Вписанная окружность в трапеции – Вписанная в трапецию окружность | Треугольники

Вписанная в трапецию окружность | Треугольники

Когда в трапецию можно вписать окружность? Какими свойствами обладает вписанная в трапецию окружность? Где находится центр этой окружности? Чему равен ее радиус?

1. В трапецию можно вписать окружность тогда и только тогда когда суммы ее противоположных сторон равны.

1) В трапецию ABCD можно вписать окружность, если AD+BC=AB+CD.

2) Обратно, если AD+BC=AB+CD, то в трапецию ABCD можно вписать окружность.

 

2. Центр вписанной в трапецию окружности — точка пересечения её биссектрис.

O — точка пересечения

биссектрис трапеции ABCD.

3. По свойству биссектрис трапеции, прилежащие к её боковой стороне,

   

   

и точка O лежит на средней линии трапеции.

4. Точки касания, лежащие на сторонах, выходящих из одной вершины, равноудалены от этой вершины:

AK=AP,

BK=BF,

CF=CN,

DN=DP (как отрезки касательных, проведённых из одной точки).

5.

   

   

   

   

(как радиусы, проведенные в точку касания).

6. Диаметр вписанной в трапецию окружности равен высоте трапеции, радиус — половине высоты:

   

   

www.treugolniki.ru

Вписанная в равнобедренную трапецию окружность

Какими свойствами обладает вписанная в равнобедренную трапецию окружность?

1. В трапецию можно вписать окружность тогда и только тогда, когда суммы длин её противоположных сторон равны.

То есть, в трапецию ABCD можно вписать окружность, если AD+BC=AB+CD.

И обратно, если для трапеции ABCD верно равенство AD+BC=AB+CD, то в неё можно вписать окружность.

Таким образом, если  трапеция ABCD — равнобедренная, AD ∥ BC, то её боковые стороны равны полусумме оснований:

   

2. Отсюда, по свойству средней линии трапеции,

боковые стороны равнобедренной трапеции, в которую можно вписать окружность, равны её средней линии.

Если MN —

средняя линия

трапеции ABCD,

AD ∥ BC, то

   

3. Высота равнобедренной трапеции, в которую можно вписать окружность, равна среднему пропорциональному (среднему геометрическому) между её основаниями.

По свойству равнобедренной трапеции,

   

Если AD=a, BC=b,

   

   

Из прямоугольного треугольника ABF по теореме Пифагора

   

   

   

   

   

   

4. Так как радиус вписанной в трапецию окружности равен половине высоты трапеции, то для равнобедренной трапеции верно равенство

   

5. В равнобедренной трапеции точки касания делят стороны на две группы равных отрезков.

 

AK=AP=DP=DN,

BK=BF=CF=CN.

 

6. Центр вписанной в равнобедренную трапецию окружности — точка пересечения её биссектрис.

Биссектрисы углов трапеции, прилежащих к боковой стороне, перпендикулярны.

Таким образом, в трапеции ABCD, AD ∥ BC, CO и DO — биссектрисы углов ADC и BCD,

   

Значит, треугольник COD — прямоугольный,

   

(как радиус, проведенный в точку касания).

Следовательно, ON — высота, проведённая к гипотенузе,

   

www.treugolniki.ru

Радиус вписанной окружности в трапецию

Трапеция является несколько нестандартной фигурой среди четырехугольников. Она не является правильным многоугольником, однако обладает рядом отличительных свойств, среди которых – возможность вписать в равнобокую трапецию окружность. Это обусловлено тем, что для четырехугольников действует правило, согласно которому в него можно вписать окружность, если суммы его противоположных сторон равны. Не каждая трапеция соблюдает это правило, но если в нее все-таки вписана окружность, значит, сумма ее оснований равна сумме боковых сторон. Поскольку радиусы окружности, опущенные на основания трапеции, находятся по отношению к ним под прямым углом, следовательно, они совпадают с высотой трапеции, из чего можно вывести формулу радиуса окружности вписанной в трапецию через высоту:

Так как окружность можно вписать только в трапецию, у которой суммы противоположных сторон равны, то путем нехитрых преобразований через формулы квадрата разности и квадрата суммы можно получить, что высота трапеции равна среднему геометрическому ее оснований a и b.

Следовательно, не зная высоты, можно вычислить радиус окружности, вписанной в трапецию, через основания:


Существует и другой способ найти радиус вписанной в трапецию окружности. Для этого необходимо провести биссектрисы двух углов у боковой стороны. Точка их пересечения должна совпасть с центром вписанной окружности, а также образовать прямой угол. Соответственно, радиус в таком треугольнике станет высотой, которая, исходя из его свойств, равна среднему геометрическому проекций катетов на гипотенузу, то есть боковую сторону трапеции.

geleot.ru

В прямоугольную трапецию вписана окружность

Если в условии задачи сказано, что в прямоугольную трапецию вписана окружность, можно использовать следующие свойства.

1. Сумма оснований трапеции равна сумме боковых сторон.

2. Расстояния от вершины трапеции до точек касания вписанной окружности равны.

3. Высота прямоугольной трапеции равна ее меньшей боковой стороне и равна диаметру вписанной окружности.

4. Центр вписанной окружности является точкой пересечения биссектрис углов трапеции.

5. Если точка касания делит боковую сторону на отрезки m и n, то радиус вписанной окружности равен

   

(Подробнее смотрите «В трапецию вписана окружность«)

И еще два полезных свойства прямоугольной трапеции, в которую вписана окружность:

1) Четырехугольник, образованный центром вписанной окружности, точками касания и вершиной трапеции — квадрат, сторона которого равна радиусу. (AMOE и BKOM — квадраты со стороной r).

2) Если в прямоугольную трапецию вписана окружность, площадь трапеции равна произведению ее оснований.

  Площадь трапеции равна произведению полусуммы ее оснований на высоту:

   

Обозначим CF=m, FD=n. Поскольку расстояния от вершин до точек касания равны, высота трапеции равна двум радиусам вписанной окружности, а

   

 

   

   

   

   

   

   

 

 

www.uznateshe.ru

Вписанная в равнобедренную трапецию окружность

Вписанная в равнобедренную трапецию окружность указывает на некоторые особенности данной трапеции.
Рассмотрим их.
 

  1. Окружность в трапецию можно вписать только в том случае, когда суммы попарно противоположных сторон одинаковые.


Другими словами, окружность в трапецию можно вписать тогда, когда:
AB + CD = AD + BC.
Справедливым будет и обратное утверждение:

Если суммы попарно противоположных сторон трапеции одинаковые, то в такую трапецию можно вписать окружность.
Из всего вышесказанного следует, что если трапеция равнобедренная, то:

   

 

  1. По свойству средней линии, если в равнобедренную трапецию можно вписать окружность, то ее боковые стороны длине средней линии.

   

 

  1. Высоту равнобедренной трапеции можно выразить через основания этой трапеции.


 
Согласно одному из свойств равнобедренной трапеции запишем:

   

Боковая сторона такой трапеции равна:

   

Рассмотрим прямоугольный треугольник ABF.
По теореме Пифагора запишем:

   

   

   

 

ru.solverbook.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *