Сборник задач по математике ОГЭ-2019 на тему «Проценты, смеси, сплавы»
ОГЭ — 2019. Задание №22.
Задачи на проценты, сплавы и смеси из открытого банка ФИПИ
1. Задание 22 № 311653
Смешав 60%−ый и 30%−ый растворы кислоты и добавив 5 кг чистой воды, получили 20%−ый раствор кислоты. Если бы вместо 5 кг воды добавили 5 кг 90%−го раствора той же кислоты, то получили бы 70%−ый раствор кислоты. Сколько килограммов 60%−го раствора использовали для получения смеси?
2. Задание 22 № 314395
Имеется два сплава с разным содержанием меди: в первом содержится 60%, а во втором — 45% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% меди?
3. Задание 22 № 314431
При смешивании первого раствора кислоты, концентрация которого 20%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 30% кислоты. В каком отношении были взяты первый и второй растворы?
4. Задание 22 № 314508
На пост главы администрации города претендовало три кандидата: Журавлёв, Зайцев, Иванов. Во время выборов за Иванова было отдано в 2 раза больше голосов, чем за Журавлёва, а за Зайцева — в 3 раза больше, чем за Журавлёва и Иванова вместе. Сколько процентов голосов было отдано за победителя?
5. Задание 22 № 316357
Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 4 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава.
6. Задание 22 № 338773
Свежие фрукты содержат 80% воды, а высушенные — 28%. Сколько сухих фруктов получится из 288 кг свежих фруктов?
7. Задание 22 № 338786
Смешали некоторое количество 10-процентного раствора некоторого вещества с таким же количеством 12-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
8. Задание 22 № 341367
Свежие фрукты содержат 86 % воды, а высушенные — 23 %. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?
9. Задание 22 № 348438
Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе?
10. Задание 22 № 349497
Имеются два сосуда, содержащие 4 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 57% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится в первом растворе?
11. Задание 22 № 349691
Имеются два сосуда, содержащие 40 кг и 30 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 73% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 72% кислоты. Сколько килограммов кислоты содержится во втором растворе?
12. Задание 22 № 349700
Имеются два сосуда, содержащие 40 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 33% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 47% кислоты. Сколько килограммов кислоты содержится в первом растворе?
13. Задание 22 № 349844
Имеются два сосуда, содержащие 12 кг и 8 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 65% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится во втором растворе?
14. Задание 22 № 350150
Имеются два сосуда, содержащие 24 кг и 26 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 39% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится в первом растворе?
15. Задание 22 № 350236
Имеются два сосуда, содержащие 30 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 81% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 83% кислоты. Сколько килограммов кислоты содержится во втором растворе?
16. Задание 22 № 351603
Имеются два сосуда, содержащие 22 кг и 18 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 32% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 30% кислоты. Сколько килограммов кислоты содержится в первом растворе?
17.
Задание 22 № 351824Имеются два сосуда, содержащие 30 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 40% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 37% кислоты. Сколько килограммов кислоты содержится во втором растворе?
18. Задание 22 № 352466
Имеются два сосуда, содержащие 48 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 42% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится во втором растворе?
19. Задание 22 № 353507
Свежие фрукты содержат 88 % воды, а высушенные — 30 %. Сколько требуется свежих фруктов для приготовления 6 кг высушенных фруктов?
20. Задание 22 № 353527
Смешали некоторое количество 21-процентного раствора некоторого вещества с таким же количеством 95-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
21. Задание 22 № 353545
Свежие фрукты содержат 93% воды, а высушенные — 16%. Сколько сухих фруктов получится из 252 кг свежих фруктов?
3116532
№ 314395
2/1
№ 314431
2/1
№ 314508
75
№ 316357
16
№ 338773
80№ 338786
11
№ 341367
396
№ 348438
8,7
№ 349497
2,6
№ 349691
19,5
№ 349700
2
№ 349844
2,8
№ 350150
15,6
№ 350236
18,6
№ 351603
11
№ 351824
23,1
№ 352466
№ 353507
35
№ 353527
58
№ 353545
21
ОТВЕТЫinfourok.ru
подготовка к ОГЭ и ЕГЭ
К учебнику: Алгебра. 9 класс. Мерзляк А.Г., Полонский В.Б., Якир М.С. М.: 2014. — 304 с.
К уроку: Итоги главы 4
К учебнику: Алгебра. 9 класс. Учебник. Макарычев Ю.Н., Миндюк Н.Г. и др. 21-е изд. — М.: 2014.— 271 с.К уроку: Упражнения для повторения курса 7—9 классов
К учебнику: Алгебра. 9 класс. Учебник. Рубин А.Г., Чулков П.В. М.: 2015. — 208 с.
К уроку: Задания для повторения
К учебнику: Алгебра. Учебник для 9 класса. Никольский С.М., Потапов М.К. и др. М.: 2014. — 335 с.
К учебнику: Алгебра. 9 класс, Мерзляк А.Г., Поляков В.М., Изд. ВЕНТАНА-ГРАФ
К учебнику: Алгебра и начала математического анализа. 11 класс. Учебник. (базовый и углублённый уровни). Мордкович А.Г., Семенов П.В. 2-е изд. — М.: 2014. — 311с.
К учебнику: Алгебра и начала математического анализа. 10-11 классы. (базовый и углубленный уровни) Алимов А.Ш., Колягин Ю.М. и др. 3-е изд. — М.: Просвещение, 2016. — 464 с.
К уроку: Упражнения для итогового повторения курса алгебры и начал математического анализа
infourok.ru
Тест: Задачи на проценты №2
Тест состоит из 19 вопросов. Предназначен для проверки знаний учащихся по теме » Задачи на проценты». Предлагаются различные типы задач на проценты. Тест рекумендуется при подготовке учащихся к ГИА и ЕГЭ.
Математика 9 класс | ID: 784 | Дата: 28.12.2013
«;} else {document.getElementById(«torf1″).innerHTML=»»;}; if (answ.charAt(1)==»1″) {document.getElementById(«torf2″).innerHTML=»»;} else {document.getElementById(«torf2″).innerHTML=»»;}; if (answ.charAt(2)==»1″) {document.getElementById(«torf3″).innerHTML=»»;} else {document.getElementById(«torf3″).innerHTML=»»;}; if (answ.charAt(3)==»1″) {document.getElementById(«torf4″).innerHTML=»»;} else {document.getElementById(«torf4″).innerHTML=»»;}; if (answ.charAt(4)==»1″) {document.getElementById(«torf5″).innerHTML=»»;} else {document.getElementById(«torf5″).innerHTML=»»;}; if (answ.charAt(5)==»1″) {document.getElementById(«torf6″).innerHTML=»»;} else {document.getElementById(«torf6″).innerHTML=»»;}; if (answ.charAt(6)==»1″) {document.getElementById(«torf7″).innerHTML=»»;} else {document.getElementById(«torf7″).innerHTML=»»;}; if (answ.charAt(7)==»1″) {document.getElementById(«torf8″).innerHTML=»»;} else {document.getElementById(«torf8″).innerHTML=»»;}; if (answ.charAt(8)==»1″) {document.getElementById(«torf9″).innerHTML=»»;} else {document.getElementById(«torf9″).innerHTML=»»;}; if (answ.charAt(9)==»1″) {document.getElementById(«torf10″).innerHTML=»»;} else {document.getElementById(«torf10″).innerHTML=»»;}; if (answ.charAt(10)==»1″) {document.getElementById(«torf11″).innerHTML=»»;} else {document.getElementById(«torf11″).innerHTML=»»;}; if (answ.charAt(11)==»1″) {document.getElementById(«torf12″).innerHTML=»»;} else {document.getElementById(«torf12″).innerHTML=»»;}; if (answ.charAt(12)==»1″) {document.getElementById(«torf13″).innerHTML=»»;} else {document.getElementById(«torf13″).innerHTML=»»;}; if (answ.charAt(13)==»1″) {document.getElementById(«torf14″).innerHTML=»»;} else {document.getElementById(«torf14″).innerHTML=»»;}; if (answ.charAt(14)==»1″) {document.getElementById(«torf15″).innerHTML=»»;} else {document.getElementById(«torf15″).innerHTML=»»;}; if (answ.charAt(15)==»1″) {document.getElementById(«torf16″).innerHTML=»»;} else {document.getElementById(«torf16″).innerHTML=»»;}; if (answ.charAt(16)==»1″) {document.getElementById(«torf17″).innerHTML=»»;} else {document.getElementById(«torf17″).innerHTML=»»;}; if (answ.charAt(17)==»1″) {document.getElementById(«torf18″).innerHTML=»»;} else {document.getElementById(«torf18″).innerHTML=»»;}; if (answ.charAt(18)==»1″) {document.getElementById(«torf19″).innerHTML=»»;} else {document.getElementById(«torf19″).innerHTML=»»;}; } } Вопрос № 13Стоимость путёвки в пансионат складывается из стоимости питания. В связи с тем, что питание в пансионате подорожало на 50%, а проживание — на 25%, стоимость путёвки увеличилась на 40%. За что платили больше до подорожания — за питание или проживание, и во сколько раз?
а) за питание в 1,5 раза больше, чем за проживаниеб) за проживание в 1,2 раза больше, чем за питание
в) за питание в 1,2 раза больше, чем за проживание
г) за проживание в 1,5 раза больше, чем за питание
Получение сертификата
о прохождении теста
testedu.ru