Аксиомы математики примеры: Так ли точна математика, как кажется? / Habr – аксиомы арифметики: falcao — LiveJournal

Так ли точна математика, как кажется? / Habr

Наверное, данный вопрос задавал себе каждый, чуточку интересующийся математикой человек. Прочитав статью 2 х 2 = 4, было сделано заключение, что эта тема также может понравиться хабралюдям. Речь пойдет об аксиомах в математике, противоречиях и парадоксах. Кому интересно — добро пожаловать под кат.
Вместо предисловия

Каждый из нас в школе не сомневался в справедливости тех или иных математических утверждений. Ну и правда, что учитель сказал, то и истина. Но, познакомившись со строгой математикой (не люблю слово «высшей»), мы начали понимать, что чем больше мы стараемся формализовать предмет, тем сложнее это сделать, а иногда совсем не получается.

Так нам привычные действительные числа, для Леопольда Кронекера не являлись таковыми, он говорил: «Бог создал натуральные числа, а всё прочее — дело рук человеческих» («Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk»)

После того, как Георг Кантор доказал, что отрезок равномощен (А и B равномощны, если существует биекция между ними) n-мерному пространству, он провозгласил: «Я вижу это, но я не верю в это!» («Je le vois, mais je ne le crois pas!»)

Немного философии

Речь в этой статье пойдет об аксиоматике тех или иных математических множеств, операций и т.д., но все же закономерным вопросом будет, а зачем нам аксиомы вообще нужны? Приведу простой пример. Возьмем русский язык и слово, например, «дежавю». Посмотрим его значение, «Дежавю́ — психическое состояние, при котором человек ощущает, что он когда-то уже был в подобной ситуации». Но мы дотошные, посему теперь вместо одного слова перед нами возникнет куда больше. Что такое «психический», «состояние», «человек», «ощущать», «подобный», «ситуация». Как вы можете заметить, у нас получается дерево слов, а в силу того, что слов, имеющих значение в русском языке конечное множество, у нас получится путь в дереве, в котором встречается дважды одно и то же слово, т.е. мы определили его через самого себя.

Вот для этого и нужны аксиомы. Нам всегда нужен фундамент, с которого мы можем стартовать, что-то, что и так всем интуитивно понятно. Неточность 1. В математике часто бывают утверждения, интуитивно понятные, но приводящие к парадоксам. Например аксиома выбора(Axiom of Choice), но об этом мы поговорим чуть позже.

Больше конкретики. Аксиомы Пеано натуральных чисел.

Я, как программист, люблю считать, что 0 принадлежит натуральным числам, это удобно. Что-ж, теперь наиболее знаменитая аксиоматика Пеано.

1. 0 является натуральным числом.
2. Число, следующее за натуральным, тоже является натуральным.
3. 0 не следует ни за каким натуральным числом.
4. Если натуральное число a непосредственно следует как за числом b, так и за числом c, то b и c совпадают.
5. (Аксиома индукции) Если какое-либо предложение доказано для 0 (база индукции) и если из допущения, что оно верно для натурального числа n, вытекает, что оно верно для следующего за n натурального числа (индукционное предположение), то это предложение верно для всех натуральных чисел.

Разберемся по-порядочку.
1-я аксиома говорит, что существует хотя бы одно натуральное число. Иначе бы мы сказали, что это вообще пустое множество и все аксиомы бы для него выполнялись бы.
2 и 3 вроде бы и так ясны.

4. Эта аксиома нужна для того, чтобы не появились «ответвления». Иначе мы могли бы сказать, что 3 следует за 2 и 2′, а дальше 2 и 2′ за 1 и 1′ соответственно, и т.д. В принципе, такая модель имеет право на существование, но на ней крайне сложно ввести отношение порядка.
5. Первый человек в очереди женщина. За каждой женщиной идет женщина. В реальной жизни это значит, что вся очередь состоит из женщин. А так как мы хотим описывать все же более жизненные объекты, то и вводим аксиому индукции, ибо из предыдущих она никак не следует.

Удобная модель, все отлично, все счастливы. Вопрос, в чем же подвох? Оказывается, что если мы добавим новое натуральное число с к нашим привычным натуральным числам и скажем, что оно больше всех наших привычных, то мы не придем ни к какому противоречию. Т.е. у нас есть не только наша модель N, но и, к примеру, N + Z. Где в N и Z (целые числа) обычное сравнение чисел, а также любое число из N меньше любого числа из Z.

Вопрос, можно ли ввести аксиомы так, чтобы мы описали наши привычные натуральные числа, и только их (т.е. существует ли формула, подставив в которую естественное натуральное число она выдаст True, а любое другое число False)? Ответ — нет. Идея доказательства в том, что все формулы можно закодировать натуральными числами. А далее, написав хитрую формулу, и подставив ее код в Ф (формула, которая по предположению умеет определять естественную натуральность), мы получим противоречие.

Больше конкретики. Аксиоматика множеств Цермело-Френкеля (ZF)

На ниже приведенных аксиомах и строится современная математика, что-ж, глубокий вдох… приступим. Для начала оговорюсь, что мы будем рассматривать всевозможные множества. Например, множество всех домов в России, в то же время, каждый элемент множества, в данном случае дом, может содеражать еще какие-то множества, вполне может быть, что они оказались неоднородными, например количество роутеров в доме (ед. измерения — число) и люди (ед. измерения — человек), проживающие в этом доме. Более естественный пример для программистов — вложенные списки [ [1, 2, [3, -19] ], [0, 1], [5, [26, 1] ], 27]. В данном примере у нас есть множество, состоящее из 4-х элементов [1, 2, [3, -19] ], [0, 1], [5, [26, 1] ], 27. Для ясного осознания заметим, что 0 не является элементом этого множества, хотя, если копнуть в глубину, то окажется, что 0 там есть! Теперь перейдем к аксиомам. Я позволю себе не давать нудные формулировки, а объяснять своими словами.

1. Аксиома объемности. Если два множества состоят из одинаковых элементов, то они равны.
2. Аксиома подмножеств. Если у нас есть некоторая формула, то из любого множества она «вырезает» также множество.
3. Аксиома замены. Если для каждого мн-ва х, F(x) = {y | Ф(х, у)} также является множеством, то для любого а, {y | x принадлежит а, у принадлежит F(x)} — также множество.
4. Аксиома степени. Множество подмножеств также является множеством.
5. Аксиома бесконечности.
Существует множество, которое содержит пустое множество, а также вместе с каждым элементом x содержит множество {{x}, x} — т.е. все элементы x и сам x как элемент.
6. Аксиома регулярности. Не существует бесконечных по включению цепочек множеств, т.е. нельзя, чтобы множество a1 сожержало a2, то в свою очередь a3, и т.д.

Пояснения.
1. Все ясно.
2. Пусть мы рассматриваем множество натуральных чисел. А формула такая: х != 0. Понятно, что ей удовлетворяют все натуральные числа кроме нуля. Аксиома говорит, что натуральные числа без нуля — также множество. Если постараться обощить эту теорему, то получится парадокс Рассела.
3. Не знал как проще описать эту аксиому, в двух словах, если мы будем объединять множества, то получится множество.
4. [1, 2, 3], множество подмножеств данного множества (прошу прощения за большую удельную плотность слова «множество») — 1, 2, 3, [1, 2], [1, 3], [2, 3], [1, 2, 3]. Вопрос, а когда может получиться, что мы что-то сделаем и у нас окажется не множество? Ну вот хотя бы рассмотрим множество всех множеств! По аксиоме 4 существует множество его подмножеств, а нетрудно доказать, что оно по мощности больше нашего мн-ва.

5. Первая аксиома, где просится существование хоть какого-то множества. Какого именно — описано в аксиоме.
6. Тоже все ясно.

Что-ж, покончили с нудятиной. С помощью этих аксиом можно построить натуральные числа, к примеру. Они будут выглядеть так (e — пустое множество). 0 = е, 1 = {e}, 2 = {e, {e}}, 3 = {e, {e}, {e, {e}} }, и т.д. Собственно говоря, на данной теории и построена современная математика.

Противоречия и парадоксы

Во-первых, не доказано, что аксиомы ZF непротиворечивы, если же они противоречивы, то можно вывести любое утверждение, например 0 = 1, и грош цена нашей науке. Даже более, доказано, что нельзя доказать непротиворечивость ZF. Забавная штука получается, но в этом нет ничего страшного. Если мы чего-то не можем доказать, не значит, что этого нет, в данном случае непротиворечивости. Движемся дальше.

Математика получается достаточно скупой наукой, то есть мало всего можно доказать, если не добавить аксиому выбора. А что это за аксиома такая? В трех словах — из любого непустого множества можно выбрать элемент. Казалось бы, очень естественная аксиома, но она приводит к парадоксу Банаха-Тарского, заключающегося в том, что шар можно разбить на 5 кусков и собрать из них 2 таких же шара. Т.е. яблоко можно разрезать на 5 частей и собрать два яблока?! Посему и парадокс. Что еще интереснее, доказано, что если теория ZF непротиворечива, то добавив к ней аксиому выбора (ZF + Axiom of Choice = ZFC) мы получим непротиворечивую аксиоматику!

Искорка надежды

То мы что-то не можем доказать, то какие-то парадоксы. Может, математика — полная чушь? Может не следует ее изучать? Ответ: никакая не чушь, изучать следует. Почему же, спросит читатель. Я приведу достаточно физическое доказательство. Обычно в физике бывает так. «Ого, в течении 100 лет мы наблюдали за падением бутербродов и оказалось, что они падают маслом вниз, назовем это законом». Думаете, шучу? А попытайтесь доказать, что тела состоят из молекул. Ничего более строгого, чем то, что в течение 2000 лет эта теория не давала сбой, вы не придумаете. Так вот с математикой примерно та же ситуация. Мы используем ее, вроде бы машины едут, самолеты летят, здания стоят и все хорошо. Интуитивно ясно, что если бы в математике было противоречие, то, чем глубже бы мы копались в дебрях этой науки, тем легче бы были доказательства теорем, но такого не происходит.

И все же, откуда парадокс Банаха-Тарского возникает, все же достаточно логично! На самом деле, если аккуратно заметить, то во Вселенной нет ничего бесконечного. Нет ничего бесконечно малого и т.д. Просто удобно работать с бесконечными множествами. Так что вполне нормально, что могут получаться результаты не применимые к жизни.

Всем удачи в изучении данного предмета! =)

Сообщение по математике на тему «Аксиома»

Аксиома

Аксиома (др. — греч. ἀξίωμα — утверждение, положение), постулат — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других ее положений, которые, в свою очередь, называются теоремами.

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами.

В современной науке вопрос об их истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.

Аксиоматизация теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах, и не опираться на обычное конкретное значение этих объектов и их отношений.

Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии.

Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.

Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определённого уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, ни истинность, ни ложность которого не может быть доказана средствами самой этой системы).

Примеры аксиом:

Примеры систем аксиом:

История

Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и перешёл в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах Начал Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно переписчики придерживались разных воззрений на различие этих понятий.

Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».

Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом. Лишь подтверждение теории является одновременно и подтверждением набора её аксиом.

Аксиома — Википедия

Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами[1].

Назначение

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами[2].

В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории[3].

Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.

Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии.

Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.

Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система), в которой можно определить натуральные числа, сложение и умножение, неполна. Это значит, что найдётся бесконечное количество математических утверждений (функций, выражений), ни истинность, ни ложность которых не сможет быть доказана на основании данной системы аксиом. Также, по теореме о неполноте, среди этих невыводимых утверждений будет утверждение о непротиворечивости этой системы.

История

Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и переходит в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно, переписчики придерживались разных воззрений на различие этих понятий.

Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».

Толчком к изменению восприятия аксиом послужили работы российского математика Николая Лобачевского о неевклидовой геометрией, впервые опубликованные в конце 1820-х годов. Ещё будучи студентом, он пытался доказать пятый постулат Евклида, но позднее отказался от этого. Лобачевский сделал вывод о том, что пятый постулат является лишь произвольным ограничением, которое можно заменить другим ограничением. Если бы пятый постулат Евклида был доказуем, то Лобачевский столкнулся бы с противоречиями. Однако, хотя новая версия пятого постулата и не была наглядно-очевидной, она полностью выполняла роль аксиомы, позволяя построить новую непротиворечивую систему геометрии.

Сперва идеи Лобачевского не были признаны (например, о них отрицательно отзывался академик Остроградский). Позднее, когда Лобачевский опубликовал работы на других языках, он был замечен Гауссом, который тоже имел некоторые наработки в области неевклидовой геометрии. Он косвенно высказал восхищение этой работой. Настоящее признание геометрия Лобачевского получила лишь через 10-12 лет после смерти автора, когда была доказана её непротиворечивость в случае непротиворечивости геометрии Евклида. Это привело к революции в математическом мире. Гильберт развернул масштабный проект по аксиоматизации всей математики для доказательства её непротиворечивости. Его планам не суждено было сбыться из-за последовавших теорем Гёделя о неполноте. Однако это послужило толчком к формализации математики. Например, появились аксиомы натуральных чисел и их арифметики, работы Кантора по созданию теории множеств. Это позволило математикам создавать строго истинные доказательства для теорем.

Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории — аксиомы могут быть достаточно произвольными, они не обязаны быть очевидными. Единственным неизменным требованием к аксиоматическим системам является их внутренняя непротиворечивость. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом[1]. В соответствии с критерием Поппера, единственный отрицательный пример опровергает теорию и, как следствие, доказывает ложность системы аксиом, при этом множество подтверждающих примеров лишь увеличивает вероятность истинности системы аксиом.

Примеры

Примеры аксиом

  1. Аксиома выбора
  2. Аксиома параллельности Евклида
  3. Аксиома Архимеда
  4. Аксиома объёмности
  5. Аксиома регулярности
  6. Аксиома полной индукции
  7. Аксиома Колмогорова
  8. Аксиома булеана.

Примеры систем аксиом

  1. Аксиоматика теории множеств
  2. Аксиоматика вещественных чисел
  3. Аксиоматика Евклида
  4. Аксиоматика Гильберта.

См. также

Литература

  • Начала Евклида. Книги I—VI. М.-Л., 1950
  • Гильберт Д. Основания геометрии. М.-Л., 1948

Ссылки

Примечания

Аксиомы Википедия

Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами[1].

Назначение[ | ]

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами[2].

В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории[3].

Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.

Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии.

Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.

Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система), в которой можно определить натуральные числа, сложение и умножение, неполна. Это значит, что найдётся бесконечное количество математических утверждений (функций, выражений), ни истинность, ни ложность которых не сможет быть доказана на основании данной системы аксиом. Также, по теореме о неполноте, среди этих невыводимых утверждений будет утверждение о непротиворечивости этой системы.

История[ | ]

Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и переходит в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно, переписчики придерживались разных воззрений на различие этих понятий.

Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».

Толчком к изменению восприятия аксиом послужили работы российского математика Николая Лобачевского о

Аксиома — Википедия

Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами[1].

Назначение

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами[2].

В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории[3].

Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.

Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии.

Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.

Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система), в которой можно определить натуральные числа, сложение и умножение, неполна. Это значит, что найдётся бесконечное количество математических утверждений (функций, выражений), ни истинность, ни ложность которых не сможет быть доказана на основании данной системы аксиом. Также, по теореме о неполноте, среди этих невыводимых утверждений будет утверждение о непротиворечивости этой системы.

История

Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и переходит в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно, переписчики придерживались разных воззрений на различие этих понятий.

Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».

Толчком к изменению восприятия аксиом послужили работы российского математика Николая Лобачевского о неевклидовой геометрией, впервые опубликованные в конце 1820-х годов. Ещё будучи студентом, он пытался доказать пятый постулат Евклида, но позднее отказался от этого. Лобачевский сделал вывод о том, что пятый постулат является лишь произвольным ограничением, которое можно заменить другим ограничением. Если бы пятый постулат Евклида был доказуем, то Лобачевский столкнулся бы с противоречиями. Однако, хотя новая версия пятого постулата и не была наглядно-очевидной, она полностью выполняла роль аксиомы, позволяя построить новую непротиворечивую систему геометрии.

Сперва идеи Лобачевского не были признаны (например, о них отрицательно отзывался академик Остроградский). Позднее, когда Лобачевский опубликовал работы на других языках, он был замечен Гауссом, который тоже имел некоторые наработки в области неевклидовой геометрии. Он косвенно высказал восхищение этой работой. Настоящее признание геометрия Лобачевского получила лишь через 10-12 лет после смерти автора, когда была доказана её непротиворечивость в случае непротиворечивости геометрии Евклида. Это привело к революции в математическом мире. Гильберт развернул масштабный проект по аксиоматизации всей математики для доказательства её непротиворечивости. Его планам не суждено было сбыться из-за последовавших теорем Гёделя о неполноте. Однако это послужило толчком к формализации математики. Например, появились аксиомы натуральных чисел и их арифметики, работы Кантора по созданию теории множеств. Это позволило математикам создавать строго истинные доказательства для теорем.

Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории — аксиомы могут быть достаточно произвольными, они не обязаны быть очевидными. Единственным неизменным требованием к аксиоматическим системам является их внутренняя непротиворечивость. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом[1]. В соответствии с критерием Поппера, единственный отрицательный пример опровергает теорию и, как следствие, доказывает ложность системы аксиом, при этом множество подтверждающих примеров лишь увеличивает вероятность истинности системы аксиом.

Примеры

Примеры аксиом:

  1. Аксиома выбора
  2. Аксиома параллельности Евклида
  3. Аксиома Архимеда
  4. Аксиома объёмности
  5. Аксиома регулярности
  6. Аксиома полной индукции
  7. Аксиома Колмогорова
  8. Аксиома булеана.

Примеры систем аксиом:

  1. Аксиоматика теории множеств
  2. Аксиоматика вещественных чисел
  3. Аксиоматика Евклида
  4. Аксиоматика Гильберта.

См. также

Литература

  • Начала Евклида. Книги I—VI. М.-Л., 1950
  • Гильберт Д. Основания геометрии. М.-Л., 1948

Ссылки

Примечания

Аксиома — Википедия

Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами[1].

Назначение

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами[2].

В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории[3].

Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.

Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии.

Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.

Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система), в которой можно определить натуральные числа, сложение и умножение, неполна. Это значит, что найдётся бесконечное количество математических утверждений (функций, выражений), ни истинность, ни ложность которых не сможет быть доказана на основании данной системы аксиом. Также, по теореме о неполноте, среди этих невыводимых утверждений будет утверждение о непротиворечивости этой системы.

Видео по теме

История

Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и переходит в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно, переписчики придерживались разных воззрений на различие этих понятий.

Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».

Толчком к изменению восприятия аксиом послужили работы российского математика Николая Лобачевского о неевклидовой геометрией, впервые опубликованные в конце 1820-х годов. Ещё будучи студентом, он пытался доказать пятый постулат Евклида, но позднее отказался от этого. Лобачевский сделал вывод о том, что пятый постулат является лишь произвольным ограничением, которое можно заменить другим ограничением. Если бы пятый постулат Евклида был доказуем, то Лобачевский столкнулся бы с противоречиями. Однако, хотя новая версия пятого постулата и не была наглядно-очевидной, она полностью выполняла роль аксиомы, позволяя построить новую непротиворечивую систему геометрии.

Сперва идеи Лобачевского не были признаны (например, о них отрицательно отзывался академик Остроградский). Позднее, когда Лобачевский опубликовал работы на других языках, он был замечен Гауссом, который тоже имел некоторые наработки в области неевклидовой геометрии. Он косвенно высказал восхищение этой работой. Настоящее признание геометрия Лобачевского получила лишь через 10-12 лет после смерти автора, когда была доказана её непротиворечивость в случае непротиворечивости геометрии Евклида. Это привело к революции в математическом мире. Гильберт развернул масштабный проект по аксиоматизации всей математики для доказательства её непротиворечивости. Его планам не суждено было сбыться из-за последовавших теорем Гёделя о неполноте. Однако это послужило толчком к формализации математики. Например, появились аксиомы натуральных чисел и их арифметики, работы Кантора по созданию теории множеств. Это позволило математикам создавать строго истинные доказательства для теорем.

Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории — аксиомы могут быть достаточно произвольными, они не обязаны быть очевидными. Единственным неизменным требованием к аксиоматическим системам является их внутренняя непротиворечивость. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом[1]. В соответствии с критерием Поппера, единственный отрицательный пример опровергает теорию и, как следствие, доказывает ложность системы аксиом, при этом множество подтверждающих примеров лишь увеличивает вероятность истинности системы аксиом.

Примеры

Примеры аксиом:

  1. Аксиома выбора
  2. Аксиома параллельности Евклида
  3. Аксиома Архимеда
  4. Аксиома объёмности
  5. Аксиома регулярности
  6. Аксиома полной индукции
  7. Аксиома Колмогорова
  8. Аксиома булеана.

Примеры систем аксиом:

  1. Аксиоматика теории множеств
  2. Аксиоматика вещественных чисел
  3. Аксиоматика Евклида
  4. Аксиоматика Гильберта.

См. также

Литература

  • Начала Евклида. Книги I—VI. М.-Л., 1950
  • Гильберт Д. Основания геометрии. М.-Л., 1948

Ссылки

Примечания

Аксиомы Пеано — Википедия

Материал из Википедии — свободной энциклопедии

Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в XIX веке итальянским математиком Джузеппе Пеано.

Аксиомы Пеано позволили формализовать арифметику, доказать многие свойства натуральных и целых чисел, а также использовать целые числа для построения формальных теорий рациональных и вещественных чисел. В сокращённом виде аксиомы Пеано использовались в ряде метаматематических разработок, включая решение фундаментальных вопросов о непротиворечивости и полноте теории чисел.

Изначально Пеано постулировал девять аксиом. Первая утверждает существование по меньшей мере одного элемента множества чисел. Следующие четыре — общие утверждения о равенстве, отражающие внутреннюю логику аксиоматики и исключённые из современного состава аксиом, как очевидные. Следующие три — аксиомы на языке логики первого порядка о выражении натуральных чисел через фундаментальное свойство функции следования. Девятая и последняя аксиома на языке логики второго порядка — о принципе математической индукции над рядом натуральных чисел. Арифметика Пеано — система, получаемая заменой аксиомы индукции системой аксиом на языке логики первого порядка и добавлением символов операций сложения и умножения.

Как следует из теоремы Гёделя о неполноте, существуют утверждения о натуральных числах, которые нельзя ни доказать, ни опровергнуть, исходя из аксиом Пеано. Некоторые такие утверждения имеют достаточно простую формулировку, например теорема Гудстейна или теорема Париса–Харрингтона.

Словесная[править | править код]

  1. 1 является натуральным числом;
  2. Число, следующее за натуральным, тоже является натуральным;
  3. 1 не следует ни за каким натуральным числом;
  4. Если натуральное число a{\displaystyle a} непосредственно следует как за числом b{\displaystyle b}, так и за числом c{\displaystyle c}, то b{\displaystyle b} и c{\displaystyle c} тождественны;
  5. (Аксиома индукции.) Если какое-либо предложение доказано для 1 (база индукции) и если из допущения, что оно верно для натурального числа n{\displaystyle n}, вытекает, что оно верно для следующего за n{\displaystyle n} натурального числа (индукционное предположение), то это предложение верно для всех натуральных чисел.

Математическая[править | править код]

Математическая формулировка использует функцию следования[en] S(x){\displaystyle S(x)}, которая сопоставляет числу x{\displaystyle x} следующее за ним число.

  1. 1∈N{\displaystyle 1\in \mathbb {N} };
  2. x∈N⇒S(x)∈N{\displaystyle x\in \mathbb {N} \Rightarrow S(x)\in \mathbb {N} };
  3. ∄x∈N:(S(x)=1){\displaystyle \nexists x\in \mathbb {N} \colon {\big (}S(x)=1{\big )}};
  4. (S(b)=a∧S(c)=a)⇒b=c{\displaystyle {\big (}S(b)=a\wedge S(c)=a{\big )}\Rightarrow b=c};
  5. P(1)∧∀n(P(n)⇒P(S(n)))⇒∀n∈N(P(n)){\displaystyle P(1)\wedge \forall n{\Big (}P(n)\Rightarrow P{\big (}S(n){\big )}{\Big )}\Rightarrow \forall n\in \mathbb {N} {\big (}P(n){\big )}}.

Возможна и иная форма записи:

  1. 1∈N{\displaystyle 1\in \mathbb {N} };
  2. S:N→N∖{1}{\displaystyle S\colon \mathbb {N} \to \mathbb {N} \setminus \{1\}};
  3. ∃S−1{\displaystyle \exists S^{-1}};
  4. 1∈M∧∀n∈N(n∈M⇒S(n)∈M)⇒N⊂M{\displaystyle 1\in M\land \forall n\in \mathbb {N} {\big (}n\in M\Rightarrow S(n)\in M{\big )}\Rightarrow \mathbb {N} \subset M}.

Последнее утверждение может быть сформулировано так: если некоторое высказывание P{\displaystyle P} верно для n=1{\displaystyle n=1} (база индукции) и для любого n{\displaystyle n} из верности P(n){\displaystyle P(n)} следует верность и P(S(n)){\displaystyle P(S(n))} (индукционное предположение), то P(n){\displaystyle P(n)} верно для любых натуральных n{\displaystyle n}.

Формализация арифметики включает в себя аксиомы Пеано, а также вводит операции сложения и умножения с помощью следующих аксиом:

  1. x+1=S(x){\displaystyle x+1=S(x)};
  2. x1+S(x2)=S(x1+x2){\displaystyle x_{1}+S(x_{2})=S(x_{1}+x_{2})};
  3. x⋅1=x{\displaystyle x\cdot 1=x};
  4. x1⋅S(x2)=x1⋅x2+x1{\displaystyle x_{1}\cdot S(x_{2})=x_{1}\cdot x_{2}+x_{1}}.

Необходимость формализации арифметики не принималась всерьёз до появления работы Германа Грассмана, который показал в 1860-х, что многие факты в арифметике могут быть установлены из более элементарных фактов о функции следования и математической индукции. В 1881 году Чарльз Сандерс Пирс опубликовал свою аксиоматизацию арифметики натуральных чисел. Формальное определение натуральных чисел в 1889 году сформулировал итальянский математик Пеано, основываясь на более ранних построениях Грассмана, в своей книге «Основания арифметики, изложенные новым способом» (лат. Arithmetices principia, nova methodo exposita). В 1888 году (за год до Пеано) практически в точности подобную аксиоматическую систему опубликовал Дедекинд[1]. Непротиворечивость арифметики Пеано доказана (англ.) в 1936 году Генценом с помощью трансфинитной индукции до ординала ϵ0.{\displaystyle \epsilon _{0}.} Как следует из второй теоремы Гёделя о неполноте, это доказательство не может быть проведено средствами самой арифметики Пеано.

  1. Н. Бурбаки. Основания математики. Логика. Теория множеств // Очерки по истории математики / И. Г. Башмакова (перевод с французского). — М: Издательство иностранной литературы, 1963. — С. 37. — 292 с. — (Элементы математики).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *