Во втором законе ньютона утверждается что – Законы Ньютона, закон всемирного тяготения, закон Гука, сила трения | ЕГЭ по физике

Содержание

Законы Ньютона — Википедия

Зако́ны Нью́то́на — три важнейших закона классической механики, которые позволяют записать уравнения движения для любой механической системы, если известны силы, действующие на составляющие её тела. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год)[1][2]. В ньютоновском изложении механики, широко используемом и в настоящее время, эти законы являются аксиомами, базирующимися на обобщении экспериментальных результатов.

Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как закон инерции. Инерция (она же инертность[3]) — свойство тела сохранять скорость своего движения неизменной по величине и направлению, когда не действуют никакие силы, а также свойство тела сопротивляться изменению его скорости. Чтобы изменить скорость движения тела, необходимо приложить некоторую силу, причём результат действия одной и той же силы на разные тела будет различным: тела обладают разной инерцией (инертностью), величина которой характеризуется их массой.

Современная формулировка[править | править код]

В современной физике первый закон Ньютона принято формулировать в следующем виде[4]:

Историческая формулировка[править | править код]

Ньютон сформулировал первый закон механики так:

Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» следует заменить термином «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и абсолютного времени, а это представление современная физика отвергает. С другой стороны, в произвольной (например, вращающейся) системе отсчёта закон инерции неверен, поэтому ньютоновская формулировка была заменена постулатом существования инерциальных систем отсчета.

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Масса материальной точки при этом полагается величиной постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами[5][6][7][8].

Современная формулировка[править | править код]

В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

a→=F→m,{\displaystyle {\vec {a}}={\frac {\vec {F}}{m}},}

где a→{\displaystyle {\vec {a}}} — ускорение материальной точки;
F→{\displaystyle {\vec {F}}} — равнодействующая всех сил, приложенных к материальной точке;
m{\displaystyle m} — масса материальной точки.

Второй закон Ньютона может быть также сформулирован в эквивалентной форме с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней внешних сил.

dp→dt=F→,{\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}},}

где p→=mv→{\displaystyle {\vec {p}}=m{\vec {v}}} — импульс точки, v→{\displaystyle {\vec {v}}} — её скорость, а t{\displaystyle t} — время. При такой формулировке, как и при предшествующей, полагают, что масса материальной точки неизменна во времени

[9][10][11].

Иногда предпринимаются попытки распространить сферу применения уравнения dp→dt=F→{\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}}} и на случай тел переменной массы. Однако вместе с таким расширительным толкованием уравнения приходится существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила[12][13].

Замечания[править | править код]

Когда на материальную точку действуют несколько сил, с учётом принципа суперпозиции, второй закон Ньютона записывается в виде:

ma→=∑i=1nFi→{\displaystyle m{\vec {a}}=\sum _{i=1}^{n}{\vec {F_{i}}}}

или

dp→dt=∑i=1nFi→.{\displaystyle {\frac {d{\vec {p}}}{dt}}=\sum _{i=1}^{n}{\vec {F_{i}}}.}

Второй закон Ньютона, как и вся классическая механика, справедлив только для движения тел со скоростями, много меньшими скорости света. При движении тел со скоростями, близкими к скорости света, используется релятивистское обобщение второго закона, получаемое в рамках специальной теории относительности.

Следует учитывать, что нельзя рассматривать частный случай (при F→=0{\displaystyle {\vec {F}}=0}) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

Историческая формулировка[править | править код]

Исходная формулировка Ньютона:

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

Этот закон описывает, как взаимодействуют две материальные точки. Пусть имеется замкнутая система, состоящая из двух материальных точек, в которой первая точка может действовать на вторую с некоторой силой F→1→2{\displaystyle {\vec {F}}_{1\to 2}}, а вторая — на первую с силой F→2→1{\displaystyle {\vec {F}}_{2\to 1}}. Третий закон Ньютона утверждает: сила действия F→1→2{\displaystyle {\vec {F}}_{1\to 2}} равна по модулю и противоположна по направлению силе противодействия F→2→1{\displaystyle {\vec {F}}_{2\to 1}}.

Третий закон Ньютона является следствием однородности, изотропности и зеркальной симметрии пространства[14][15].

Третий закон Ньютона, как и остальные законы ньютоновской динамики, даёт практически верные результаты лишь только тогда, когда скорости всех тел рассматриваемой системы пренебрежимо малы по сравнению со скоростью распространения взаимодействий (скоростью света)[16].

Современная формулировка[править | править код]

Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

F→2→1=−F→1→2.{\displaystyle {\vec {F}}_{2\to 1}=-{\vec {F}}_{1\to 2}.}

Закон утверждает, что силы возникают лишь попарно, причём любая сила, действующая на тело, имеет источник происхождения в виде другого тела. Иначе говоря, сила всегда есть результат взаимодействия тел. Существование сил, возникших самостоятельно, без взаимодействующих тел, невозможно[17].

Историческая формулировка[править | править код]

Ньютон дал следующую формулировку закона[1]:

Действию всегда есть равное и противоположное противодействие, иначе — взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны.

Для силы Лоренца третий закон Ньютона не выполняется. Лишь переформулировав его как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость[18][19].

Законы Ньютона являются аксиомами классической ньютоновской механики. Из них, как следствия, выводятся уравнения движения механических систем, а также «законы сохранения», указанные ниже. Разумеется, есть и законы (например, всемирного тяготения или Гука), не вытекающие из трёх постулатов Ньютона.

Уравнения движения[править | править код]

Уравнение F→=ma→{\displaystyle {\vec {F}}=m{\vec {a}}} является дифференциальным уравнением: ускорение есть вторая производная от координаты по времени. Это значит, что эволюцию (перемещение) механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости.

Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция, колебания, волны.

Закон сохранения импульса[править | править код]

Закон сохранения импульса утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю[20].

Закон сохранения механической энергии[править | править код]

Если все силы консервативны, то возникает закон сохранения механической энергии взаимодействующих тел: полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной[21].

Использование законов Ньютона предполагает задание некой ИСО. Однако, на практике приходится иметь дело и с неинерциальными системами отсчёта. В этих случаях, помимо сил, о которых идёт речь во втором и третьем законах Ньютона, в механике вводятся в рассмотрение так называемые силы инерции.

Обычно речь идёт о силах инерции двух различных типов[17][22]. Сила первого типа (даламберова сила инерции[23]) представляет собой векторную величину, равную произведению массы материальной точки на её ускорение, взятое со знаком минус. Силы второго типа (эйлеровы силы инерции[23]) используются для получения формальной возможности записи уравнений движения тел в неинерциальных системах отсчёта в виде, совпадающем с видом второго закона Ньютона. По определению, эйлерова сила инерции равна произведению массы материальной точки на разность между значениями её ускорения в той неинерциальной системе отсчёта, для которой эта сила вводится, с одной стороны, и в какой-либо инерциальной системе отсчёта, с другой

[17][22]. Определяемые таким образом силы инерции силами в истинном смысле слова не являются[24][17], их называют фиктивными[25], кажущимися[26] или псевдосилами[27].

Законы Ньютона в логике курса механики[править | править код]

Существуют методологически различные способы формулирования классической механики, то есть выбора её фундаментальных постулатов, на основе которых затем выводятся законы-следствия и уравнения движения. Придание законам Ньютона статуса аксиом, опирающихся на эмпирический материал, — только один из таких способов («ньютонова механика»). Этот подход принят в средней школе, а также в большинстве вузовских курсов общей физики.

Альтернативным подходом, использующимся преимущественно в курсах теоретической физики, выступает лагранжева механика. В рамках лагранжева формализма имеются одна-единственная формула (запись действия) и один-единственный постулат (тела движутся так, чтобы действие было стационарным), являющийся теоретической концепцией. Из этого можно вывести все законы Ньютона, правда, только для лагранжевых систем (в частности, для консервативных систем). Следует, однако, отметить, что все известные фундаментальные взаимодействия описываются именно лагранжевыми системами. Более того, в рамках лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима.

Практика применения машин в мануфактурной промышленности, строительство зданий, кораблестроение, использование артиллерии позволили ко времени Ньютона накопиться большому числу наблюдений над механическими процессами. Понятия инерции, силы, ускорения всё более прояснялись в течение XVII столетия. Работы Галилея, Борелли, Декарта, Гюйгенса по механике уже содержали все необходимые теоретические предпосылки для создания Ньютоном в механике логичной и последовательной системы определений и теорем

[28].

{\vec  {F}}=m{\vec  a} Страница «Начал» Ньютона с аксиомами механики

Основные законы механики Исаак Ньютон сформулировал в своей книге «Математические начала натуральной философии»[1]:

Оригинальный текст (лат.)

   LEX I
Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quantenus a viribus impressis cogitur statum illum mutare.

   LEX II
Mutationem motus proportionalem esse vi motrici impressae et fieri secundum lineam rectam qua vis illa imprimitur.

   LEX III

Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi.

Русский перевод этих формулировок законов см. в предыдущих разделах.

Первый закон (закон инерции), в менее чёткой форме, опубликовал ещё Галилей, допускавший свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений)[29]. Галилей также сформулировал важнейший принцип относительности, который Ньютон не включил в свою аксиоматику, потому что для механических процессов данный принцип является следствием уравнений динамики. Кроме того, Ньютон считал пространство и время абсолютными понятиями, едиными для всей Вселенной, и явно указал на это в своих «Началах».

Ньютон также дал строгие определения таких физических понятий, как количество движения

(не вполне ясно использованное у Декарта[29]) и сила. Он ввёл в физику понятие массы как меры инертности тела и, одновременно, его гравитационных свойств (ранее физики пользовались понятием вес).

В середине XVII века ещё не существовало современной техники дифференциального и интегрального исчисления. Соответствующий математический аппарат в 1680-е годы параллельно создавался самим Ньютоном (1642—1727), а также Лейбницем (1646—1716). Завершили математизацию основ механики Эйлер (1707—1783) и Лагранж (1736—1813).

  1. 1 2 3 Исаак Ньютон. Математические начала натуральной философии. Перевод с латинского и примечания А. Н. Крылова / под ред. Полака Л. С.. — М.: Наука, 1989. — С. 40—41. — 690 с. — (Классики науки). — 5 000 экз. — ISBN 5-02-000747-1.
  2. Тарг С. М. Ньютона законы механики // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. —
    М.
    : Большая российская энциклопедия, 1992. — Т. 3: Магнитоплазменный — Пойнтинга теорема. — С. 370. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  3. ↑ Инерция // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 146. — 704 с. — ISBN 5-85270-061-4.
  4. ↑ Инерциальная система отсчёта // Физическая энциклопедия (в 5 томах) / Под редакцией акад. А. М. Прохорова. — М.: Советская Энциклопедия, 1988. — Т. 2. — С. 145. — ISBN 5-85270-034-7.
  5. ↑ «Дополнительной характеристикой (по сравнению с геометрическими характеристиками) материальной точки является скалярная величина m — масса материальной точки, которая, вообще говоря, может быть как постоянной, так и переменной величиной. … В классической ньютоновской механике материальная точка обычно моделируется геометрической точкой с присущей ей постоянной массой) являющейся мерой её инерции.» стр. 137 Седов Л. И., Цыпкин А. Г. Основы макроскопических теорий гравитации и электромагнетизма. М: Наука, 1989.
  6. Маркеев А. П. Теоретическая механика. — М.: ЧеРО, 1999. — С. 87. — 572 с. «Масса материальной точки считается постоянной величиной, не зависящей от обстоятельств движения».
  7. Голубев Ю. Ф. Основы теоретической механики. — М.: МГУ, 2000. — С. 160. — 720 с. — ISBN 5-211-04244-1. «Аксиома 3.3.1. Масса материальной точки сохраняет своё значение не только во времени, но и при любых взаимодействиях материальной точки с другими материальными точками независимо от их числа и от природы взаимодействий».
  8. Журавлёв В. Ф. Основы теоретической механики. — М.: Физматлит, 2001. — С. 9. — 319 с. — ISBN 5-95052-041-3. «Масса [материальной точки] полагается постоянной, независящей ни от положения точки в пространстве, ни от времени».
  9. Маркеев А. П. Теоретическая механика. — М.: ЧеРО, 1999. — С. 254. — 572 с. «…второй закон Ньютона справедлив только для точки постоянного состава. Динамика систем переменного состава требует особого рассмотрения».
  10. ↑ «В ньютоновской механике… m=const и dp/dt=ma». Иродов И. Е. Основные законы механики. — М.: Высшая школа, 1985. — С. 41. — 248 с..
  11. Kleppner D., Kolenkow R. J. An Introduction to Mechanics. — McGraw-Hill, 1973. — P. 112. — ISBN 0-07-035048-5. «For a particle in Newtonian mechanics, M is a constant and (d/dt)(Mv) = M(dv/dt) = Ma».
  12. Зоммерфельд А. Механика = Sommerfeld A. Mechanik. Zweite, revidierte auflage, 1944. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — С. 45—46. — 368 с. — ISBN 5-93972-051-X.
  13. Кильчевский Н. А. Курс теоретической механики. Том 1. — М.: Наука, 1977. 480 с.
  14. Жирнов Н. И. Классическая механика. — Серия: учебное пособие для студентов физико-математических факультетов педагогических институтов. — М., Просвещение, 1980. — Тираж 28 000 экз. — с. 38
  15. Тютин И. В. Симметрия в физике элементарных частиц. Часть 1. Пространственно-временные симметрии. // Соросовский образовательный журнал, 1996, № 5, с. 65
  16. Сивухин Д. В. Общий курс физики. Механика. — М., Наука, 1979. — Тираж 50 000 экз. — с. 85
  17. 1 2 3 4 Ишлинский А. Ю. Классическая механика и силы инерции. — М.: «Наука», 1987. — 320 с.
  18. ↑ Матвеев А. Н. Механика и теория относительности. — 3-е изд. — М. Высшая школа 1976. — С. 132.
  19. Кычкин И. С., Сивцев В. И. Школьная физика: третий закон Ньютона // Международный журнал экспериментального образования. — 2016. — № 3-2. — С. 191—193.
  20. Тарг С. М. Краткий курс теоретической механики. — М.: Высшая школа, 1995. — С. 282. — 416 с. — ISBN 5-06-003117-9.
  21. Савельев И. В. Глава 3. Работа и энергия // Курс общей физики. Механика. — 4-е изд. — М.: Наука, 1970. — С. 89—99. — ISBN 5-17-002963-2.
  22. 1 2 Тарг С. М. Сила инерции // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 494—495. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  23. 1 2 Ишлинский А. Ю. К вопросу об абсолютных силах и силах инерции в классической механике // Теоретическая механика. Сборник научно-методических статей. — 2000. — № 23. — С. 3—8.
  24. ↑ «„Силы инерции“ — не силы». Журавлёв В. Ф. Основания механики. Методические аспекты. — М.: ИПМ АН СССР, 1985. — С. 21. — 46 с.
  25. Зоммерфельд А. Механика. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — С. 82. — 368 с. — ISBN 5-93972-051-X.
  26. Борн М. Эйнштейновская теория относительности. — М.: «Мир», 1972. — С. 81. — 368 с.
  27. Фейнман Р., Лейтон Р., Сэндс М. Выпуск 1. Современная наука о природе. Законы механики // Фейнмановские лекции по физике. — М.: «Мир», 1965. — С. 225.
  28. Кузнецов Б. Г. Основные принципы физики Ньютона // отв. ред. Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — С. 186—197;
  29. 1 2 Кузнецов Б. Г. Генезис механического объяснения физических явлений и идеи картезианской физики // отв. ред. Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — С. 160—161, 169—170, 177;
  • Лич Дж. У. Классическая механика. М.: Иностр. литература, 1961.
  • Спасский Б. И.. История физики. М., «Высшая школа», 1977.
  • Том 1. Часть 1-я; Часть 2-я
  • Том 2. Часть 1-я; Часть 2-я
  • Кудрявцев П. С. Курс истории физики. — М.: Просвещение, 1974.
  • Crowell, Benjamin (2011), Light and Matter (2011, Light and Matter), especially at Section 4.2, Newton’s First Law, Section 4.3, Newton’s Second Law, and Section 5.1, Newton’s Third Law.
  • Feynman, R. P. (англ.)русск.; Leighton, R. B.; Sands, M. The Feynman Lectures on Physics (неопр.). — 2nd. — Pearson/Addison-Wesley, 2005. — Т. Vol. 1. — ISBN 0-8053-9049-9.
  • Fowles, G. R.; Cassiday, G. L. Analytical Mechanics (неопр.). — 6th. — Saunders College Publishing (англ.)русск., 1999. — ISBN 0-03-022317-2.
  • Likins, Peter W. (англ.)русск.. Elements of Engineering Mechanics (неопр.). — McGraw-Hill Education, 1973. — ISBN 0-07-037852-5.
  • Marion; Jerry; Thornton, Stephen. Classical Dynamics of Particles and Systems (англ.). — Harcourt College Publishers, 1995. — ISBN 0-03-097302-3.
  • NMJ Woodhouse. Special Relativity (неопр.). — London/Berlin: Springer, 2003. — С. 6. — ISBN 1-85233-426-6.
  • Newton, Isaac, «Mathematical Principles of Natural Philosophy», 1729 English translation based on 3rd Latin edition (1726), volume 1, containing Book 1, especially at the section Axioms or Laws of Motion, starting page 19.
  • Newton, Isaac, «Mathematical Principles of Natural Philosophy», 1729 English translation based on 3rd Latin edition (1726), volume 2, containing Books 2 & 3.
  • Thomson, W (Lord Kelvin), and Tait, P G, (1867), Treatise on natural philosophy, volume 1, especially at Section 242, Newton’s laws of motion.

2 закон ньютона в общем виде?

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению) , когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела. Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО) . или Первый закон Ньютона * Первый закон Ньютона гласит: существуют системы отсчёта (называемые инерциальными) , в которых замкнутая система продолжает оставаться в состоянии покоя или прямолинейного равномерного движения. По сути, этот закон постулирует инертность тел. Это может казаться очевидным сейчас, но это не было очевидно на заре исследований природы. Так, например, Аристотель утверждал, что причиной всякого движения является сила, т. е. у него не было движения по инерции. Инерциальная система отсчёта — это система отсчёта, связанная со свободным невращающимся телом. Свободное тело — тело, не взаимодействующее с другими телами. Второй закон Ньютона Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к телу силой и ускорением этого тела. Один из трех законов Ньютона. Второй закон Ньютона утверждает, что ускорение, которое получает тело, прямо пропорционально приложенной к телу силе и обратно пропорционально массе тела. Этот закон записывается в виде формулы: \vec a = \vec {F} / m где \vec a — ускорение тела, \vec {F} — сила, приложенная к телу, а m — масса тела. Или, в более известном виде: \vec {F} = m\vec a Если на тело действуют несколько сил, то во втором законе Ньютона под \vec {F} подразумевается равнодействующая всех сил. В случае, если масса тела меняется со временем, то второй закон Ньютона записывается в более общем виде: \frac{d(m\vec \upsilon)}{dt} = \vec {F} где m\vec \upsilon — импульс (количество движения) тела, t — время, а \frac{d}{dt} — производная по времени. Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. → В данном законе как частный случай заключен первый закон Ньютона. Это можно видеть если \vec {F} = 0 (т. е. если на тело не действуют силы или равнодействующая сил равна нулю) при этом соответственно получаем что и \vec a = 0, а значит, тело сохраняет состояние покоя или равномерного прямолинейного движения.

ускорение тела прямо пропорционально результирующей силе, и обратно пропорционально массе тела

куда ещё общее F=ma

Ускорение сообщенное телу прямопропорционально действующей на тело суммарной силе и обратнопропорционально массе тела. Так и звучит. что-бы больше не было таких вопросов — узнавай тут I I I \/ \/ \/ <a rel=»nofollow» href=»https://author24.ru/spravochniki/fizika/dinamika/vtoroy_zakon_nyutona/» target=»_blank»>https://author24.ru/spravochniki/fizika/dinamika/vtoroy_zakon_nyutona/</a>

2-ой закон Ньютона-фундаментальный закон, является обобщением опытных фактов. 1)Если на тело разной массы подействовать одинаковой силой, то ускорения, приобретаемые телами, оказываются обратно пропорциональны массам. 2)Если силами разной величины подействовать на одно и то же тело, то ускорения тела оказываются прямо пропорциональными приложенным силам. Обобщая наблюдения: Сила действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение: F=m*a p.s F и a векторные величины поэтому пишутся со значком вектора.

2-ой закон Ньютона-фундаментальный закон, является обобщением опытных фактов. 1)Если на тело разной массы подействовать одинаковой силой, то ускорения, приобретаемые телами, оказываются обратно пропорциональны массам. 2)Если силами разной величины подействовать на одно и то же тело, то ускорения тела оказываются прямо пропорциональными приложенным силам. Обобщая наблюдения: Сила действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение: F=m*a

net idi ka ty nahuj sam ischi yebok )000)

если два тела действуют друг с другом, то ускорение этих тел обратно пропорциональны их массам

Законы Ньютона – FIZI4KA

1. В основе классической механики лежат три закона Ньютона, которые были сформулированы им при обобщении результатов наблюдений и опытов в конце XVII в.

Первый закон, включённый Ньютоном в систему законов, был открыт Галилеем и назван им законом инерции. Закон инерции формулируется следующим образом: если на тело не действуют другие тела, то оно либо находится в покое, либо движется равномерно прямолинейно.

2. В природе не существует отдельных изолированных тел. Любое тело взаимодействует с окружающими телами. Несмотря на это, взаимодействующие тела могут находиться в покое или двигаться равномерно и прямолинейно.

Например, лежащая на столе книга взаимодействует с Землёй, и на неё действует сила тяжести ​\( (\vec{F}_т) \)​, направленная вниз (рис. 33). Книга также взаимодействует со столом, и со стороны стола на неё действует сила, направленная вертикально вверх \( (\vec{F}) \). При этом книга находится в покое, следовательно, \( |\vec{F}_т|=|\vec{F}| \), т.е. действия Земли и стола на книгу компенсируют друг друга.

3. При компенсации действия на тело других тел оно может двигаться равномерно прямолинейно.

Например, если по прямой горизонтальной дороге движется автомобиль, то при компенсации действия на него силы тяги двигателя и силы трения со стороны поверхности дороги движение автомобиля будет равномерным.

Можно утверждать, что тело сохраняет состояние покоя, если действие на него других тел скомпенсировано.

Явление сохранения скорости тела постоянной (в том числе и равной нулю) называют явлением инерции.

4. Тело сохраняет состояние покоя или равномерного прямолинейного движения, если на него не действуют другие тела или действие других тел скомпенсировано не во всех системах отсчёта, а только в инерциальных системах отсчёта.

Инерциальными системами отсчёта называются такие системы отсчёта, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или действия других тел компенсируются. Инерциальной можно считать систему отсчёта, связанную с Землёй. Системы отсчёта, движущиеся относительно Земли равномерно и прямолинейно, также являются инерциальными.

Системы отсчёта, движущиеся с ускорением относительно инерциальной системы отсчёта, например относительно Земли, называют неинерциальными.

5. Значение первого закона Ньютона состоит в том, что он устанавливает существование инерциальных систем отсчёта (таких систем отсчёта, относительно которых тела движутся с постоянной скоростью при компенсации внешних воздействий). Именно для таких систем отсчёта справедливы все другие законы Ньютона.

6. Второй закон Ньютона устанавливает зависимость ускорения одного из взаимодействующих тел от его массы и действующей на него силы. Наблюдения и опыты свидетельствуют о том, что чем больше сила, действующая на тело, тем больше ускорение, которое оно приобретает. Так, чем сильнее водитель нажимает на педаль тормоза, тем
больше сила и тем быстрее автомобиль остановится. Значит, чем больше действующая на автомобиль сила сопротивления, тем больше его ускорение.

Ускорение, которое приобретают тела под действием одинаковой силы, зависит от массы тел. Например, грузовому автомобилю требуется большее время, чем легковому, для того, чтобы, имея некоторую одинаковую скорость, остановиться, выключив двигатель. Из этого примера следует, что чем больше масса тела, тем меньшее ускорение оно получает под действием некоторой постоянной силы.

7. Второй закон Ньютона формулируется следующим образом: ускорение, с которым движется тело прямо пропорционально действующей на тело силе и обратно пропорционально массе тела.

\[ \vec{a}=\frac{\vec{F}}{m} \]

Записанное равенство представляет собой второй закон Ньютона.

В механике Ньютона ускорение тел обусловлено только их взаимодействием. Следовательно, второй закон Ньютона справедлив в инерциальных системах отсчёта.

8. Действие тел друг на друга носит взаимный характер, т.е. в результате взаимодействия
каждое тело приобретает ускорение, и, следовательно, на каждое из взаимодействующих тел действует сила. Например, груз, висящий на нити, действует на нить с силой, направленной вертикально вниз \( (\vec{F}_1) \)​, и растягивает её (рис. 34). В свою очередь, нить действует на груз с силой, направленной вертикально вверх \( (\vec{F}_2) \)​.

9. Измерения показывают, что:

  • при взаимодействии тел сила действует как на одно тело, так и на другое;
  • модуль силы, действующей на одно тело, равен модулю силы, действующей на другое тело;
  • силы, действующие на тела, направлены в противоположные стороны.

10. Из соотношения следует: ​\( m_1a_1=m_2a_2 \)​.

Поскольку ускорение — величина векторная и ускорения, которые получают тела, направлены в противоположные стороны, то ​\( m_1\vec{a}_1=-m_2\vec{a}_2 \)​.

Так как \( m_1\vec{a}_1=\vec{F}_1 \), а \( m_2\vec{a}_2=\vec{F}_2 \), то можно записать: ​\( \vec{F}_1=-\vec{F}_2 \)​.

Это равенство и выражает третий закон Ньютона.

Третий закон Ньютона формулируется следующим образом: тела действуют друг на друга с силами, равными по модулю и направленными в противоположные стороны. Эти силы направлены вдоль прямой, соединяющей взаимодействующие тела (материальные точки).

Третий закон Ньютона говорит о том, что силы всегда проявляются парами.

Эти силы часто называют силами действия и противодействия. При этом безразлично, какую из двух сил назвать силой действия, а какую — силой противодействия.

Эти силы приложены к разным телам, и их нельзя складывать, т.е. нельзя сказать, что силы действия и противодействия уравновешивают друг друга.

Силы, с которыми взаимодействуют тела, всегда одной природы.

Третий закон Ньютона, так же как первый и второй законы, справедлив в инерциальных системах отсчёта.

10. При переходе от одной инерциальной системы отсчёта к другой не изменяются ни ускорение, ни масса тала, ни действующая на него сила. Следовательно, можно утверждать, что законы механики одинаковы для всех инерциальных систем отсчёта, или, что то же самое, все механические явления протекают одинаково во всех инерциальных системах отсчёта при одинаковых начальных условиях. Это утверждение называется принципом относительности Галилея.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Утверждение, что материальная точка покоится или движется равномерно прямолинейно, если на неё не действуют другие тела или действие на неё других тел взаимно уравновешено,

1) неверно ни для каких систем отсчёта
2) верно для инерциальных систем отсчёта
3) верно для неинерциальных систем отсчёта
4) верно при любых условиях

2. Система отсчёта, связанная с Землёй, может считаться инерциальной. Система отсчёта, связанная с автобусом, тоже будет инерциальной, если он

1) движется равномерно по извилистой дороге
2) тормозит у остановки
3) отъезжает от светофора
4) движется равномерно по прямолинейному участку пути

3. В каком из приведённых примеров тело движется по инерции:

1) равномерно движущийся по горизонтальной дороге автомобиль
2) автомобиль, движущийся по горизонтальной дороге с выключенным двигателем
3) автомобиль, поворачивающий направо
4) автомобиль, выезжающий со стоянки

4. Яблоко, лежащее неподвижно на столе вагона движущегося поезда покатился вправо, если смотреть по ходу поезда. Как изменилось движение поезда?

1) скорость поезда увеличилась
2) скорость поезда уменьшилась
3) поезд повернул влево
4) поезд повернул вправо

5. Можно ли считать инерциальной системой отсчёта движущийся автомобиль?

1) можно всегда
2) можно, только если он движется равномерно и прямолинейно
3) можно только во время разгона и торможения
4) нельзя ни при каких условиях

6. Массивный груз подвешен на тонкой нити 1. К грузу прикреплена такая же нить 2. Если
медленно тянуть за нить 2, то оборвётся

1) только нить 1
2) только нить 2
3) нить 1 и нить 2 одновременно
4) либо нить 1, либо нить 2, в зависимости от массы груза

7. Нить, привязанная одним концом к вбитому в стену гвоздю, разорвётся, если другой её конец тянуть с силой не менее 50 Н. Чему равно наименьшее значение сил, с которыми растягивают эту же нить за оба конца, при котором она рвётся?

1) 25 Н
2) 50 Н
3) 75 Н
4) 100 Н

8. Два ученика тянут динамометр в противоположные стороны с силой 60 Н каждый. Каково показание динамометра?

1) 0 Н
2) 30 Н
3) 60 Н
4) 120 Н

9. Земля притягивает яблоко с силой ​\( \vec{F}_1 \)​. Яблоко притягивает Землю с силой \( \vec{F}_2 \). При этом

1) ​\( F_2 = 0 \)​
2) ​\( F_1=F_2 \)​
3) \( F_1>F_2 \)
4) \( F_1<F_2 \)

10. Чему равна масса автомобиля, трогающегося с места с ускорением 0,6 м/с2, если развиваемая им сила тяги равна 15 000 Н? Сила сопротивления, действующая на автомобиль, равна 6000 Н.

1) 1,5 т
2) 7,5 т
3) 15 т
4) 75 т

11. Из приведенных утверждений выберите два правильных и запишите их номера в таблицу.

1) законы Ньютона справедливы во всех системах отсчета
2) первый закон Ньютона утверждает существование инерциальных систем отсчета
3) равнодействующая сил действия и противодействия равна нулю
4) силы действия и противодействия имеют одинаковую природу
5) второй закон Ньютона говорит о том, что масса тела прямо пропорциональна действующей на тело силе

12. Два тела движутся по оси ​\( Ox \)​. На рисунке представлены графики зависимости проекции скорости движения тел 1 и 2 от времени.

Используя данные графика, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) В промежутке времени ​\( t_3-t_5 \)​ на тело 2 действует постоянная сила.
2) В промежутке времени ​\( 0-t_3 \)​ сила сообщает телу 1 положительное ускорение
3) В промежутке времени ​\( t_4-t_5 \)​ на тело 1 сила не действует
4) Модуль силы, действующей на тело 1 в промежутки времени ​\( 0-t_1 \)​, ​\( t_1-t_2 \)​ различен.
5) В промежутке времени ​\( t_1-t_2 \)​ сила сообщает телу 1 отрицательное ускорение

Часть 2

13. Тело массой 7 кг с помощью каната начинают равноускоренно поднимать вертикально вверх. Чему равна сила, действующая на тело со стороны каната, если известно, что за 4 с груз был поднят на высоту 16 м?

Ответы

Законы Ньютона

5 (100%) 1 vote

Классическая теория тяготения Ньютона — Википедия

Класси́ческая тео́рия тяготе́ния Ньютона (Зако́н всемирного тяготе́ния Ньютона) — закон, описывающий гравитационное взаимодействие в рамках классической механики. Этот закон был открыт Ньютоном около 1666 года, опубликован в 1687 году в «Началах» Ньютона.

Закон гласит, что сила F{\displaystyle F} гравитационного притяжения между двумя материальными точками с массами m1{\displaystyle m_{1}} и m2{\displaystyle m_{2}}, разделёнными расстоянием r{\displaystyle r}, действует вдоль соединяющей их прямой, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния[1]. То есть:

F=G⋅m1⋅m2r2{\displaystyle F=G\cdot {m_{1}\cdot m_{2} \over r^{2}}}.(1)

Здесь G{\displaystyle G} — гравитационная постоянная, равная[2]6,67408(31)·10−11 м³/(кг·с²).

В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, называемое гравитационным полем.

Гравитационное взаимодействие в теории Ньютона распространяется мгновенно, так как сила тяготения зависит только от взаимного расположения притягивающихся тел в данный момент времени. Также для ньютоновских гравитационных сил справедлив принцип суперпозиции: сила тяготения, действующая на частицу со стороны нескольких других частиц, равна векторной сумме сил притяжения со стороны каждой частицы.

Ещё одно важнейшее свойство классической гравитации — принцип эквивалентности[3]. Его следствием является тот факт, что ускорение, сообщаемое заданному телу тяготением, не зависит от массы этого тела, химического состава и других свойств. Это видно из того, что масса входит одинаково в выражение силы в законе тяготения и в выражении силы через ускорение во втором законе Ньютона. Таким образом, в этой теории ускорение точечного или маленького тела под действием гравитационной силы всегда в точности равно напряжённости гравитационного поля[4], определяемой как отношение g→=F→/m.{\displaystyle {\vec {g}}={\vec {F}}/m.}

Сферически симметричное тело создаёт за своими пределами такое же поле, как материальная точка той же массы, расположенная в центре тела. Внутри сферически симметричной оболочки (имеющей сферическую полость или выделенной условно, являясь реально частью какого-то тела) поле, создаваемое ею[5], имеет нулевую напряженность (и, соответственно, постоянный потенциал), то есть, сферически симметричная оболочка не притягивает находящиеся внутри неё тела, и вообще никак на них не действует посредством гравитации.

Сюда следует добавить и то, очевидное из сказанного выше и третьего закона Ньютона, утверждение, что на сферически симметричное тело гравитация сторонних источников также действует в точности как на точечное тело той же массы, расположенное в центре симметрии. А отсюда следует, что и два сферически симметричных тела конечных размеров притягиваются в точности так же, как точечные тела тех же масс, расположенные в их центрах. Это утверждение оказывается достаточно важным для небесной механики, ведь многие небесные тела имеют именно сферически симметричную форму (пусть и не точно), что, в дополнение к тому, что расстояния между небесными телами часто (обычно) во много раз превосходят их размеры, упрощает применение теории к ним, т.к. сила их взаимодействия (в соответствующем приближении, которое оказывается обычно очень хорошим), а соответственно и ускорение, вычисляется так же просто, как для материальных точек — т.е. просто по формуле (1).

Гравитационное поле в теории Ньютона является потенциальным, в связи с этим для его описания можно использовать гравитационный потенциал φ.{\displaystyle \varphi .} В случае, если поле создаётся расположенной в начале координат точечной массой M{\displaystyle M}, гравитационный потенциал определяется формулой:

φ(r→)=−GMr{\displaystyle \varphi ({\vec {r}})=-G{\frac {M}{r}}},(1.1)

(здесь потенциал на бесконечности, как это делается обычно, принят равным нулю).

В общем случае, когда плотность вещества ρ{\displaystyle \rho } распределена произвольно, φ{\displaystyle \varphi } удовлетворяет уравнению Пуассона:

Δφ(r→)=−4πGρ(r→){\displaystyle \Delta \varphi ({\vec {r}})=-4\pi G\rho ({\vec {r}})}.(1.2)

Решение данного уравнения[6] записывается в виде:

φ(r→)=−G∫V′ρ(r→′)dV′|r→−r→′|+C{\displaystyle \varphi ({\vec {r}})=-G\int _{V^{\prime }}{\frac {\rho ({\vec {r}}^{\prime })dV^{\prime }}{|{\vec {r}}-{\vec {r}}^{\prime }|}}+C}.(1.3)

Здесь r→{\displaystyle {\vec {r}}} — радиус-вектор точки, в которой определяется потенциал, r→′{\displaystyle {\vec {r}}^{\prime }} — радиус-вектор элемента объёма dV′{\displaystyle dV^{\prime }} c плотностью вещества ρ(r→′){\displaystyle \rho ({\vec {r}}^{\prime })}, а интегрирование охватывает все такие элементы; C{\displaystyle C} — произвольная постоянная; чаще всего ее принимают равной нулю, как это сделано в формуле выше для одного точечного источника.

Сила притяжения, действующая в гравитационном поле на материальную точку с массой m{\displaystyle m}, связана с потенциалом формулой:

F→(r→)=−m∇φ(r→){\displaystyle {\vec {F}}({\vec {r}})=-m\nabla \varphi ({\vec {r}})}.(1.4)

Если поле создаётся точечной массой M{\displaystyle M}, расположенной в начале координат, то на точку массой m{\displaystyle m} действует сила

F→(r→)=−GmMr3⋅r→{\displaystyle {\vec {F}}({\vec {r}})=-G{\frac {mM}{r^{3}}}\cdot {\vec {r}}}.(1.5)

Величина этой силы зависит только от расстояния r{\displaystyle r} между массами, но не от направления радиус-вектора r→{\displaystyle {\vec {r}}} (см. формулу в преамбуле).

Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера. В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам. Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений.

С точки зрения физики, гравитационное поле сильно отличается от электростатического — например, массы всегда притягиваются, а заряды могут и отталкиваться, в гравитации нет аналога таким эффектам, как электростатическая индукция и т. д. Однако классические математические модели обеих теорий во многом сходны, а в ряде случаев даже тождественны. В связи с этим для ньютоновской гравитации применимы по сути все те теоретические конструкции и методы решения задач, которые применяются в электростатике. В этом, формальном (но математически вполне содержательном) смысле, можно сказать, что теория одна[7].

Среди теорем и методов, одинаково имеющих силу (и место для применения) в ньютоновской теории гравитации и электростатике, можно назвать теорему Гаусса, теорему Ирншоу, метод изображений, метод конформных отображений, полностью теорию потенциала, не говоря уже о принципе суперпозиции и других разного рода математических принципах и приёмах.

Ньютоновская гравитация гораздо более точно соответствует эксперименту, чем электростатика — она реже даёт существенную ошибку, и величина этой ошибки обычно гораздо меньше. Также можно заметить, что более общие теории для гравитации и электростатики (это соответственно ОТО и электродинамика) совершенно различны.

Точность закона всемирного тяготения Ньютона[править | править код]

Экспериментальная оценка степени точности закона тяготения Ньютона является одним из подтверждений общей теории относительности.[8] Опыты по измерению квадрупольного взаимодействия вращающегося тела и неподвижной антенны показали[9], что приращение δ{\displaystyle \delta } в выражении для зависимости ньютоновского потенциала r−(1+δ){\displaystyle r^{-(1+\delta )}} на расстояниях нескольких метров находится в пределах (2,1±6,2)∗10−3{\displaystyle (2,1\pm 6,2)*10^{-3}}. Другие опыты также подтвердили отсутствие модификаций в законе всемирного тяготения[10].

Закон всемирного тяготения Ньютона в 2007 г. был проверен и на расстояниях, меньших одного сантиметра (от 55 мкм до 9,53 мм). С учетом погрешностей эксперимента в исследованном диапазоне расстояний отклонений от закона Ньютона не обнаружено[11].

Прецизионные лазерные дальнометрические наблюдения за орбитой Луны[12] подтверждают закон всемирного тяготения на расстоянии от Земли до Луны с точностью 3⋅10−11{\displaystyle 3\cdot 10^{-11}}.

Связь с геометрией евклидова пространства[править | править код]

Факт равенства с очень высокой точностью (10−9{\displaystyle 10^{-9}}) показателя степени расстояния в знаменателе выражения для силы тяготения числу 2{\displaystyle 2} отражает евклидову природу трёхмерного физического пространства механики Ньютона. В трёхмерном евклидовом пространстве площадь поверхности сферы точно пропорциональна квадрату её радиуса[13].

(См. также Ньютон, Исаак#Всемирное тяготение и астрономия).
2 Закон всемирного тяготения Ньютона

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Гассенди, Кеплер, Борелли, Декарт, Роберваль, Гюйгенс и другие[14]. Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире[15]. Были, впрочем, догадки с правильной зависимостью от расстояния; Ньютон в письме к Галлею упоминает как своих предшественников Буллиальда, Рена и Гука[16]. Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).[17].

В своём основном труде «Математические начала натуральной философии» (1687) Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени. Он показал, что:

  • наблюдаемые движения планет свидетельствуют о наличии центральной силы;
  • обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.

Кроме того, Ньютон достиг существенного продвижения в таких практически значимых темах, связанных с тяготением, как проблема фигуры Земли, теория приливов, предварение равноденствий.

Отметим, что теория тяготения Ньютона уже не была, строго говоря, гелиоцентрической. Уже в задаче двух тел планета вращается не вокруг Солнца, а вокруг общего центра тяжести, так как не только Солнце притягивает планету, но и планета притягивает Солнце. Наконец, выяснилась необходимость учесть влияние планет друг на друга.

Теория Ньютона имела ряд существенных отличий от гипотез предшественников. Ньютон не просто опубликовал предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел и тем самым создаёт основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить. Последующие исследователи достигли также существенного прогресса в небесной механике, и «астрономическая точность» расчётов вошла в поговорку.

В течение XVIII века закон всемирного тяготения был предметом активной дискуссии (против него выступали сторонники школы Декарта) и тщательных проверок. К концу века стало общепризнанным, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел. Генри Кавендиш в 1798 году осуществил прямую проверку справедливости закона тяготения в земных условиях, используя исключительно чувствительные крутильные весы[18]. Важным этапом стало введение Пуассоном в 1813 году понятия гравитационного потенциала и уравнения Пуассона для этого потенциала; эта модель позволяла исследовать гравитационное поле при произвольном распределении вещества[19]. После этого ньютоновский закон стал рассматриваться как фундаментальный закон природы.

Недостатки классической теории тяготения[править | править код]

В то же время ньютоновская теория содержала ряд трудностей. Главные из них следующие.

  1. Необъяснимое дальнодействие: сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания.
  2. Если Вселенная, как тогда предполагали, евклидова и бесконечна, и при этом средняя плотность вещества в ней ненулевая, то возникает неразрешимый гравитационный парадокс, который поставил под сомнение применимость ньютоновской теории в космологических масштабах.
  3. В конце XIX века обнаружилась ещё одна проблема: расхождение теоретического и наблюдаемого смещения перигелия Меркурия[20].

В течения XVIII—XIX веков делались неоднократные попытки модифицировать или обобщить классическую теорию тяготения — физики изменяли формулу ньютоновского закона, объясняли механизм тяготения участием мирового эфира. По мере осознания принципов теории относительности начались попытки построить релятивистское обобщение теории гравитации. По-видимому, первую чёткую формулировку проблемы опубликовал Анри Пуанкаре в 1905 году:

Возможно ли найти такой закон, который удовлетворил бы условиям, поставленным Лоренцем [имеются в виду преобразования Лоренца] и одновременно сводился к закону Ньютона во всех случаях, когда скорости небесных тел достаточно малы для того, чтобы можно было пренебречь их квадратами (а также произведениями ускорений на расстояния) по сравнению с квадратом скорости света?

Пуанкаре в статье «О динамике электрона» предложил два варианта релятивистского обобщения закона тяготения. Оба они исключали дальнодействие (скорость гравитации совпадала со скоростью света). Историк науки В. П. Визгин в своей монографии пишет[21]:

Релятивистская теория тяготения, развитая Пуанкаре, не привлекла внимания физиков, хотя в принципиальном отношении она была значительным шагом вперед в развитии гравитационной проблемы. Причины этого невнимания, с нашей точки зрения, таковы:

  1. теория не объясняла аномальное смещение перигелия Меркурия;
  2. большинство физиков в 1906—1908 годах не разделяло релятивистской программы;
  3. формально-алгебраический метод построения теории отодвинул на задний план физические аспекты теории;
  4. неоднозначность свидетельствовала о незаконченности теории;
  5. в период преобладания электромагнитно-полевой программы настоящее обобщение ньютоновской теории тяготения требовало использования явного полевого подхода — теория же Пуанкаре не давала уравнений гравитационного поля, из которых можно было получить найденные им лоренц-инвариантные элементарные законы взаимодействия.

Далее наброски релятивистской теории тяготения опубликовали в начале 1910-х годов Макс Абрахам, Гуннар Нордстрём и Альберт Эйнштейн. Все они до создания ОТО не соответствовали данным наблюдений.

Общая теория относительности[править | править код]

На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Эти усилия увенчались успехом в 1915 году — созданием общей теории относительности Эйнштейна, в которой все указанные трудности были преодолены. Теория Ньютона, в полном согласии с принципом соответствия, оказалась приближением более общей теории, применимым при выполнении двух условий:

  1. Гравитационный потенциал в исследуемой системе не слишком велик: φc2≪1{\displaystyle {\frac {\varphi }{c^{2}}}\ll 1}. В Солнечной системе это условие для большинства движений небесных тел можно считать выполненным — даже на поверхности Солнца отношение |φ|/c2{\displaystyle |\varphi |/c^{2}} составляет всего 2,12⋅10−6{\displaystyle 2{,}12\cdot 10^{-6}}. Заметным релятивистским эффектом является только упомянутое выше смещение перигелия Меркурия[22].
  2. Скорости движения в этой системе незначительны по сравнению со скоростью света: vc≪1{\displaystyle {\frac {v}{c}}\ll 1}.

В слабых стационарных гравитационных полях уравнения движения переходят в ньютоновы (гравитационный потенциал). Для доказательства покажем, что скалярный гравитационный потенциал в слабых стационарных гравитационных полях удовлетворяет уравнению Пуассона

ΔΦ=−4πGρ{\displaystyle \Delta \Phi =-4\pi G\rho }.

Известно, что в этом случае гравитационный потенциал имеет вид:

Φ=−12c2(g44+1){\displaystyle \Phi =-{\frac {1}{2}}c^{2}(g_{44}+1)}.

Найдём компоненту тензора энергии-импульса T44{\displaystyle T_{44}} из уравнений гравитационного поля общей теории относительности:

Rik=−ϰ(Tik−12gikT){\displaystyle R_{ik}=-\varkappa (T_{ik}-{\frac {1}{2}}g_{ik}T)},

где Rik{\displaystyle R_{ik}} — тензор кривизны. Для Tik{\displaystyle T_{ik}} мы можем ввести кинетический тензор энергии-импульса ρuiuk{\displaystyle \rho u_{i}u_{k}}. Пренебрегая величинами порядка u/c{\displaystyle u/c}, можно положить все компоненты Tik{\displaystyle T_{ik}}, кроме T44{\displaystyle T_{44}}, равными нулю. Компонента T44{\displaystyle T_{44}} равна T44=ρc2{\displaystyle T_{44}=\rho c^{2}} и, следовательно T=gikTik=g44T44=−ρc2{\displaystyle T=g^{ik}T_{ik}=g^{44}T_{44}=-\rho c^{2}}. Таким образом, уравнения гравитационного поля принимают вид R44=−12ϰρc2{\displaystyle R_{44}=-{\frac {1}{2}}\varkappa \rho c^{2}}. Вследствие формулы

Rik=∂Γiαα∂xk−∂Γikα∂xα+ΓiαβΓkβα−ΓikαΓαββ{\displaystyle R_{ik}={\frac {\partial \Gamma _{i\alpha }^{\alpha }}{\partial x^{k}}}-{\frac {\partial \Gamma _{ik}^{\alpha }}{\partial x^{\alpha }}}+\Gamma _{i\alpha }^{\beta }\Gamma _{k\beta }^{\alpha }-\Gamma _{ik}^{\alpha }\Gamma _{\alpha \beta }^{\beta }}

значение компоненты тензора кривизны R44{\displaystyle R_{44}} можно взять равным R44=−∂Γ44α∂xα{\displaystyle R_{44}=-{\frac {\partial \Gamma _{44}^{\alpha }}{\partial x^{\alpha }}}} и так как Γ44α≈−12∂g44∂xα{\displaystyle \Gamma _{44}^{\alpha }\approx -{\frac {1}{2}}{\frac {\partial g_{44}}{\partial x^{\alpha }}}}, R44=12∑α∂2g44∂xα2=12Δg44=−ΔΦc2{\displaystyle R_{44}={\frac {1}{2}}\sum _{\alpha }{\frac {\partial ^{2}g_{44}}{\partial x_{\alpha }^{2}}}={\frac {1}{2}}\Delta g_{44}=-{\frac {\Delta \Phi }{c^{2}}}}. Таким образом, приходим к уравнению Пуассона:

ΔΦ=12ϰc4ρ{\displaystyle \Delta \Phi ={\frac {1}{2}}\varkappa c^{4}\rho }, где ϰ=−8πGc4{\displaystyle \varkappa =-{\frac {8\pi G}{c^{4}}}}[23]

Квантовая гравитация[править | править код]

Применение принципа корпускулярно-волнового дуализма к гравитационному полю показывает, что гравитационные волны можно рассматривать как поток квантов поля — гравитонов. В большинстве процессов во Вселенной квантовые эффекты гравитации очень малы. Они становятся существенными лишь вблизи сингулярностей поля тяготения, где радиус кривизны пространства-времени очень мал. Когда он становится близким к планковской длине, квантовые эффекты становятся доминирующими. Эффекты квантовой гравитации приводят к рождению частиц в гравитационном поле чёрных дыр и их постепенному испарению[3]. Построение непротиворечивой квантовой теории гравитации — одна из важнейших нерешённых задач современной физики.

С точки зрения квантовой гравитации, гравитационное взаимодействие осуществляется путём обмена виртуальными гравитонами между взаимодействующими телами. Согласно принципу неопределенности, энергия виртуального гравитона обратно пропорциональна времени его существования от момента излучения одним телом до момента поглощения другим телом. Время существования пропорционально расстоянию между телами. Таким образом, на малых расстояниях взаимодействующие тела могут обмениваться виртуальными гравитонами с короткими и длинными длинами волн, а на больших расстояниях только длинноволновыми гравитонами. Из этих соображений можно получить закон обратной пропорциональности ньютоновского потенциала от расстояния. Аналогия между законом Ньютона и законом Кулона объясняется тем, что масса гравитона, как и масса фотона, равна нулю[24][25]. Разница между законом ньютоновского тяготения и законом Кулона (существует два вида электрических зарядов и один вид «гравитационных зарядов» с притяжением между ними) объясняется тем, что спин фотона равен 1{\displaystyle 1}, а спин гравитона равен 2{\displaystyle 2}[26].

  1. ↑ Всемирного тяготения закон // Физическая энциклопедия (в 5 томах) / Под редакцией акад. А. М. Прохорова. — М.: Советская Энциклопедия, 1988. — Т. 1. — С. 348. — ISBN 5-85270-034-7.
  2. ↑ National Institute of Standards and Technology | NIST
  3. 1 2 Новиков И. Д. Тяготение //Физический энциклопедический словарь. — под ред. А. М. Прохорова — М., Большая Российская энциклопедия, 2003. — ISBN 5-85270-306-0. — Тираж 10000 экз. — с. 772—775
  4. ↑ Удобство использования физической величины напряженности связано с тем, что она не зависит от конкретного тела, помещаемого в данную точку, (будет одинаковой, если мы поместим в эту точку разные тела разной массы) и, таким образом, является характеристикой только самого поля, не зависящего непосредственно от тела, на которое оно действует (косвенная зависимость может быть за счёт действия самого этого тела на тела-источники поля, и только при изменении в результате этого воздействия их положения).
  5. ↑ То есть, речь не идет, конечно, об экранировке гравитационных полей, создаваемых другими источниками, которые могут находиться как внутри оболочки, так и вне её, а только лишь о том поле, которое создаётся самой оболочкой, именно его напряжённость равна нулю (а поля остальных источников тогда по принципу суперпозиции как раз останутся внутри сферической оболочки неизменными, как будто оболочки нет).
  6. ↑ Это решение естественно получается используя формулу решения с одним точечным источником, приведенную выше, и принцип суперпозиции — то есть просто сложением полей от (бесконечного) множества точечных источников, массой ρdV{\displaystyle \rho dV} каждый, расположенных в соответствующих точках пространства.
  7. ↑ Это утверждение не столько дело вкуса, сколько указание на то, что можно достаточно свободно пользоваться методами и результатами одной теории применительно к другой, невзирая на то, на электростатическом или гравитационном языке всё описано, соблюдая, конечно, минимально необходимую осторожность, когда дело касается их немногочисленных отличий и особенностей.
  8. ↑ Д. Д. Иваненко, Г. А. Сарданашвили Гравитация, М.: Едиториал УРСС, 2004, ISBN 5-354-00538-8
  9. ↑ 10th International conference on General Relativity and Gravitation: Contribut. pap. — Padova, 1983. — Vol. 2, 566 p.
  10. ↑ Тезисы докладов Всесоюзной конференции «Современные теоретические и экспериментальные проблемы теории относительности и гравитации». — М.: МГПИ, 1984. — 308 с.
  11. ↑ Ю. Н. Ерошенко Новости физики в сети Internet (по материалам электронных препринтов), УФН, 2007, т. 177, № 2, с. 230
  12. ↑ Турышев С. Г. «Экспериментальные проверки общей теории относительности: недавние успехи и будущие направления исследований», УФН, 179, с. 3-34, (2009)
  13. Бутиков Е.И., Кондратьев А.С. Физика. Книга 1. Механика. — М.: Наука, 1994. — 138 с.
  14. Клайн М. Математика. Утрата определённости. — М.: Мир, 1984. — С. 66. Архивная копия от 12 февраля 2007 на Wayback Machine
  15. Спасский Б. И. История физики. — Т. 1. — С. 140—141.
  16. ↑ Ход их рассуждений легко восстановить, см. Тюлина И. А., указ. статья, стр. 185. Как показал Гюйгенс, при круговом движении центростремительная сила F∼{\displaystyle F\sim } (пропорциональна) v2R{\displaystyle v^{2} \over R}, где v{\displaystyle v} — скорость тела, R{\displaystyle R} — радиус орбиты. Но v∼RT{\displaystyle v\sim {\frac {R}{T}}}, где T{\displaystyle T} — период обращения, то есть v

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *