H- (-1). И различные соединения килосрода: пероксиды, надперкосиды и другие:

4) Часто у металлов могут быть две распространенные ст. ок. Например, заряд ионов такого металла как железо (Fe) равняется +2, либо +3.

Так , например FeCl2 и FeCl3 . В данном случаи начинаем смотреть на атом(ион) хлора. В данных случаях он будет в ст. ок. (-1), хотя сам атом обладает возможность формировать вещества со ст. ок. (0, +7, +6, +5, +4, +3, +1 ).

Однако согласно правилу (№1) невозможно будет образовать такую молекулу, учитывая что ст. ок. железа в данных веществах будет либо +3 либо +2. Поэтому, выбираем ст. ок. атома хлора (-1).

Таким образом: Fe (+2) Cl2 (-) и Fe (+3) Cl3 (-).

В более сложных соединениях, включается математика и решение уравнений с одним неизвестным.

К примеру

Na2SO4.

Ст. ок. атомов Натрия и Кислорода известны: Na (+1), O(-2).

Учитывая индексы атомов, составляем уравнение:

(+1)*2 + x + (-2)*4 = 0

x = 6

yandex.ru

Химическая формула — Википедия

Материал из Википедии — свободной энциклопедии

Хими́ческая фо́рмула — условное обозначение химического состава и структуры соединений с помощью символов химических элементов, числовых и вспомогательных знаков (скобок, тире и т. п.). Химические формулы являются составной частью языка химии, на их основе составляются схемы и уравнения химических реакций, а также химическая классификация и номенклатура веществ

[1]. Одним из первых начал использовать их русский химик А. А. Иовский.

Химическая формула может обозначать или отражать[1]:

Например, формула HNO3 обозначает:

  • 1 молекулу азотной кислоты или 1 моль азотной кислоты;
  • качественный состав: молекула азотной кислоты состоит из водорода, азота и кислорода;
  • количественный состав: в состав молекулы азотной кислоты входят один атом водорода, один атом азота и три атома кислорода.

В настоящее время различают следующие виды химических формул:

  • Простейшая формула. Может быть получена опытным путём через определение соотношения химических элементов в веществе с применением значений атомной массы элементов. Так, простейшая формула воды будет H
    2
    O, а простейшая формула бензола CH (в отличие от C6H6 — истинной, см. далее). Атомы в формулах обозначаются знаками химических элементов, а относительное их количество — числами в формате нижних индексов.[2]
  • Истинная формула. Молекулярная формула[3] — может быть получена, если известна молекулярная масса[3] вещества. Истинная формула воды Н2О, что совпадает с простейшей. Истинная формула бензола С6Н6, что отличается от простейшей. Истинные формулы также называют брутто-формулами. Они отражают состав, но не структуру молекул вещества. Истинная формула показывает точное количество атомов каждого элемента в одной молекуле. Этому количеству отвечает [нижний] индекс — маленькая цифра после символа соответствующего элемента. Если индекс равен 1, то есть в молекуле присутствует только один атом данного элемента, то такой индекс не указывают.
  • Рациональная формула. В рациональных формулах выделяются группы атомов, характерные для классов химических соединений. Например, для спиртов выделяется группа -ОН. При записи рациональной формулы такие группы атомов заключаются в круглые скобки (ОН). Количество повторяющихся групп обозначаются числами в формате нижних индексов, которые ставятся сразу за закрывающей скобкой. Квадратные скобки применяются для отражения структуры комплексных соединений. Например, К4[Co(CN)6][4] — гексацианокобальтат калия. Рациональные формулы часто встречаются в полуразвернутом виде, когда часть одинаковых атомов показывается по отдельности для лучшего отражения строения молекулы вещества.
  • Формула  Маркуша представляют собой формулу, в которой  выделяется активное ядро и некоторое количество вариантов заместителей, объединяемых в группу альтернативных структур. Она является удобным способом обозначения химических структур в обобщенном виде. Формула относится к описанию целого класса веществ. Использование «широких» формул Маркуша в химических патентах приводит к массе проблем и дискуссий.
  • Эмпирическая формула. Разные авторы могут использовать этот термин для обозначения простейшей[5], истинной или рациональной[6] формулы.
  • Структурная формула. В графическом виде показывает взаимное расположение атомов в молекуле. Химические связи между атомами обозначаются линиями (чёрточками). Различают двумерные (2D) и трёхмерные (3D) формулы. Двумерные представляют собой отражение структуры вещества на плоскости (также скелетная формула — попытки приблизить 3D-структуру на 2D-плоскости). Трёхмерные [пространственные модели] позволяют наиболее близко к теоретическим моделям строения вещества представлять его состав, и, зачастую (но не всегда), более полное (истинное) взаимное расположение атомов, угол связи и расстояния между атомами.

Например, для этанола:

  • Простейшая формула: С2Н6О
  • Истинная, эмпирическая, или брутто-формула: С2Н6О
  • Рациональная формула: С2Н5ОН
  • Рациональная формула в полуразвернутом виде: СН3СН2ОН
  • Структурная формула (2D):
      Н Н
      │ │
    Н—С—С—О—Н
      │ │
      Н Н
  • Структурная формула (3D):
Вариант 1:
Ethanol-3D-balls.png
Вариант 2:
Ethanol-3D-vdW.png

Простейшей формуле С2Н6О в равной мере может соответствовать и диметиловый эфир (рациональная формула; структурная изомерия): СН3—О—СН3.

Существуют и другие способы записи химических формул. Новые способы появились в конце 1980-х с развитием персональной компьютерной техники (SMILES, WLN, ROSDAL, SLN и др.). В персональных компьютерах для работы с химическими формулами также используются специальные программные средства, называемые молекулярными редакторами.

  1. 1 2 Основные понятия химии
  2. ↑ Различают эмпирическую и истинную формулы. Эмпирическая формула выражает простейшую формулу вещества (химического соединения), которую устанавливают путём элементного анализа. Так, анализ показывает, что простейшая, или эмпирическая, формула некоторого соединения соответствует CH. Истинная формула показывает, какое количество таких простейших групп CH содержится в молекуле. Представим истинную формулу в виде (CH)x, тогда при значении x = 2 имеем ацетилен C2H2, при x= 6 — бензол C6H6.
  3. 1 2 Строго говоря, нельзя употреблять термины «молекулярная формула» и «молекулярная масса» соли, поскольку в солях нет молекул, а имеются только упорядоченные решётки, состоящие из ионов. Ни один из ионов натрия [катион] в структуре хлорида натрия не «принадлежит» какому-либо конкретному хлорид-иону [аниону]. Правильно говорить о химической формуле соли & соответствующей ей формульной массе. Поскольку химическая формула (истинная) хлорида натрия — NaCl, формульная масса хлорида натрия определяется как сумма атомных масс одного атома натрия и одного атома хлора: 1 атом натрия: 22,990 а. е. м.
    1 атом хлора: 35,453 а. е. м.
    ———————————
    Итого: 58,443 а. е. м.
    Принято называть эту величину «молекулярной массой» хлорида натрия, и не возникает никаких недоразумений, если ясно отдавать себе отчёт, какую структуру имеет соль. Моль хлорида натрия имеет массу 58,443 г. В нём содержится 6,022·1023 ионов натрия и 6,022·1023 хлорид-ионов. Хотя они и не объединены попарно в молекулы, соотношение между числом тех и других ионов точно 1 : 1.
  4. ↑ Формулы соединений ионного типа [и/или в предположении что они ионны — полярные ковалентные (промежуточные ионно-ковалентные)] выражают лишь простейшее соотношение между ионами (катионами и анионами). Так, кристалл поваренной соли NaCl состоит из ионов Na+ и Cl, находящихся в соотношении 1:1, что обеспечивает электронейтральность соединения в целом. Рассуждая аналогично, отмечаем, что кристаллы CaF2 состоят из Ca2+ и F в соотношении 1:2. Таким же образом К4[Co(CN)6] состоит из катионов К+ и [комплексных координационных] анионов Co(CN)64− в соотношении 4:1 (хотя данное соединение имеет более сложное координационно-комплексное кристаллическое строение). Аналогичным образом пирит FeS2 содержит катионы Fe2+ и анионы S22− в соотношении 1:1 (сульфид-анионов S2− оно не имеет; атомы серы в персульфид-анионе связаны относительно прочной ковалентной [неполярной ковалентной] связью).
    В соединениях подобного типа нельзя обнаружить отдельные молекулы NaCl и CaF2, и поэтому эти формулы указывают лишь на соотношение катионов и анионов, из которых состоят эти вещества (хим. соединения).
  5. М. А. Федоровская. Формула химическая // Химическая энциклопедия в 5 т.. — М.: Большая Российская Энциклопедия, 1998. — Т. 5. — С. 123. — 783 с.
  6. ↑ Справочник химика. — Л.: Химия, 1971. — Т. II. — С. 397. — 1168 с. — 20 000 экз.

ru.wikipedia.org

Опасное химическое вещество — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 июля 2016; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 июля 2016; проверки требуют 4 правки.

Опасное химическое вещество — токсичные химические вещества, применяемые в различных сферах (военном деле, промышленности, в сельском хозяйстве и так далее), которые при применении (разливе, выбросе и тому подобное) загрязняют окружающую среду и могут привести к гибели или поражению людей, животных и растений.

Сокращённо — ОХВ.

Опасные химические вещества принято разделять на:

Классификация групп опасных химических веществ.

В соответствии с ГОСТ 12.1.007-76 (99) «Вредные вещества. Классификация и общие требования безопасности», по степени воздействия на организм человека ОХВ разделяются на 4 класса опасности:

НаименованиеНорма для класса опасности
показателя1-го2-го3-го4-го
Предельно допустимая концентрация (ПДК) вредных веществ в воздухе рабочей зоны, мг/м³Менее 0,10,1-1,01,1-10,0Более 10,0
Средняя смертельная доза при введении в желудок, мг/кгМенее 1515-150151-5000Более 5000
Средняя смертельная доза при нанесении на кожу, мг/кгМенее 100100-500501-2500Более 2500
Средняя смертельная концентрация в воздухе, мг/м³Менее 500500-50005001-50000Более 50000
Коэффициент возможности ингаляционного отравления (КВИО)Более 300300-3029-3Менее 3
Зона острого действияМенее 6,06,0-18,018,1-54,0Более 54,0
Зона хронического действияБолее 10,010,0-5,04,9-2,5Менее 2,5
  • 1 класс, чрезвычайно опасные;
  • 2 класс, высокоопасные;
  • 3 класс, умеренноопасные;
  • 4 класс, малоопасные.

В соответствии с федеральным законом от 20.06.1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов» ОХВ классифицируются следующим образом:

ПоказательВысокотоксичные веществаТоксичные веществаВещества, представляющие опасность для природной среды
Средняя смертельная доза при введении в желудок, мг/кгне более 1515-200
Средняя смертельная доза при нанесении на кожу, мг/кгне более 5050-400
Средняя смертельная концентрация в воздухе, мг/м³не более 0,50,5-2
Средняя смертельная доза при ингаляционном воздействии на рыбу в течение 96 часов, мг/лне более 10
Средняя концентрация яда, вызывающая определённый эффект при воздействии на дафнии в течение 48 часов, мг/лне более 10
Средняя ингибирующая концентрация при воздействии на водоросли в течение 72 часов, мг/лне более 10

В настоящее время разрабатывается Технический регламент «О безопасности химической продукции», который будет иметь собственную классификацию химической продукции, обладающей острой токсичностью.

  1. ГОСТ Р 22.0.05-94. Техногенные ЧС. Термины и определения.
  2. ГОСТ Р 22.9.05-95. Безопасность в ЧС. Комплексы средств индивидуальной защиты спасателей. Общие технические требования.
  3. ГОСТ 12.1.005-88. ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны. (ПДК для 1307 наименований веществ).
  4. ГОСТ 12.1.007-76 (99) Вредные вещества. Классификация и общие требования безопасности.
  5. Временный перечень СДЯВ.– М.: ШГО СССР, 1987.
  6. Директива НШ ГО СССР № 2 от 20.12.90 г. Перечень опасных химических продуктов, при нахождении которых на производстве либо на хранении выше установленных объёмов необходима разработка дополнительных мероприятий по защите населения на случай аварии с этими продуктами.
  7. Федеральный закон от 20.06.1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов».

ru.wikipedia.org

Количество вещества — Википедия

Материал из Википедии — свободной энциклопедии

Количество вещества — физическая величина, характеризующая количество однотипных структурных единиц, содержащихся в веществе. Под структурными единицами понимаются любые частицы, из которых состоит вещество (атомы, молекулы, ионы, электроны или любые другие частицы)[1]. Единица измерения количества вещества в Международной системе единиц (СИ) и в системе СГС — моль[2]. Без конкретизации объекта рассмотрения термин «количество вещества» не используют[K 1].

Эта физическая величина используется для измерения макроскопических количеств веществ в тех случаях, когда для численного описания изучаемых процессов необходимо принимать во внимание микроскопическое строение вещества, например, в химии, при изучении процессов электролиза, или в термодинамике, при описании уравнений состояния идеального газа.

При описании химических реакций, количество вещества является более удобной величиной, чем масса, так как молекулы взаимодействуют независимо от их массы в количествах, кратных целым числам.

Например, для реакции горения водорода (2H2 + O2 → 2H2O) требуется в два раза большее количество вещества водорода, чем кислорода. При этом масса водорода, участвующего в реакции, примерно в 8 раз меньше массы кислорода (так как атомная масса водорода примерно в 16 раз меньше атомной массы кислорода). Таким образом, использование количества вещества облегчает интерпретацию уравнений реакций: соотношение между количествами реагирующих веществ непосредственно отражается коэффициентами в уравнениях.

Так как использовать в расчётах непосредственно количество молекул неудобно, потому что это число в реальных опытах слишком велико, вместо измерения количества молекул в единицах «штука», их измеряют в молях. Фактическое количество единиц «штука» в 1 моле вещества называется числом Авогадро (NA = 6,02214076⋅1023 «штука»/моль[4]).

Количество вещества обозначается латинской n{\displaystyle n} (эн) и не рекомендуется обозначать греческой буквой ν{\displaystyle \nu } (ню), поскольку этой буквой в химической термодинамике обозначается стехиометрический коэффициент вещества в реакции, а он, по определению, положителен для продуктов реакции и отрицателен для реагентов[5]. Однако в школьном курсе широко используется именно греческая буква ν{\displaystyle \nu } (ню).

Для вычисления количества вещества на основании его массы пользуются понятием молярная масса: n=m/M{\displaystyle n=m/M}, где m — масса вещества, M — молярная масса вещества. Молярная масса — это масса, которая приходится на один моль данного вещества. Молярная масса вещества может быть получена произведением молекулярной массы этого вещества на количество молекул в 1 моле — на число Авогадро. Молярная масса (измеренная в г/моль) численно совпадает с относительной молекулярной массой.

По закону Авогадро, количество газообразного вещества можно также определить на основании его объёма: n{\displaystyle n} = V / Vm, где V — объём газа при нормальных условиях, а Vm — молярный объём газа при тех же условиях, равный 22,4 л/моль.

Таким образом, справедлива формула, объединяющая основные расчёты с количеством вещества:

n=mM=NNA=VVm{\displaystyle n={\frac {m}{M}}={\frac {N}{N_{\mathrm {A} }}}={\frac {V}{V_{\mathrm {m} }}}}
  1. ↑ Можно говорить о количестве вещества для молекул (формульных единиц) водорода h3{\displaystyle {\ce {h3}}}, можно говорить о числе молей атомов водорода H{\displaystyle {\ce {H}}}, но словосочетание «один моль водорода» без конкретизации объекта обсуждения лишено смысла[3].
  1. ↑ Количество вещества (неопр.). Большой энциклопедический политехнический словарь (2004). Дата обращения 31 января 2014.
  2. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 85. — 240 с. — ISBN 5-7050-0118-5.
  3. Пресс И. А., Основы общей химии, 2017, с. 119.
  4. ↑ Avogadro constant (англ.). Physical Measurement Laboratory. National Institute of Standards and Technology. Дата обращения 7 февраля 2017.
  5. ↑ 5B+4,5h3 → B5H9, Δh398∘=+62,8 kJ{\displaystyle {\mathsf {5B+4{,}5H_{2}\ {\xrightarrow {}}\ B_{5}H_{9}}},~\Delta H_{298}^{\circ }=+62{,}8~\mathrm {kJ} }
    Когда теплота реакции записывается так, как это сделано в данном уравнении, подразумевается, что она выражена в килоджоулях на стехиометрическую единицу («моль») реакции по записанному уравнению. В рассматриваемом случае теплота реакции равна 62,8 кДж на моль (+62,8 кДж · моль−1) B5H9 (газообразного), но составляет только 12,56 кДж на моль израсходованного бора (твёрдого кристаллического) или 62,8 кДж на каждые 4,5 моля газообразного водорода. Теплоты реакций всегда табулируются в расчете на моль образующегося соединения.

ru.wikipedia.org

Вода — Википедия

Вода
Water molecule dimensions.svg
({{{картинка}}})
Water3d3.png({{{картинка3D}}})
Вода в бассейне({{{изображение}}})
Систематическое
наименование
Оксид водорода
Вода[1]
Традиционные названия вода
Хим. формула H2O
Состояние жидкость
Молярная масса 18,01528 г/моль
Плотность 0,9982 г/см3[2]
Твёрдость 1,5[4]
Динамическая вязкость 0,00101 Па·с
Кинематическая вязкость 0,01012 см²/с
(при 20 °C)
Скорость звука в веществе (дистиллированная
вода) 1348 м/с
Температура
 • плавления 273,1 K (0 ° C)
 • кипения 373,1 K (99,974 ° C) °C
 • разложения 2200 °C
Тройная точка 273,2 K (0,01 ° C), 611,72 Па
Критическая точка 647,1 K (374 ° C), 22,064 МПа
Мол. теплоёмк. 75,37 Дж/(моль·К)
Теплопроводность 0,56 Вт/(м·K)
Энтальпия
 • образования -285,83 кДж/моль
Удельная теплота испарения 2256,2 кДж/кг[3]
Удельная теплота плавления 332,4 кДж/кг[3]
Показатель преломления 1,3945, 1,33432, 1,32612, 1,39336, 1,33298 и 1,32524
Рег. номер CAS 7732-18-5
PubChem 962
Рег. номер EINECS 231-791-2
SMILES
InChI
RTECS ZC0110000
ChEBI 15377
ChemSpider 937
NFPA 704 NFPA 704 four-colored diamond
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Commons-logo.svg Медиафайлы на Викискладе
Commons-logo.svg 71 % поверхности Земли покрывает вода

Вода́ (оксид водорода) — бинарное неорганическое соединение с химической формулой H2O: молекула воды состоит из двух атомов водорода и одного — кислорода, которые соединены между собой ковалентной связью. При нормальных условиях представляет собой прозрачную жидкость, не имеющую цвета (при малой толщине слоя), запаха и вкуса. В твёрдом состоянии называется льдом (кристаллы льда могут образовывать снег или иней), а в газообразном — водяным паром. Вода также может существовать в виде жидких кристаллов (на гидрофильных поверхностях)[5][6].

Вода является хорошим сильнополярным растворителем. В природных условиях всегда содержит растворённые вещества (соли, газы).

Исключительно важна роль воды в глобальном кругообороте вещества и энергии[7], возникновении и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды. Вода является важнейшим веществом для всех живых существ на Земле[8].

Всего на Земле около 1400 млн кубических километров воды. Вода покрывает 71 % поверхности земного шара (океаны, моря, озёра, реки, льды — 361,13 млн квадратных километров[9][10]). Бо́льшая часть земной воды (97,54 %) принадлежит Мировому океану — это солёная вода, непригодная для сельского хозяйства и питья. Пресная же вода находится в основном в ледниках (1,81 %) и подземных водах (около 0,63 %), и лишь небольшая часть (0,009 %) в реках и озерах. Материковые солёные воды составляют 0,007 %, в атмосфере содержится 0,001 % от всей воды нашей планеты[11][12].

Происходит от др.-русск. вода, далее от праславянского *voda[13] (ср. ст.-слав. вода, болг. вода́, сербохорв. во̀да, словен. vóda, чеш. voda, слвц. voda, польск. woda, в.-луж., н.-луж. woda), затем от праиндоевропейского *wed-, родственно лит. vanduõ, жем. unduo, д.-в.-н. waʒʒar «вода», гот. watō, англ. water, греч. ὕδωρ, ὕδατος, арм. get «река», фриг. βέδυ, др.-инд. udakám, uda-, udán— «вода», unátti «бить ключом», «орошать», ṓdman— «поток», алб. uj «вода»[14][15]. Также родственно русским словам ведро, выдра. В рамках необщепринятой гипотезы о существовании некогда праностратического языка слово может сравниваться с гипотетическим прауральским *wete (ср., например, фин. vesi, эст. vesi, коми va, венг. víz), а также с предполагаемыми праалтайскими, прадравидийским и пр. словами, и реконструироваться как *wetV для праязыка[16].

С формальной точки зрения вода имеет несколько различных корректных химических названий:

  • Оксид водорода: бинарное соединение водорода с атомом кислорода в степени окисления −2, встречается также устаревшее название окись водорода.
  • Гидроксид водорода: соединение гидроксильной группы OH и катиона (H+)
  • Гидроксильная кислота: воду можно рассматривать как соединение катиона H+, который может быть замещён металлом, и «гидроксильного остатка» OH
  • Монооксид дигидрогена
  • Дигидромонооксид

Физические свойства[править | править код]

Вода при нормальных условиях находится в жидком состоянии, тогда как аналогичные водородные соединения других элементов являются газами (H2S, CH4, HF). Атомы водорода присоединены к атому кислорода, образуя угол 104,45° (104°27′). Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По этой причине молекула воды обладает большим дипольным моментом (p = 1,84 Д, уступает только синильной кислоте и диметилсульфоксиду). Каждая молекула воды образует до четырёх водородных связей — две из них образует атом кислорода и две — атомы водорода[17]. Количество водородных связей и их разветвлённая структура определяют высокую температуру кипения воды и её удельную теплоту парообразования[17]. Если бы не было водородных связей, вода, на основании места кислорода в таблице Менделеева и температур кипения гидридов аналогичных кислороду элементов (серы, селена, теллура), кипела бы при −80 °С, а замерзала при −100 °С[18].

При переходе в твёрдое состояние молекулы воды упорядочиваются, при этом объёмы пустот между молекулами увеличиваются, и общая плотность воды падает, что и объясняет меньшую плотность (больший объём) воды в фазе льда. При испарении, напротив, все водородные связи рвутся. Разрыв связей требует много энергии, отчего у воды самая большая удельная теплоёмкость среди прочих жидкостей и твёрдых веществ. Для того чтобы нагреть один литр воды на один градус, требуется затратить 4,1868 кДж энергии. Благодаря этому свойству вода нередко используется как теплоноситель. Помимо большой удельной теплоёмкости, вода также имеет большие значения удельной теплоты плавления (333,55 кДж/кг при 0 °C) и парообразования (2250 кДж/кг).

Температура, °СУдельная теплоёмкость воды, кДж/(кг*К)
-60 (лёд)1,64
-20 (лёд)2,01
-10 (лёд)2,22
0 (лёд)2,11
0 (чистая вода)4,218
104,192
204,182
404,178
604,184
804,196
1004,216

Физические свойства разных изотопных модификаций воды при различных температурах[19]:

Модификация водыМаксимальная плотность при температуре, °СТройная точка при температуре, °С
Н2O3,98340,01
D2O11,23,82
T2O13,44,49
Н218O4,30,31

Вода обладает также высоким поверхностным натяжением, уступая в этом только ртути[20][21][22]. Относительно высокая вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

Вода является хорошим растворителем полярных веществ. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода, а отрицательно заряженные — атомы водорода. Поскольку молекула воды мала по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.

Это свойство воды используется живыми существами. В живой клетке и в межклеточном пространстве вступают во взаимодействие растворы различных веществ в воде[23]. Вода необходима для жизни всех без исключения одноклеточных и многоклеточных живых существ на Земле.

Вода обладает отрицательным электрическим потенциалом поверхности.

Commons-logo.svg Капля, ударяющаяся о поверхность воды

Чистая вода — хороший изолятор. При нормальных условиях вода слабо диссоциирована и концентрация протонов (точнее, ионов гидроксония H3O+) и гидроксильных ионов OH составляет 10-7 моль/л. Но поскольку вода — хороший растворитель, в ней практически всегда растворены те или иные соли, то есть присутствуют другие положительные и отрицательные ионы. Благодаря этому вода проводит электричество. По электропроводности воды можно определить её чистоту.

Вода имеет показатель преломления n=1,33 в оптическом диапазоне. Однако она сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60 % парникового эффекта. Благодаря большому дипольному моменту молекул, вода также поглощает микроволновое излучение, на чём основан принцип действия микроволновой печи.

Агрегатные состояния[править | править код]
Commons-logo.svg

По состоянию различают:

Commons-logo.svg

При нормальном атмосферном давлении (760 мм рт. ст., 101 325 Па) вода переходит в твёрдое состояние при температуре в 0 °C и кипит (превращается в водяной пар) при температуре 100 °C (значения 0 °C и 100 °C были выбраны как соответствующие температурам таяния льда и кипения воды при создании температурной шкалы «по Цельсию»). При снижении давления температура таяния (плавления) льда медленно растёт, а температура кипения воды — падает. При давлении в 611,73 Па (около 0,006 атм) температура кипения и плавления совпадает и становится равной 0,01 °C. Такие давление и температура называются тройной точкой воды. При более низком давлении вода не может находиться в жидком состоянии, и лёд превращается непосредственно в пар. Температура возгонки (сублимации) льда падает со снижением давления. При высоком давлении существуют модификации льда с температурами плавления выше комнатной.

С ростом давления температура кипения воды растёт[24]:

Давление, атм.Температура кипения (Ткип), °C
0,987 (105 Па — нормальные условия)99,63
1100
2120
6158
218,5374,1

При росте давления плотность насыщенного водяного пара в точке кипения тоже растёт, а жидкой воды — падает. При температуре 374 °C (647 K) и давлении 22,064 МПа (218 атм) вода проходит критическую точку. В этой точке плотность и другие свойства жидкой и газообразной воды совпадают. При более высоком давлении и/или температуре исчезает разница между жидкой водой и водяным паром. Такое агрегатное состояние называют «сверхкритическая жидкость».

Вода может находиться в метастабильных состояниях — пересыщенный пар, перегретая жидкость, переохлаждённая жидкость. Эти состояния могут существовать длительное время, однако они неустойчивы и при соприкосновении с более устойчивой фазой происходит переход. Например, можно получить переохлаждённую жидкость, охладив чистую воду в чистом сосуде ниже 0 °C, однако при появлении центра кристаллизации жидкая вода быстро превращается в лёд.

Оптические свойства[править | править код]

Они оцениваются по прозрачности воды, которая, в свою очередь, зависит от длины волны излучения, проходящего через воду. Вследствие поглощения оранжевых и красных компонентов света вода приобретает голубоватую окраску. Вода прозрачна только для видимого света и сильно поглощает инфракрасное излучение, поэтому на инфракрасных фотографиях водная поверхность всегда получается чёрной. Ультрафиолетовые лучи легко проходят через воду, поэтому растительные организмы способны развиваться в толще воды и на дне водоёмов, инфракрасные лучи проникают только в поверхностный слой. Вода отражает 5 % солнечных лучей, в то время как снег — около 85 %. Под лёд океана проникает только 2 % солнечного света.

Изотопные модификации[править | править код]

И кислород, и водород имеют природные и искусственные изотопы. В зависимости от типа изотопов водорода, входящих в молекулу, выделяют следующие виды воды:

Последние три вида возможны, так как молекула воды содержит два атома водорода. Протий — самый лёгкий изотоп водорода, дейтерий имеет атомную массу 2,0141017778 а. е. м., тритий — самый тяжёлый, атомная масса 3,0160492777 а. е. м. В воде из-под крана тяжелокислородной воды (H2O17 и H2O18) содержится больше, чем воды D2O16: их содержание, соответственно, 1,8 кг и 0,15 кг на тонну[18].

Хотя тяжёлая вода часто считается мёртвой водой, так как живые организмы в ней жить не могут, некоторые микроорганизмы могут быть приучены к существованию в ней[18].

По стабильным изотопам кислорода 16O, 17O и 18O существуют три разновидности молекул воды. Таким образом, по изотопному составу существуют 18 различных молекул воды. В действительности любая вода содержит все разновидности молекул.

Химические свойства[править | править код]

Вода является наиболее распространённым растворителем на планете Земля, во многом определяющим характер земной химии, как науки. Большая часть химии, при её зарождении как науки, начиналась именно как химия водных растворов веществ.

Её иногда рассматривают как амфолит — и кислоту и основание одновременно (катион H+анион OH). В отсутствие посторонних веществ в воде одинакова концентрация гидроксид-ионов и ионов водорода (или ионов гидроксония), pKa ≈ 16.

Вода — химически активное вещество. Сильно полярные молекулы воды сольватируют ионы и молекулы, образуют гидраты и кристаллогидраты. Сольволиз, и в частности гидролиз, происходит в живой и неживой природе, и широко используется в химической промышленности.

Воду можно получать:

  • в ходе реакций —
2h3O2→2h3O+O2↑{\displaystyle {\mathsf {2H_{2}O_{2}\rightarrow 2H_{2}O+O_{2}\uparrow }}}
NaHCO3+Ch4COOH→Ch4COONa+h3O+CO2↑{\displaystyle {\mathsf {NaHCO_{3}+CH_{3}COOH\rightarrow CH_{3}COONa+H_{2}O+CO_{2}\uparrow }}}
2Ch4COOH+CaCO3→Ca(Ch4COO)2+h3O+CO2↑{\displaystyle {\mathsf {2CH_{3}COOH+CaCO_{3}\rightarrow Ca(CH_{3}COO)_{2}+H_{2}O+CO_{2}\uparrow }}}
h3SO4+2KOH→K2SO4+2h3O{\displaystyle {\mathsf {H_{2}SO_{4}+2KOH\rightarrow K_{2}SO_{4}+2H_{2}O}}}
HNO3+Nh5OH→Nh5NO3+h3O{\displaystyle {\mathsf {HNO_{3}+NH_{4}OH\rightarrow NH_{4}NO_{3}+H_{2}O}}}
2Ch4COOH+Ba(OH)2→Ba(Ch4COO)2+2h3O{\displaystyle {\mathsf {2CH_{3}COOH+Ba(OH)_{2}\rightarrow Ba(CH_{3}COO)_{2}+2H_{2}O}}}
  • Восстановлением водородом оксидов металлов —
CuO+h3→Cu+h3O{\displaystyle {\mathsf {CuO+H_{2}\rightarrow Cu+H_{2}O}}}

Под воздействием очень высоких температур или электрического тока (при электролизе)[25], а также под воздействием ионизирующего излучения, как установил в 1902 году[26]Фридрих Гизель[en] при исследовании водного раствора бромида радия[27], вода разлагается на молекулярный кислород и молекулярный водород:

2h3O→2h3↑+O2↑{\displaystyle {\mathsf {2H_{2}O\rightarrow 2H_{2}\uparrow +O_{2}\uparrow }}}

Вода реагирует при комнатной температуре:

2h3O+2Na→2NaOH+h3↑{\displaystyle {\mathsf {2H_{2}O+2Na\rightarrow 2NaOH+H_{2}\uparrow }}}
  • со фтором и межгалоидными соединениями
2h3O+2F2→4HF+O2{\displaystyle {\mathsf {2H_{2}O+2F_{2}\rightarrow 4HF+O_{2}}}}
h3O+F2→HF+HOF{\displaystyle {\mathsf {H_{2}O+F_{2}\rightarrow HF+HOF}}} (при низких температурах)
3h3O+2IF5→5HF+HIO3{\displaystyle {\mathsf {3H_{2}O+2IF_{5}\rightarrow 5HF+HIO_{3}}}}
9h3O+5BrF3→15HF+Br2+3HBrO3{\displaystyle {\mathsf {9H_{2}O+5BrF_{3}\rightarrow 15HF+Br_{2}+3HBrO_{3}}}}
  • с солями, образованными слабой кислотой и слабым основанием, вызывая их полный гидролиз
Al2S3+6h3O→2Al(OH)3↓+3h3S↑{\displaystyle {\mathsf {Al_{2}S_{3}+6H_{2}O\rightarrow 2Al(OH)_{3}\downarrow +3H_{2}S\uparrow }}}
  • с ангидридами и галогенангидридами карбоновых и неорганических кислот
  • с активными металлорганическими соединениями (диэтилцинк, реактивы Гриньяра, метилнатрий и т. д.)
  • с карбидами, нитридами, фосфидами, силицидами, гидридами активных металлов (кальция, натрия, лития и др.)
  • со многими солями, образуя гидраты
  • с боранами, силанами
  • с кетенами, недоокисью углерода
  • с фторидами благородных газов

Вода реагирует при нагревании:

4h3O+3Fe→Fe3O4+4h3{\displaystyle {\mathsf {4H_{2}O+3Fe\rightarrow Fe_{3}O_{4}+4H_{2}}}}
h3O+C⇄ CO+h3{\displaystyle {\mathsf {H_{2}O+C\rightleftarrows \ CO+H_{2}}}}
  • с некоторыми алкилгалогенидами

Вода реагирует в присутствии катализатора:

  • с амидами, эфирами карбоновых кислот
  • с ацетиленом и другими алкинами
  • с алкенами
  • с нитрилами
Волновая функция основного состояния воды[править | править код]

В валентном приближении электронная конфигурация молекулы h3O{\displaystyle {\ce {h3O}}} в основном состоянии: (1a1)1(1b2)2(1b1)2(2b2)0(3a1)0.{\displaystyle (1a_{1})^{1}(1b_{2})^{2}(1b_{1})^{2}(2b_{2})^{0}(3a_{1})^{0}.} Молекула имеет замкнутую оболочку, неспаренных электронов нет. Заняты электронами четыре молекулярные орбитали (МО) — по два электрона на каждой МО ϕi{\displaystyle \phi _{i}}, один со спином α{\displaystyle \alpha }, другой со спином β{\displaystyle \beta }, или 8 спин-орбиталей ψ{\displaystyle \psi }. Волновая функция молекулы, Ψ{\displaystyle \Psi }, представленная единственным детерминантом Слэтера Ф, имеет вид

|ϕ1a1(1)α(1)ϕ1a1(1)β(1)ϕ1b2(1)α(1)…ϕ1b1(1)β(1)ϕ1a1(2)α(2)ϕ1a1(2)β(2)ϕ1b2(2)α(2)…ϕ1b1(2)β(2)ϕ1a1(3)α(3)ϕ1a1

ru.wikipedia.org

Химическая организация клетки — Википедия

Материал из Википедии — свободной энциклопедии

Химическая организация клетки — совокупность всех веществ, входящих в состав клетки. В состав клетки входит большое количество химических элементов Периодической системы, из которых 86 постоянно присутствуют, 25 необходимы для нормальной жизнедеятельности организма, а 16—18 из них абсолютно необходимы[1][2].

Органогены (биоэлементы)[править | править код]

Органогены — химические элементы, входящие в состав всех органических соединений и составляющие около 98% массы клетки[1].

Элемент%
содержание
Функция
Кислород65—75Входит в состав большинства органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды.
Углерод15—18Входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов.
Водород8—10Входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.
Азот2—3Входит в состав аминокислот, белков (в том числе ферментов и гемоглобина), нуклеиновых кислот, хлорофилла, некоторых витаминов.

Макроэлементы[править | править код]

Элементы, представленные в клетке в меньшем количестве — десятые и сотые доли процента[1].

Элемент%
содержание
Функция
Кальций0,04—2,00Содержится в мембране клетки, межклеточном веществе и костях. Участвует в регуляции внутриклеточных процессов, поддержания мембранного потенциала, передаче нервных импульсов, необходим для мышечного сокращения и экзоцитоза. Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.
Фосфор0,2—1,0Входит в состав АТФ в виде остатка фосфорной кислоты (PO43-). Содержится в костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).
Калий0,15—0,4Участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы. Содержится в межклеточных веществах. Участвует в фотосинтезе.
Сера0,15—0,2Содержится в некоторых аминокислотах, ферментах, тиамине. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.
Хлор0,05—0,1Участвует в формировании осмотического потенциала плазмы крови и других жидкостей в виде аниона. Содержится в желудочном соке.
Натрий0,02—0,03Участвует в поддержании мембранного потенциала, генерации нервного импульса, процессах осморегуляции(в том числе в работе почек у человека) и создании буферной системы крови.
Магний0,02—0,03Кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.

Микроэлементы[править | править код]

К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк, молибден (участвует в связывании атмосферного азота), бор (влияет на ростковые процессы у растений).

Ультрамикроэлементы[править | править код]

Ультрамикроэлементы составляют менее 0,000001 % в организмах живых существ, к ним относят золото, серебро, которые оказывают бактерицидное воздействие, ртуть, подавляющую обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Также к ультрамикроэлементам относят селен, мышьяк, платину и цезий, бериллий, радий и уран. Функции ультрамикроэлементов ещё малопонятны.

Вода является универсальным растворителем органических и неорганических веществ; она служит резервуаром для всех биохимических реакций клетки. При участии воды происходит теплорегуляция[3][4].

  • Билич Г. Л., Крыжановский В. А. Биология. Полный курс: В 4 т. — издание 5-е, дополненное и переработанное. — Оникс, 2009. — С. 20. — 864 с. — ISBN 978-5-488-02311-6.
  • Грин Н., Стаут У., Тейлор Д. Биология: в 3т. — Мир, 1993. — Т. 1. — С. 105—112. — 456 с. — ISBN 5-03-003685-7.

ru.wikipedia.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *