Так ли точна математика, как кажется? / Habr
Наверное, данный вопрос задавал себе каждый, чуточку интересующийся математикой человек. Прочитав статью 2 х 2 = 4, было сделано заключение, что эта тема также может понравиться хабралюдям. Речь пойдет об аксиомах в математике, противоречиях и парадоксах. Кому интересно — добро пожаловать под кат.Вместо предисловия
Каждый из нас в школе не сомневался в справедливости тех или иных математических утверждений. Ну и правда, что учитель сказал, то и истина. Но, познакомившись со строгой математикой (не люблю слово «высшей»), мы начали понимать, что чем больше мы стараемся формализовать предмет, тем сложнее это сделать, а иногда совсем не получается.
Так нам привычные действительные числа, для Леопольда Кронекера не являлись таковыми, он говорил: «Бог создал натуральные числа, а всё прочее — дело рук человеческих» («Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk»)
После того, как Георг Кантор доказал, что отрезок равномощен (А и B равномощны, если существует биекция между ними) n-мерному пространству, он провозгласил: «Я вижу это, но я не верю в это!» («Je le vois, mais je ne le crois pas!»)
Немного философии
Речь в этой статье пойдет об аксиоматике тех или иных математических множеств, операций и т.д., но все же закономерным вопросом будет, а зачем нам аксиомы вообще нужны? Приведу простой пример. Возьмем русский язык и слово, например, «дежавю». Посмотрим его значение, «Дежавю́ — психическое состояние, при котором человек ощущает, что он когда-то уже был в подобной ситуации». Но мы дотошные, посему теперь вместо одного слова перед нами возникнет куда больше. Что такое «психический», «состояние», «человек», «ощущать», «подобный», «ситуация». Как вы можете заметить, у нас получается дерево слов, а в силу того, что слов, имеющих значение в русском языке конечное множество, у нас получится путь в дереве, в котором встречается дважды одно и то же слово, т.е. мы определили его через самого себя.
Больше конкретики. Аксиомы Пеано натуральных чисел.
Я, как программист, люблю считать, что 0 принадлежит натуральным числам, это удобно. Что-ж, теперь наиболее знаменитая аксиоматика Пеано. 1. 0 является натуральным числом.
2. Число, следующее за натуральным, тоже является натуральным.
3. 0 не следует ни за каким натуральным числом.
4. Если натуральное число a непосредственно следует как за числом b, так и за числом c, то b и c совпадают.
5. (Аксиома индукции) Если какое-либо предложение доказано для 0 (база индукции) и если из допущения, что оно верно для натурального числа n, вытекает, что оно верно для следующего за n натурального числа (индукционное предположение), то это предложение верно для всех натуральных чисел.
Разберемся по-порядочку.
1-я аксиома говорит, что существует хотя бы одно натуральное число. Иначе бы мы сказали, что это вообще пустое множество и все аксиомы бы для него выполнялись бы.
2 и 3 вроде бы и так ясны.
5. Первый человек в очереди женщина. За каждой женщиной идет женщина. В реальной жизни это значит, что вся очередь состоит из женщин. А так как мы хотим описывать все же более жизненные объекты, то и вводим аксиому индукции, ибо из предыдущих она никак не следует.
Удобная модель, все отлично, все счастливы. Вопрос, в чем же подвох? Оказывается, что если мы добавим новое натуральное число с к нашим привычным натуральным числам и скажем, что оно больше всех наших привычных, то мы не придем ни к какому противоречию. Т.е. у нас есть не только наша модель N, но и, к примеру, N + Z. Где в N и Z (целые числа) обычное сравнение чисел, а также любое число из N меньше любого числа из Z.
Вопрос, можно ли ввести аксиомы так, чтобы мы описали наши привычные натуральные числа, и только их (т.е. существует ли формула, подставив в которую естественное натуральное число она выдаст True, а любое другое число False)? Ответ — нет. Идея доказательства в том, что все формулы можно закодировать натуральными числами. А далее, написав хитрую формулу, и подставив ее код в Ф (формула, которая по предположению умеет определять естественную натуральность), мы получим противоречие.
Больше конкретики. Аксиоматика множеств Цермело-Френкеля (ZF)
На ниже приведенных аксиомах и строится современная математика, что-ж, глубокий вдох… приступим. Для начала оговорюсь, что мы будем рассматривать всевозможные множества. Например, множество всех домов в России, в то же время, каждый элемент множества, в данном случае дом, может содеражать еще какие-то множества, вполне может быть, что они оказались неоднородными, например количество роутеров в доме (ед. измерения — число) и люди (ед. измерения — человек), проживающие в этом доме. Более естественный пример для программистов — вложенные списки [ [1, 2, [3, -19] ], [0, 1], [5, [26, 1] ], 27]. В данном примере у нас есть множество, состоящее из 4-х элементов [1, 2, [3, -19] ], [0, 1], [5, [26, 1] ], 27. Для ясного осознания заметим, что 0 не является элементом этого множества, хотя, если копнуть в глубину, то окажется, что 0 там есть! Теперь перейдем к аксиомам. Я позволю себе не давать нудные формулировки, а объяснять своими словами.
2. Аксиома подмножеств. Если у нас есть некоторая формула, то из любого множества она «вырезает» также множество.
3. Аксиома замены. Если для каждого мн-ва х, F(x) = {y | Ф(х, у)} также является множеством, то для любого а, {y | x принадлежит а, у принадлежит F(x)} — также множество.
4. Аксиома степени. Множество подмножеств также является множеством.
5. Аксиома бесконечности. Существует множество, которое содержит пустое множество, а также вместе с каждым элементом x содержит множество {{x}, x} — т.е. все элементы x и сам x как элемент.
6. Аксиома регулярности. Не существует бесконечных по включению цепочек множеств, т.е. нельзя, чтобы множество a1 сожержало a2, то в свою очередь a3, и т.д.
Пояснения.
1. Все ясно.
2. Пусть мы рассматриваем множество натуральных чисел. А формула такая: х != 0. Понятно, что ей удовлетворяют все натуральные числа кроме нуля. Аксиома говорит, что натуральные числа без нуля — также множество. Если постараться обощить эту теорему, то получится парадокс Рассела.
3. Не знал как проще описать эту аксиому, в двух словах, если мы будем объединять множества, то получится множество.
4. [1, 2, 3], множество подмножеств данного множества (прошу прощения за большую удельную плотность слова «множество») — 1, 2, 3, [1, 2], [1, 3], [2, 3], [1, 2, 3]. Вопрос, а когда может получиться, что мы что-то сделаем и у нас окажется не множество? Ну вот хотя бы рассмотрим множество всех множеств! По аксиоме 4 существует множество его подмножеств, а нетрудно доказать, что оно по мощности больше нашего мн-ва.
6. Тоже все ясно.
Что-ж, покончили с нудятиной. С помощью этих аксиом можно построить натуральные числа, к примеру. Они будут выглядеть так (e — пустое множество). 0 = е, 1 = {e}, 2 = {e, {e}}, 3 = {e, {e}, {e, {e}} }, и т.д. Собственно говоря, на данной теории и построена современная математика.
Противоречия и парадоксы
Во-первых, не доказано, что аксиомы ZF непротиворечивы, если же они противоречивы, то можно вывести любое утверждение, например 0 = 1, и грош цена нашей науке. Даже более, доказано, что нельзя доказать непротиворечивость ZF. Забавная штука получается, но в этом нет ничего страшного. Если мы чего-то не можем доказать, не значит, что этого нет, в данном случае непротиворечивости. Движемся дальше. Математика получается достаточно скупой наукой, то есть мало всего можно доказать, если не добавить аксиому выбора. А что это за аксиома такая? В трех словах — из любого непустого множества можно выбрать элемент. Казалось бы, очень естественная аксиома, но она приводит к парадоксу Банаха-Тарского, заключающегося в том, что шар можно разбить на 5 кусков и собрать из них 2 таких же шара. Т.е. яблоко можно разрезать на 5 частей и собрать два яблока?! Посему и парадокс. Что еще интереснее, доказано, что если теория ZF непротиворечива, то добавив к ней аксиому выбора (ZF + Axiom of Choice = ZFC) мы получим непротиворечивую аксиоматику!
Искорка надежды
То мы что-то не можем доказать, то какие-то парадоксы. Может, математика — полная чушь? Может не следует ее изучать? Ответ: никакая не чушь, изучать следует. Почему же, спросит читатель. Я приведу достаточно физическое доказательство. Обычно в физике бывает так. «Ого, в течении 100 лет мы наблюдали за падением бутербродов и оказалось, что они падают маслом вниз, назовем это законом». Думаете, шучу? А попытайтесь доказать, что тела состоят из молекул. Ничего более строгого, чем то, что в течение 2000 лет эта теория не давала сбой, вы не придумаете. Так вот с математикой примерно та же ситуация. Мы используем ее, вроде бы машины едут, самолеты летят, здания стоят и все хорошо. Интуитивно ясно, что если бы в математике было противоречие, то, чем глубже бы мы копались в дебрях этой науки, тем легче бы были доказательства теорем, но такого не происходит.
Всем удачи в изучении данного предмета! =)
Сообщение по математике на тему «Аксиома»
Аксиома
Аксиома (др. — греч. ἀξίωμα — утверждение, положение), постулат — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других ее положений, которые, в свою очередь, называются теоремами.
Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами.
В современной науке вопрос об их истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.
Аксиоматизация теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах, и не опираться на обычное конкретное значение этих объектов и их отношений.
Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии.
Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.
Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определённого уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, ни истинность, ни ложность которого не может быть доказана средствами самой этой системы).
Примеры аксиом:
Примеры систем аксиом:
История
Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и перешёл в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах Начал Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно переписчики придерживались разных воззрений на различие этих понятий.
Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».
Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом. Лишь подтверждение теории является одновременно и подтверждением набора её аксиом.
Аксиома — Википедия
Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами[1].
Назначение
Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами[2].
В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории[3].
Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.
Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии.
Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.
Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система), в которой можно определить натуральные числа, сложение и умножение, неполна. Это значит, что найдётся бесконечное количество математических утверждений (функций, выражений), ни истинность, ни ложность которых не сможет быть доказана на основании данной системы аксиом. Также, по теореме о неполноте, среди этих невыводимых утверждений будет утверждение о непротиворечивости этой системы.
История
Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и переходит в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно, переписчики придерживались разных воззрений на различие этих понятий.
Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».
Толчком к изменению восприятия аксиом послужили работы российского математика Николая Лобачевского о неевклидовой геометрией, впервые опубликованные в конце 1820-х годов. Ещё будучи студентом, он пытался доказать пятый постулат Евклида, но позднее отказался от этого. Лобачевский сделал вывод о том, что пятый постулат является лишь произвольным ограничением, которое можно заменить другим ограничением. Если бы пятый постулат Евклида был доказуем, то Лобачевский столкнулся бы с противоречиями. Однако, хотя новая версия пятого постулата и не была наглядно-очевидной, она полностью выполняла роль аксиомы, позволяя построить новую непротиворечивую систему геометрии.
Сперва идеи Лобачевского не были признаны (например, о них отрицательно отзывался академик Остроградский). Позднее, когда Лобачевский опубликовал работы на других языках, он был замечен Гауссом, который тоже имел некоторые наработки в области неевклидовой геометрии. Он косвенно высказал восхищение этой работой. Настоящее признание геометрия Лобачевского получила лишь через 10-12 лет после смерти автора, когда была доказана её непротиворечивость в случае непротиворечивости геометрии Евклида. Это привело к революции в математическом мире. Гильберт развернул масштабный проект по аксиоматизации всей математики для доказательства её непротиворечивости. Его планам не суждено было сбыться из-за последовавших теорем Гёделя о неполноте. Однако это послужило толчком к формализации математики. Например, появились аксиомы натуральных чисел и их арифметики, работы Кантора по созданию теории множеств. Это позволило математикам создавать строго истинные доказательства для теорем.
Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории — аксиомы могут быть достаточно произвольными, они не обязаны быть очевидными. Единственным неизменным требованием к аксиоматическим системам является их внутренняя непротиворечивость. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом[1]. В соответствии с критерием Поппера, единственный отрицательный пример опровергает теорию и, как следствие, доказывает ложность системы аксиом, при этом множество подтверждающих примеров лишь увеличивает вероятность истинности системы аксиом.
Примеры
Примеры аксиом
- Аксиома выбора
- Аксиома параллельности Евклида
- Аксиома Архимеда
- Аксиома объёмности
- Аксиома регулярности
- Аксиома полной индукции
- Аксиома Колмогорова
- Аксиома булеана.
Примеры систем аксиом
- Аксиоматика теории множеств
- Аксиоматика вещественных чисел
- Аксиоматика Евклида
- Аксиоматика Гильберта.
См. также
Литература
- Начала Евклида. Книги I—VI. М.-Л., 1950
- Гильберт Д. Основания геометрии. М.-Л., 1948
Ссылки
Примечания
Аксиомы Википедия
Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами[1].
Назначение[ | ]
Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами[2].
В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории[3].
Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.
Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии.
Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.
Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система), в которой можно определить натуральные числа, сложение и умножение, неполна. Это значит, что найдётся бесконечное количество математических утверждений (функций, выражений), ни истинность, ни ложность которых не сможет быть доказана на основании данной системы аксиом. Также, по теореме о неполноте, среди этих невыводимых утверждений будет утверждение о непротиворечивости этой системы.
История[ | ]
Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и переходит в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно, переписчики придерживались разных воззрений на различие этих понятий.
Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».
Толчком к изменению восприятия аксиом послужили работы российского математика Николая Лобачевского о
Аксиома — Википедия
Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами[1].
Назначение
Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами[2].
В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории[3].
Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.
Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии.
Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.
Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система), в которой можно определить натуральные числа, сложение и умножение, неполна. Это значит, что найдётся бесконечное количество математических утверждений (функций, выражений), ни истинность, ни ложность которых не сможет быть доказана на основании данной системы аксиом. Также, по теореме о неполноте, среди этих невыводимых утверждений будет утверждение о непротиворечивости этой системы.
История
Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и переходит в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно, переписчики придерживались разных воззрений на различие этих понятий.
Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».
Толчком к изменению восприятия аксиом послужили работы российского математика Николая Лобачевского о неевклидовой геометрией, впервые опубликованные в конце 1820-х годов. Ещё будучи студентом, он пытался доказать пятый постулат Евклида, но позднее отказался от этого. Лобачевский сделал вывод о том, что пятый постулат является лишь произвольным ограничением, которое можно заменить другим ограничением. Если бы пятый постулат Евклида был доказуем, то Лобачевский столкнулся бы с противоречиями. Однако, хотя новая версия пятого постулата и не была наглядно-очевидной, она полностью выполняла роль аксиомы, позволяя построить новую непротиворечивую систему геометрии.
Сперва идеи Лобачевского не были признаны (например, о них отрицательно отзывался академик Остроградский). Позднее, когда Лобачевский опубликовал работы на других языках, он был замечен Гауссом, который тоже имел некоторые наработки в области неевклидовой геометрии. Он косвенно высказал восхищение этой работой. Настоящее признание геометрия Лобачевского получила лишь через 10-12 лет после смерти автора, когда была доказана её непротиворечивость в случае непротиворечивости геометрии Евклида. Это привело к революции в математическом мире. Гильберт развернул масштабный проект по аксиоматизации всей математики для доказательства её непротиворечивости. Его планам не суждено было сбыться из-за последовавших теорем Гёделя о неполноте. Однако это послужило толчком к формализации математики. Например, появились аксиомы натуральных чисел и их арифметики, работы Кантора по созданию теории множеств. Это позволило математикам создавать строго истинные доказательства для теорем.
Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории — аксиомы могут быть достаточно произвольными, они не обязаны быть очевидными. Единственным неизменным требованием к аксиоматическим системам является их внутренняя непротиворечивость. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом[1]. В соответствии с критерием Поппера, единственный отрицательный пример опровергает теорию и, как следствие, доказывает ложность системы аксиом, при этом множество подтверждающих примеров лишь увеличивает вероятность истинности системы аксиом.
Примеры
Примеры аксиом:
- Аксиома выбора
- Аксиома параллельности Евклида
- Аксиома Архимеда
- Аксиома объёмности
- Аксиома регулярности
- Аксиома полной индукции
- Аксиома Колмогорова
- Аксиома булеана.
Примеры систем аксиом:
- Аксиоматика теории множеств
- Аксиоматика вещественных чисел
- Аксиоматика Евклида
- Аксиоматика Гильберта.
См. также
Литература
- Начала Евклида. Книги I—VI. М.-Л., 1950
- Гильберт Д. Основания геометрии. М.-Л., 1948
Ссылки
Примечания
Аксиома — Википедия
Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами[1].
Назначение
Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами[2].
В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории[3].
Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.
Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии.
Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.
Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система), в которой можно определить натуральные числа, сложение и умножение, неполна. Это значит, что найдётся бесконечное количество математических утверждений (функций, выражений), ни истинность, ни ложность которых не сможет быть доказана на основании данной системы аксиом. Также, по теореме о неполноте, среди этих невыводимых утверждений будет утверждение о непротиворечивости этой системы.
Видео по теме
История
Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и переходит в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно, переписчики придерживались разных воззрений на различие этих понятий.
Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».
Толчком к изменению восприятия аксиом послужили работы российского математика Николая Лобачевского о неевклидовой геометрией, впервые опубликованные в конце 1820-х годов. Ещё будучи студентом, он пытался доказать пятый постулат Евклида, но позднее отказался от этого. Лобачевский сделал вывод о том, что пятый постулат является лишь произвольным ограничением, которое можно заменить другим ограничением. Если бы пятый постулат Евклида был доказуем, то Лобачевский столкнулся бы с противоречиями. Однако, хотя новая версия пятого постулата и не была наглядно-очевидной, она полностью выполняла роль аксиомы, позволяя построить новую непротиворечивую систему геометрии.
Сперва идеи Лобачевского не были признаны (например, о них отрицательно отзывался академик Остроградский). Позднее, когда Лобачевский опубликовал работы на других языках, он был замечен Гауссом, который тоже имел некоторые наработки в области неевклидовой геометрии. Он косвенно высказал восхищение этой работой. Настоящее признание геометрия Лобачевского получила лишь через 10-12 лет после смерти автора, когда была доказана её непротиворечивость в случае непротиворечивости геометрии Евклида. Это привело к революции в математическом мире. Гильберт развернул масштабный проект по аксиоматизации всей математики для доказательства её непротиворечивости. Его планам не суждено было сбыться из-за последовавших теорем Гёделя о неполноте. Однако это послужило толчком к формализации математики. Например, появились аксиомы натуральных чисел и их арифметики, работы Кантора по созданию теории множеств. Это позволило математикам создавать строго истинные доказательства для теорем.
Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории — аксиомы могут быть достаточно произвольными, они не обязаны быть очевидными. Единственным неизменным требованием к аксиоматическим системам является их внутренняя непротиворечивость. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом[1]. В соответствии с критерием Поппера, единственный отрицательный пример опровергает теорию и, как следствие, доказывает ложность системы аксиом, при этом множество подтверждающих примеров лишь увеличивает вероятность истинности системы аксиом.
Примеры
Примеры аксиом:
- Аксиома выбора
- Аксиома параллельности Евклида
- Аксиома Архимеда
- Аксиома объёмности
- Аксиома регулярности
- Аксиома полной индукции
- Аксиома Колмогорова
- Аксиома булеана.
Примеры систем аксиом:
- Аксиоматика теории множеств
- Аксиоматика вещественных чисел
- Аксиоматика Евклида
- Аксиоматика Гильберта.
См. также
Литература
- Начала Евклида. Книги I—VI. М.-Л., 1950
- Гильберт Д. Основания геометрии. М.-Л., 1948
Ссылки
Примечания
Аксиомы Пеано — Википедия
Материал из Википедии — свободной энциклопедии
Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в XIX веке итальянским математиком Джузеппе Пеано.
Аксиомы Пеано позволили формализовать арифметику, доказать многие свойства натуральных и целых чисел, а также использовать целые числа для построения формальных теорий рациональных и вещественных чисел. В сокращённом виде аксиомы Пеано использовались в ряде метаматематических разработок, включая решение фундаментальных вопросов о непротиворечивости и полноте теории чисел.
Изначально Пеано постулировал девять аксиом. Первая утверждает существование по меньшей мере одного элемента множества чисел. Следующие четыре — общие утверждения о равенстве, отражающие внутреннюю логику аксиоматики и исключённые из современного состава аксиом, как очевидные. Следующие три — аксиомы на языке логики первого порядка о выражении натуральных чисел через фундаментальное свойство функции следования. Девятая и последняя аксиома на языке логики второго порядка — о принципе математической индукции над рядом натуральных чисел. Арифметика Пеано — система, получаемая заменой аксиомы индукции системой аксиом на языке логики первого порядка и добавлением символов операций сложения и умножения.
Как следует из теоремы Гёделя о неполноте, существуют утверждения о натуральных числах, которые нельзя ни доказать, ни опровергнуть, исходя из аксиом Пеано. Некоторые такие утверждения имеют достаточно простую формулировку, например теорема Гудстейна или теорема Париса–Харрингтона.
Словесная[править | править код]
- 1 является натуральным числом;
- Число, следующее за натуральным, тоже является натуральным;
- 1 не следует ни за каким натуральным числом;
- Если натуральное число a{\displaystyle a} непосредственно следует как за числом b{\displaystyle b}, так и за числом c{\displaystyle c}, то b{\displaystyle b} и c{\displaystyle c} тождественны;
- (Аксиома индукции.) Если какое-либо предложение доказано для 1 (база индукции) и если из допущения, что оно верно для натурального числа n{\displaystyle n}, вытекает, что оно верно для следующего за n{\displaystyle n} натурального числа (индукционное предположение), то это предложение верно для всех натуральных чисел.
Математическая[править | править код]
Математическая формулировка использует функцию следования[en] S(x){\displaystyle S(x)}, которая сопоставляет числу x{\displaystyle x} следующее за ним число.
- 1∈N{\displaystyle 1\in \mathbb {N} };
- x∈N⇒S(x)∈N{\displaystyle x\in \mathbb {N} \Rightarrow S(x)\in \mathbb {N} };
- ∄x∈N:(S(x)=1){\displaystyle \nexists x\in \mathbb {N} \colon {\big (}S(x)=1{\big )}};
- (S(b)=a∧S(c)=a)⇒b=c{\displaystyle {\big (}S(b)=a\wedge S(c)=a{\big )}\Rightarrow b=c};
- P(1)∧∀n(P(n)⇒P(S(n)))⇒∀n∈N(P(n)){\displaystyle P(1)\wedge \forall n{\Big (}P(n)\Rightarrow P{\big (}S(n){\big )}{\Big )}\Rightarrow \forall n\in \mathbb {N} {\big (}P(n){\big )}}.
Возможна и иная форма записи:
- 1∈N{\displaystyle 1\in \mathbb {N} };
- S:N→N∖{1}{\displaystyle S\colon \mathbb {N} \to \mathbb {N} \setminus \{1\}};
- ∃S−1{\displaystyle \exists S^{-1}};
- 1∈M∧∀n∈N(n∈M⇒S(n)∈M)⇒N⊂M{\displaystyle 1\in M\land \forall n\in \mathbb {N} {\big (}n\in M\Rightarrow S(n)\in M{\big )}\Rightarrow \mathbb {N} \subset M}.
Последнее утверждение может быть сформулировано так: если некоторое высказывание P{\displaystyle P} верно для n=1{\displaystyle n=1} (база индукции) и для любого n{\displaystyle n} из верности P(n){\displaystyle P(n)} следует верность и P(S(n)){\displaystyle P(S(n))} (индукционное предположение), то P(n){\displaystyle P(n)} верно для любых натуральных n{\displaystyle n}.
Формализация арифметики включает в себя аксиомы Пеано, а также вводит операции сложения и умножения с помощью следующих аксиом:
- x+1=S(x){\displaystyle x+1=S(x)};
- x1+S(x2)=S(x1+x2){\displaystyle x_{1}+S(x_{2})=S(x_{1}+x_{2})};
- x⋅1=x{\displaystyle x\cdot 1=x};
- x1⋅S(x2)=x1⋅x2+x1{\displaystyle x_{1}\cdot S(x_{2})=x_{1}\cdot x_{2}+x_{1}}.
Необходимость формализации арифметики не принималась всерьёз до появления работы Германа Грассмана, который показал в 1860-х, что многие факты в арифметике могут быть установлены из более элементарных фактов о функции следования и математической индукции. В 1881 году Чарльз Сандерс Пирс опубликовал свою аксиоматизацию арифметики натуральных чисел. Формальное определение натуральных чисел в 1889 году сформулировал итальянский математик Пеано, основываясь на более ранних построениях Грассмана, в своей книге «Основания арифметики, изложенные новым способом» (лат. Arithmetices principia, nova methodo exposita). В 1888 году (за год до Пеано) практически в точности подобную аксиоматическую систему опубликовал Дедекинд[1]. Непротиворечивость арифметики Пеано доказана (англ.) в 1936 году Генценом с помощью трансфинитной индукции до ординала ϵ0.{\displaystyle \epsilon _{0}.} Как следует из второй теоремы Гёделя о неполноте, это доказательство не может быть проведено средствами самой арифметики Пеано.
- ↑ Н. Бурбаки. Основания математики. Логика. Теория множеств // Очерки по истории математики / И. Г. Башмакова (перевод с французского). — М: Издательство иностранной литературы, 1963. — С. 37. — 292 с. — (Элементы математики).