Задачи на проценты 9 класс огэ – Материал для подготовки к ЕГЭ (ГИА, 9 класс) по теме: ПРОЕКТ «Методика подготовки выпускников решению задач по теме «Задачи на проценты» , включенных в ОГЭ по математике. Разработка системы индивидуальных заданий»

Сборник задач по математике ОГЭ-2019 на тему «Проценты, смеси, сплавы»

ОГЭ — 2019. Задание №22.

Задачи на проценты, сплавы и смеси из открытого банка ФИПИ

1. Задание 22 № 311653

Смешав 60%−ый и 30%−ый рас­тво­ры кис­ло­ты и до­ба­вив 5 кг чи­стой воды, по­лу­чи­ли 20%−ый рас­твор кислоты. Если бы вме­сто 5 кг воды до­ба­ви­ли 5 кг 90%−го рас­тво­ра той же кислоты, то по­лу­чи­ли бы 70%−ый рас­твор кислоты. Сколь­ко ки­ло­грам­мов 60%−го рас­тво­ра ис­поль­зо­ва­ли для по­лу­че­ния смеси?

2. Задание 22 № 314395

Име­ет­ся два спла­ва с раз­ным со­дер­жа­ни­ем меди: в пер­вом со­дер­жит­ся 60%, а во вто­ром — 45% меди. В каком от­но­ше­нии надо взять пер­вый и вто­рой спла­вы, чтобы по­лу­чить из них новый сплав, со­дер­жа­щий 55% меди?

3. Задание 22 № 314431

При сме­ши­ва­нии пер­во­го рас­тво­ра кис­ло­ты, кон­цен­тра­ция ко­то­ро­го 20%, и вто­ро­го рас­тво­ра этой же кис­ло­ты, кон­цен­тра­ция ко­то­ро­го 50%, по­лу­чи­ли рас­твор, со­дер­жа­щий 30% кис­ло­ты. В каком от­но­ше­нии были взяты пер­вый и вто­рой рас­тво­ры?

4. Задание 22 № 314508

На пост главы ад­ми­ни­стра­ции го­ро­да пре­тен­до­ва­ло три кан­ди­да­та: Жу­равлёв, Зай­цев, Ива­нов. Во время вы­бо­ров за Ива­но­ва было от­да­но в 2 раза боль­ше го­ло­сов, чем за Жу­равлёва, а за Зай­це­ва — в 3 раза боль­ше, чем за Жу­равлёва и Ива­но­ва вме­сте. Сколь­ко про­цен­тов го­ло­сов было от­да­но за по­бе­ди­те­ля?

5. Задание 22 № 316357

Первый сплав со­дер­жит 5% меди, вто­рой — 13% меди. Масса вто­ро­го спла­ва боль­ше массы пер­во­го на 4 кг. Из этих двух спла­вов по­лу­чи­ли тре­тий сплав, со­дер­жа­щий 10% меди. Най­ди­те массу тре­тье­го сплава.

6. Задание 22 № 338773

Све­жие фрук­ты со­дер­жат 80% воды, а вы­су­шен­ные — 28%. Сколь­ко сухих фрук­тов по­лу­чит­ся из 288 кг све­жих фрук­тов?

7. Задание 22 № 338786

Сме­ша­ли не­ко­то­рое ко­ли­че­ство 10-про­цент­но­го рас­тво­ра­ не­ко­то­ро­го ве­ще­ства с таким же ко­ли­че­ством 12-про­цент­но­го рас­тво­ра ­это­го же ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

8. Задание 22 № 341367

Свежие фрук­ты со­дер­жат 86 % воды, а вы­су­шен­ные — 23 %. Сколь­ко тре­бу­ет­ся све­жих фрук­тов для при­го­тов­ле­ния 72 кг вы­су­шен­ных фруктов?

9. Задание 22 № 348438

Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе?

10. Задание 22 № 349497

Имеются два сосуда, содержащие 4 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 57% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится в первом растворе?

11. Задание 22 № 349691

Имеются два сосуда, содержащие 40 кг и 30 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 73% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 72% кислоты. Сколько килограммов кислоты содержится во втором растворе?

12. Задание 22 № 349700

Имеются два сосуда, содержащие 40 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 33% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 47% кислоты. Сколько килограммов кислоты содержится в первом растворе?

13. Задание 22 № 349844

Имеются два сосуда, содержащие 12 кг и 8 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 65% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится во втором растворе?

14. Задание 22 № 350150

Имеются два сосуда, содержащие 24 кг и 26 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 39% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится в первом растворе?

15. Задание 22 № 350236

Имеются два сосуда, содержащие 30 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 81% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 83% кислоты. Сколько килограммов кислоты содержится во втором растворе?

16. Задание 22 № 351603

Имеются два сосуда, содержащие 22 кг и 18 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 32% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 30% кислоты. Сколько килограммов кислоты содержится в первом растворе?

17. 

Задание 22 № 351824

Имеются два сосуда, содержащие 30 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 40% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 37% кислоты. Сколько килограммов кислоты содержится во втором растворе?

18. Задание 22 № 352466

Имеются два сосуда, содержащие 48 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 42% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится во втором растворе?

19. Задание 22 № 353507

Свежие фрук­ты со­дер­жат 88 % воды, а вы­су­шен­ные — 30 %. Сколь­ко тре­бу­ет­ся све­жих фрук­тов для при­го­тов­ле­ния 6 кг вы­су­шен­ных фруктов?

20. Задание 22 № 353527

Сме­ша­ли не­ко­то­рое ко­ли­че­ство 21-про­цент­но­го рас­тво­ра­ не­ко­то­ро­го ве­ще­ства с таким же ко­ли­че­ством 95-про­цент­но­го рас­тво­ра ­это­го же ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

21. Задание 22 № 353545

Све­жие фрук­ты со­дер­жат 93% воды, а вы­су­шен­ные — 16%. Сколь­ко сухих фрук­тов по­лу­чит­ся из 252 кг све­жих фрук­тов?

311653

2

№ 314395

2/1

№ 314431

2/1

№ 314508

75

№ 316357

16

№ 338773

80

№ 338786

11

№ 341367

396

№ 348438

8,7

№ 349497

2,6

№ 349691

19,5

№ 349700

2

№ 349844

2,8

№ 350150

15,6

№ 350236

18,6

№ 351603

11

№ 351824

23,1

№ 352466

4,2

№ 353507

35

 № 353527

58

№ 353545

21

ОТВЕТЫ

infourok.ru

подготовка к ОГЭ и ЕГЭ

К учебнику: Алгебра. 9 класс. Мерзляк А.Г., Полонский В.Б., Якир М.С. М.: 2014. — 304 с.

К уроку: Итоги главы 4

К учебнику: Алгебра. 9 класс. Учебник. Макарычев Ю.Н., Миндюк Н.Г. и др. 21-е изд. — М.: 2014.— 271 с.

К уроку: Упражнения для повторения курса 7—9 классов

К учебнику: Алгебра. 9 класс. Учебник. Рубин А.Г., Чулков П.В. М.: 2015. — 208 с.

К уроку: Задания для повторения

К учебнику: Алгебра. Учебник для 9 класса. Никольский С.М., Потапов М.К. и др. М.: 2014. — 335 с.

К учебнику: Алгебра. 9 класс, Мерзляк А.Г., Поляков В.М., Изд. ВЕНТАНА-ГРАФ

К учебнику: Алгебра и начала математического анализа. 11 класс. Учебник. (базовый и углублённый уровни). Мордкович А.Г., Семенов П.В. 2-е изд. — М.: 2014. — 311с.

К учебнику: Алгебра и начала математического анализа. 10-11 классы. (базовый и углубленный уровни) Алимов А.Ш., Колягин Ю.М. и др. 3-е изд. — М.: Просвещение, 2016. — 464 с.

К уроку: Упражнения для итогового повторения курса алгебры и начал математического анализа

infourok.ru

Тест: Задачи на проценты №2

Тест состоит из 19 вопросов. Предназначен для проверки знаний учащихся по теме » Задачи на проценты». Предлагаются различные типы задач на проценты. Тест рекумендуется при подготовке учащихся к ГИА и ЕГЭ.

Математика 9 класс | ID: 784 | Дата: 28.12.2013

«;} else {document.getElementById(«torf1″).innerHTML=»»;}; if (answ.charAt(1)==»1″) {document.getElementById(«torf2″).innerHTML=»»;} else {document.getElementById(«torf2″).innerHTML=»»;}; if (answ.charAt(2)==»1″) {document.getElementById(«torf3″).innerHTML=»»;} else {document.getElementById(«torf3″).innerHTML=»»;}; if (answ.charAt(3)==»1″) {document.getElementById(«torf4″).innerHTML=»»;} else {document.getElementById(«torf4″).innerHTML=»»;}; if (answ.charAt(4)==»1″) {document.getElementById(«torf5″).innerHTML=»»;} else {document.getElementById(«torf5″).innerHTML=»»;}; if (answ.charAt(5)==»1″) {document.getElementById(«torf6″).innerHTML=»»;} else {document.getElementById(«torf6″).innerHTML=»»;}; if (answ.charAt(6)==»1″) {document.getElementById(«torf7″).innerHTML=»»;} else {document.getElementById(«torf7″).innerHTML=»»;}; if (answ.charAt(7)==»1″) {document.getElementById(«torf8″).innerHTML=»»;} else {document.getElementById(«torf8″).innerHTML=»»;}; if (answ.charAt(8)==»1″) {document.getElementById(«torf9″).innerHTML=»»;} else {document.getElementById(«torf9″).innerHTML=»»;}; if (answ.charAt(9)==»1″) {document.getElementById(«torf10″).innerHTML=»»;} else {document.getElementById(«torf10″).innerHTML=»»;}; if (answ.charAt(10)==»1″) {document.getElementById(«torf11″).innerHTML=»»;} else {document.getElementById(«torf11″).innerHTML=»»;}; if (answ.charAt(11)==»1″) {document.getElementById(«torf12″).innerHTML=»»;} else {document.getElementById(«torf12″).innerHTML=»»;}; if (answ.charAt(12)==»1″) {document.getElementById(«torf13″).innerHTML=»»;} else {document.getElementById(«torf13″).innerHTML=»»;}; if (answ.charAt(13)==»1″) {document.getElementById(«torf14″).innerHTML=»»;} else {document.getElementById(«torf14″).innerHTML=»»;}; if (answ.charAt(14)==»1″) {document.getElementById(«torf15″).innerHTML=»»;} else {document.getElementById(«torf15″).innerHTML=»»;}; if (answ.charAt(15)==»1″) {document.getElementById(«torf16″).innerHTML=»»;} else {document.getElementById(«torf16″).innerHTML=»»;}; if (answ.charAt(16)==»1″) {document.getElementById(«torf17″).innerHTML=»»;} else {document.getElementById(«torf17″).innerHTML=»»;}; if (answ.charAt(17)==»1″) {document.getElementById(«torf18″).innerHTML=»»;} else {document.getElementById(«torf18″).innerHTML=»»;}; if (answ.charAt(18)==»1″) {document.getElementById(«torf19″).innerHTML=»»;} else {document.getElementById(«torf19″).innerHTML=»»;}; } } Вопрос № 13

Стоимость путёвки в пансионат складывается из стоимости питания. В связи с тем, что питание в пансионате подорожало на 50%, а проживание — на 25%, стоимость путёвки увеличилась на 40%. За что платили больше до подорожания — за питание или проживание, и во сколько раз?

а) за питание в 1,5 раза больше, чем за проживание
б) за проживание в 1,2 раза больше, чем за питание
в) за питание в 1,2 раза больше, чем за проживание
г) за проживание в 1,5 раза больше, чем за питание

Получение сертификата
о прохождении теста

testedu.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *