Биквадратные и квадратные уравнения – 8.2.2. Решение полных квадратных уравнений   математика-повторение

Квадратные и биквадратные уравнения

Впервые квадратные уравнения сумели решить математики древнего Египта. Вавилоняне умели решать неполные квадратные уравнения, так же частные виды полных квадратных уравнений около 2 тысяч лет до нашей эры. Древнегреческие математики умели решать некоторые виды квадратных уравнений, сводя их к геометрическим построениям. Примеры решения уравнений без использования геометрических знаний дает Диофант Александрийский (3 век). Диофант в своих книгах «Арифметика» изложил способ решения полных квадратных уравнений, однако эти книги не сохранились. В Европе формулы для решения квадратных уравнений были впервые изложены итальянским математиком Леонардо Фибоначчи в 1202 году.

Квадратные и биквадратные уравненияОбщее правило решения квадратных уравнений, преобразованных в вид х2 + bх = с, было описано немецким математиком М. Штифелем. Он и сформулировал в 1544 году общее правило решения квадратных уравнений, приведенных к единому каноническому виду

х2 + bх + с = 0 при всевозможных вариациях знаков и коэффициентов b и с.

Франсуа Виет вывел формулы квадратного уравнения в общем виде, однако он работал только с положительными числами.Квадратные и биквадратные уравнения

Тарталья, Кардано, Бомбелли – итальянские ученые, которые среди первых в XVI веке учитывают кроме положительных еще и отрицательные корни.

Выводом формулы решения квадратных уравнений общего вида занимался Виет. Одно свое утверждение он высказывал лишь для положительных корней (отрицательных чисел он не признавал).

После трудов нидерландского математика Альберта Жирара, а также Декарта и Ньютона, методы решения квадратных уравнений приняли современный вид.

Квадратные уравнения

1. Вспомним уже знакомые способы решения и исследования квадратных уравнений:

  • выделение полного квадрата;
  • по формуле корней для квадратного уравнения;
  • по теореме Виета;
  • на основании свойств квадратичной функции.

В процессе решения уравнений необходимо следить за множеством допустимых значений неизвестного, т.к. оно может изменяться. В случае его расширения следует проверять найденное решение, не является ли оно посторонним для данного уравнения. В случае, если произошло сужение, необходимо убедиться, не являются ли потерянные значения неизвестных решениями данного уравнения. Процесс нахождения выпавших решений не всегда легко выполним, поэтому желательно избегать сужение множества допустимых значений неизвестных уравнения.

2. Типичные ошибки при решении уравнений.

По  правилам можно преобразовывать исходное уравнение в равносильное ему, при этом, вы знаете, что: обе части уравнения можно делить или умножать на одно и то же, отличное от нуля, число.

1) Если уравнение имеет вид f(х) · g(х) = p(х) · g(х), то деление обеих частей на одинаковый множитель g(x), как правило, недопустимо. Данное действие может привести к потере корней: могут быть потеряны корни уравнения g(х) = 0, если ни существуют.

Пример 1.

Решить уравнение 2(х – 3) = (х – 3)(х + 5).

Решение.

Здесь нельзя сокращать на множитель (х – 3).

2(х – 3) – (х – 3)(х + 5) = 0, вынесем общую скобку:

(х – 3)(-х – 3) = 0, теперь

х – 3 = 0 или -х – 3 = 0;

х = 3 или х = -3.

Ответ: -3; 3.

2) Уравнение вида f(х) / g(х) = 0 можно заменить системой:

{f(x) = 0,
{g(x) ≠ 0.

Она равносильна исходному уравнению.

Или можно решить уравнение f(x) = 0, а уже затем исключить найденных корней те, которые обращают в нуль знаменатель g(x).

Встречаются дробно-рациональные уравнения, которые сводятся к квадратным уравнениям.

Пример 2.

Решить уравнение: (х + 3) / (х – 3) + (х – 3) / (х + 3) = 10/3 + 36/(х – 3)(х + 3).

Решение.

Умножив обе части уравнения на общий знаменатель и заменив исходное уравнение целым, получим равносильную систему:

{3(х + 3)2 + 3(х – 3)2 = 10(х – 3)(х + 3) + 3 · 36;
{(х – 3)(х +3) ≠ 0.

В результате получим два корня: х = 3 или х = -3, но х ≠ 3 и х ≠ -3.

Ответ: уравнение корней не имеет.

Пример 3.

Решить уравнение: (х + 5)(х2 + 4х — 5)/(х + 5)(х + 2) = 0.

Решение.

Часто ограничиваются таким решением:

2 + 4х – 5) / (х + 2) = 0.
{х = -5, х = 1,
{х ≠ -2.

Ответ: -5; 1.

Правильный ответ: 1.

Пример 4.

При выполнении распространенных заданий на исследование квадратного уравнения следующего вида: «Не вычисляя действительных корней х1 и х2 уравнения 2х2 + 3х + 2 = 0, найти значение х12 + х22» банальная невнимательность приводит к грубой ошибке.

Действительно, по теореме Виета,

х12 + х22 = (х1 + х2)2 – х1х2 = (-3/2)2 – 2 · 1 = 1/4.

Однако, теоремой можно было воспользоваться при существовании действительных корней. В данном примере D < 0 и корней нет.

Ответ: значение х12 + х22 не существует.

Пример 5.

Вычислить отрицательный коэффициент b и корни уравнения х

2 + bх – 1 = 0, если с увеличением каждого из этих корней на единицу они становятся корнями уравнения х2 – b2х – b = 0.

Решение.

Пусть х1 и х2 – корни уравнения х2 + bх – 1 = 0. Тогда по т. Виета

х1 + х2 = -b и х1х2 = -1 (*). С другой стороны, по условию

1 + 1) + (х2 + 1) = b2 и (х1 + 1)(х2 + 1) = -b.

Перепишем:

х1 + х2 = b2 – 2 и (х1 + 1)(х2 + 1) = -b.

Теперь, учитывая условия (*), получим b2 – 2 = -b, следовательно,

b1 = -2, b2 = 1. По условию подходит b1 = -2.

Значит, исходное уравнение имеет вид х2 – 2х – 1 = 0, корнями являются числа х1,2 = 1 ± √2.

Ответ: b1 = -2, х

1,2 = 1 ± √2.

Уравнения, приводимые к квадратным. Биквадратные уравнения

Уравнения вида ах4 + bх2 + c = 0, где а ≠ 0, называются биквадратными уравнениями с одной переменной.

Для решения биквадратного уравнения нужно сделать подстановку х2 = t, найти корни t1 и t2 квадратного уравнения аt2 + bt + c = 0 и решить уравнения х2 = t1 и х2 = t2. Они имеют решения лишь в случае, когда  t1,2 ≥ 0.Квадратные и биквадратные уравнения

Пример 1.

Решить уравнение х4 + 5х2 – 36 = 0.

Решение.

Подстановка: х2 = t.

t2 + 5t – 36 = 0. По т. Виета t1 = -9 и t

2 = 4.

х2 = -9 или х2 = 4.

Ответ: В первом уравнении корней нет, из второго: х = ±2.

Пример 2.

Решить уравнение (2х – 1)4 – 25(2х – 1)2 + 144 = 0.

Решение.

Подстановка: (2х – 1)2 = t.

t2 – 25t + 144 = 0. По т. Виета t1 = 9 и t2 = 16.

(2х – 1)2 = 9 или (2х – 1)2 = 16.

2х – 1 = ±3 или 2х – 1 = ±4.

Из первого уравнения два корня: х = 2 и х = -1, из второго тоже: х = 2,5 и х = -1,5.

Ответ: -1,5; -1; 2; 2,5.

Таким образом, процесс решения любых уравнений состоит в последовательной замене данного уравнения другим, равносильным ему и более простым уравнением.

 Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь.

Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Биквадратное уравнение | Алгебра

Биквадратное уравнение — это уравнение вида

   

где a, b и c — числа, причём a≠0.

Биквадратные уравнения решают введением новой переменной x²=t. Так как x²≥0, можем сразу ввести условие на t: t≥0.

По следствию из теоремы Безу, многочлен степени n имеет не больше n разных корней. Следовательно, биквадратное уравнение может иметь 4, 3, 2 корня, 1 корень либо не иметь корней.

Рассмотрим решение биквадратных уравнений на конкретных примерах.

   

Пусть

   

тогда 

   

Получили квадратное уравнение. Дискриминант

   

   

   

   

Оба корня удовлетворяют условию t≥0.

Возвращаемся к исходной переменной:

   

Решаем неполные квадратные уравнения, и получаем корни

   

Ответ:

   

   

Замена

   

   

Так как b= -2 — чётное число, дискриминант можно найти по формуле дискриминанта, делённого на 4:

   

   

   

Второй корень не удовлетворяет условию t≥0. От корня t=4 возвращаемся к исходной переменной

   

   

Ответ: ±2.

   

Замена

   

тогда

   

Корни приведённого квадратного уравнения можно найти по теореме, обратной теореме Виета:

   

Оба корня удовлетворяют условию t≥0. Возвращаемся к исходной переменной:

   

   

Ответ: ±3; ±1.

В некоторых случаях вывод о том, что  биквадратное уравнение не имеет корней, можно сделать, не решая уравнения. 

   

Так как

   

то

   

то есть

   

не может быть равным нулю, а значит, данное уравнение не имеет корней (Сумма неотрицательных чисел и положительного числа не может равняться нулю).

Ответ: корней нет.

Аналогично, не имеет корней уравнение

   

(Сумма неположительных чисел и отрицательного числа не может равняться нулю).

Если левая часть биквадратного уравнения представляет собой квадрат разности, удобнее свернуть её по формуле и приравнять эту разность к нулю.

   

   

   

   

   

   

Чтобы избавиться от иррациональности в знаменателе, умножаем числитель и знаменатель дроби на квадратный корень из трёх:

   

   

Ответ:

   

Биквадратные уравнения — первый вид уравнений, решаемых заменой переменной. В дальнейшем этот метод применяется очень часто при решении уравнений из самых разных разделов алгебры.

www.algebraclass.ru

Как решать биквадратное уравнение

В прошлых уроках мы научились решать квадратные уравнения. Для этого потребовалось ввести новый математический объект — дискриминант. Если вы не помните, что это такое, рекомендую вернуться к уроку «Как решать квадратные уравнения».

Для начала определение, что вообще такое биквадратное уравнение — это любое выражение, где переменная присутствует только в 4-ой и во 2-ой степени.

Как считать такие биквадратные конструкции? Схема состоит из пяти шагов. Все шаги очень легкие и очень быстрые:

1)вводим новую переменную ${{x}^{2}}=t$. В этом случае, возведя обе части этого уравнения в квадрат, мы получим

\[\begin{align}& {{({{x}^{2}})}^{2}}={{t}^{2}} \\& {{x}^{4}}={{t}^{2}} \\\end{align}\]

2)переписываем наше выражение — $a{{x}^{4}}+b{{x}^{2}}+4=0\to a{{t}^{2}}+bt+c=0$

3)находим решение для полученного уравнении и находим переменные ${{t}_{1}}$ и ${{t}_{2}}$, если корней будет два.

4)выполняем обратную замену, т. е. вспоминаем, что такое $t$, получаем две конструкции: ${{x}^{2}}={{t}_{1}}$ и ${{x}^{2}}={{t}_{2}}$.

5)решаем полученные уравнения и находим иксы.

Реальные задачи

Пример № 1

Давайте посмотрим, как эта схема работает на настоящих биквадратных уравнениях.

Решаем первую задачу:

\[{{x}^{4}}-5{{x}^{2}}+4=0\]

Вводим новую переменную и переписываем:

\[{{x}^{2}}=t\to {{t}^{2}}-5t+4=0\]

Это обычное квадратное уравнение, посчитаем его с помощью дискриминанта:

\[D={{(-5)}^{2}}-4\cdot 1\cdot 4=25-16=9\]

Это хорошее число. Корень равен 3.

Теперь находим значение $t$:

\[\begin{array}{·{35}{l}}

{{t}_{1}}\text{ }=\text{ }\frac{5+3}{2}=\text{ }\frac{8}{2}\text{ }=\text{ }4 \\{{t}_{2}}\text{ }=\frac{5-3}{2}=\text{ }\frac{2}{2}\text{= }1 \\\end{array}\]

Но будьте внимательны, мы нашли только $t$ — это не решение, это только третий шаг. Переходим к четвертому шагу — вспоминаем, что такое $t$ и решаем:

\[\begin{align}& {{x}^{2}}=4\to {{x}^{2}}-4=0\to (x-2)(x+2)=0 \\& \left[ \begin{align}& x=2 \\& x=-2 \\\end{align} \right. \\\end{align}\]

Вот мы и решили первую часть. Переходим ко второму значению $t$:

\[\begin{align}& {{x}^{2}}=1\to {{x}^{2}}-1=0\to (x-1)(x+1)=0 \\& \left[ \begin{align}& x=1 \\& x=-1 \\\end{align} \right. \\\end{align}\]

Итого у нас вышло четыре ответа: 2; -2; 1; -1, т.е. биквадратное уравнение может иметь до четырех корней.

Пример № 2

Переходим ко второму примеру:

\[{{x}^{4}}-25{{x}^{2}}+144=0\]

Тут я не буду подробно все расписывать. Давайте решать так, как бы мы делали это в классе.

Заменяем:

\[{{x}^{2}}=t\]

Тогда у нас выйдет:

\[{{t}^{2}}-25t+144=0\]

Считаем$D$:

\[D=\text{ }625\text{ }-\text{ }4\text{ }\cdot \text{ }144\text{ }=\text{ }49\]

Корень из дискриминанта равен 7. Найдем $t$:

\[\begin{array}{·{35}{l}}

{{t}_{1}}\text{ }=\frac{25+7}{2}\text{ }=\text{ }\frac{32}{2}=\text{ }16 \\{{t}_{2}}\text{ }=\frac{25-7}{2}=\text{ }\frac{18}{2}\text{ }=\text{ }9 \\\end{array}\]

Вспоминаем, что такое $t$:

\[\begin{align}& {{x}^{2}}=16 \\& \left[ \begin{align}& x=4 \\& x=-4 \\\end{align} \right. \\\end{align}\]

Второй вариант:

\[\begin{align}& {{x}^{2}}=9 \\& \left[ \begin{align}& x=3 \\& x=-3 \\\end{align} \right. \\\end{align}\]

Вот и все. У нас снова четыре ответа: 4; -4; 3; -3.

Пример № 3

Переходим к последнему биквадратному уравнению:

\[{{x}^{4}}-\frac{5}{4{{x}^{2}}}+\frac{1}{4}=0\]

Опять же вводим замену:

\[{{x}^{2}}=t\]

Тогда:

\[{{t}^{2}}-\frac{5}{4t}+\frac{1}{4}=0\]

Давайте умножим обе стороны на 4, чтобы избавиться от дробных коэффициентов:

\[4{{t}^{2}}-5t+1=0\]

Найдем $D$:

\[D=\text{ }25\text{ }-\text{ }16\text{ }=\text{ }9\]

Корень из дискриминанта равен трем:

\[\begin{array}{·{35}{l}}

{{t}_{1}}\text{ }=\text{ }\frac{5+3}{2\cdot 4}=\text{ }\frac{8}{8}\text{ }=\text{ }1 \\{{t}_{2}}\text{ }=\frac{5-3}{2\cdot 4}=\text{ }\frac{2}{8}=\text{ }\frac{1}{4} \\\end{array}\]

Считаем иксы. Вспоминаем, что такое $t$:

\[\begin{align}& {{x}^{2}}=1 \\& \left[ \begin{align}& x=1 \\& x=-1 \\\end{align} \right. \\\end{align}\]

Второй вариант чуть посложнее:

\[\begin{align}& {{x}^{2}}=\frac{1}{4} \\& \left[ \begin{align}& x=\frac{1}{2} \\& x=-\frac{1}{2} \\\end{align} \right. \\\end{align}\]

Мы получили снова четыре корня:

\[1;\text{ }-1;\text{ }\frac{1}{2};-\frac{1}{2}\]

Вот так решаются все биквадратные уравнения. Конечно, это не самый быстрый способ, зато он самый надежный. Попробуйте самостоятельно прорешать такие же примеры, как и в этом видео. В ответе значения иксов нужно записывать через точку с запятой — вот так, как я записывал. На этом урок закончен. Удачи!

Смотрите также:

  1. Следствия из теоремы Виета
  2. Иррациональное уравнение: учимся решать методом уединения корня
  3. Тест к уроку «Десятичные дроби» (2 вариант)
  4. Комбинаторика в задаче B6: средний тест
  5. Видеоурок по задачам C2: уравнение плоскости через определитель
  6. Тест по задачам B14: средний уровень, 2 вариант

www.berdov.com

Биквадратное уравнение

Уравнение которое выглядит как ax4+bx2+c=0, называют Биквадратным уравнением. В нем х — неизвестная переменная. a,b,c -имеют различное числовое значение, где, а не равно нулю. Так же при х — стоящем в четвертой степени, коэффициент а — называется старшим, и х — стоящем во -второй степени, коэффициент b — называется вторым, с — является свободным членом.
Корнем биквадратного уравнения является значение х если при его использовании уравнение ax4+bx2+c превращается в ноль.

Действие с помощью которого находятся все корни уравнения или выясняется что таковых у него нет, называется — решением биквадратного уравнения.

Для решения биквадратного уравнения существует ряд действий, которые следует придерживаться.


Во-первых:
Путем подстановки, где у=х2, решаемое биквадратное уравнение переводим в квадратное ау2+bу+с=0.

Во-вторых: В полученном уравнении необходимо найти корни.

В-третьих: Произвести замену введенного нами значения х2, путем приравнивания получившихся корней квадратного уравнения.

В- четвертых:
После решения полученного уравнения, находим корни в биквадратном уравнении.

Для того чтобы все легче усвоилось, рассмотрим все описанное на нескольких примерах.

1) Дано уравнение 2х4 -19х2+9=0, оно биквадратное.
Производим замену х2=у, следовательно, х42,
записываем получившееся 2у2-19у+9=0,
Мы получили полное неприведенное уравнение с коэффициентами а=2, b=-19,с=9.
Дискриминант уравнения: D = b2 — 4ac= (-19)2 — 4 * 2 * 9 = 361 — 72 = 289
У квадратного уравнения 2 корня, потому как D=289, что больше ноля. Находим их.

у1 = (-b+ √D)/2a = (-(-19)+ √289)/(2*2) = (19+17)/4 = 36/4 = 9
y2 = (-b- √D)/2a =(-(-19)±√289)/(2*2) = (19-17)/4 = 2/4 = 1/2
Производим замену х11, и х22
х2=9 х2= 1/2
х1,2 = +√9
х1 = 3
х2 =-3
х3.4 = + √(1/2)
х3 = 1/√2
х4= — 1/√2

Данное биквадратное уравнение имеет ответ: х1 = 3; х2 =-3; х3 = 1/√2; х4= — 1/√2 .

2) Рассмотрим уравнение х4 +2х2-8=0
Производим замену х2=у, следовательно, х42,
записываем получившееся у2+2у-8=0,
Мы получили полное неприведенное уравнение с коэффициентами а=1, b=2,с=-8.
Дискриминант уравнения: D = b2 — 4ac=22 — 4 * 1 *(-8) = 4 + 32 = 36
У квадратного уравнения 2 корня, потому как D=36, что больше ноля. Находим их.

у1 = (-b+ √D)/2a = (-2+ √36)/(2*1) = (-2+6)/2 = 4/2 = 2
y2 = (-b- √D)/2a =(-2 — √36)/(2*1) = (-2-6)/2 = (-8)/2 = -4
Производим замену х2 =у1, и х2 =у2
х1=2
х1,2= +√2
х3 = 4 (решения нет)

Данное биквадратное уравнение имеет ответ: х1 =√2; х2 = -√2

Из данного уравнения мы можем сделать вывод. Если при решении получается корень со знаком минус или у меньше ноля, больше его не рассматриваем. т.к. он не подходит нам по условию.

Для приведения многочлена к стандартному виду, во многих случаях используют формулы сокращенного умножения. Они решаются с помощью открытия скобок.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Линейные и квадратные уравнения

Определение

Уравнение (с одной переменной) — это некоторое равенство двух выражений, содержащее неизвестную (переменную). \[f(x)=g(x) \qquad \qquad (1)\]Пусть для определенности все дальнейшие уравнения содержат переменную, обозначенную буквой \(x\).

 

Замечание

Заметим, что \(x\) — это просто некоторое число, значение которого неизвестно.

 

Определение

Областью определения (или областью допустимых значений, сокращенно ОДЗ) любого уравнения вида \((1)\) будем называть множество значений переменной \(x\), при которых определены (то есть не теряют смысла) функции \(f(x)\) и \(g(x)\).

 

Пример

Уравнение \(\dfrac {10}{x-1}=5\) определено при всех значениях переменной \(x\), кроме \(x=1\), потому что в этом случае знаменатель дроби в левой части равенства обращается в ноль. Значит, ОДЗ уравнения \(x\in (-\infty;1)\cup(1;+\infty)\).

 

Определение

Корнем уравнения называется то числовое значение \(x\), при котором уравнение обращается в верное равенство.
Иногда корни уравнения называют решением этого уравнения.

Например, корнем уравнения из предыдущего примера является число \(x=3\), потому как тогда уравнение принимает вид \(\dfrac{10}{3-1}=5\) или, что то же самое, \(5=5\), что является верным равенством.

 

Замечание

 

1) Заметим, что уравнение может как иметь корни, так и не иметь корней. Например, уравнение \(\dfrac 1x=0\) ни при каких значениях \(x\) не может быть верным, потому что дробь равна нулю, когда ее числитель равен нулю, а знаменатель при этом не теряет смысла. У нашей дроби числитель \(1\ne 0\).

 

2) Фраза “решить уравнение” означает найти все корни данного уравнения или доказать, что корней нет.

 

Определение

Два уравнения равносильны (или эквивалентны), если они имеют одинаковые решения.
Например, уравнения \(x=3\) и \(3x=6+x\) эквивалентны, т.к. оба имеют единственное решение \(x=3\).

Эквивалентность уравнений обозначается так: \(x=3 \quad \Leftrightarrow \quad 3x=6+x\).

 

Свойства уравнений

 

1. В любом уравнении можно переносить слагаемые из одной части равенства в другую, при этом меняя их знак на противоположный. При этом полученное уравнение равносильно исходному.
Например, уравнение \(x+4=2x^2\) можно переписать в виде \(x+4-2x^2=0\).

 

2. В любом уравнении можно правую и левую части умножать или делить на одно и то же число, не равное нулю. При этом полученное уравнение равносильно исходному.
Например, уравнение \(0,5x=-2\) равносильно уравнению \(x=-4\), которое получено из исходного путем умножения обеих частей на \(2\).

 

3. В любом уравнении можно к правой и левой частям прибавлять одно и то же число. При этом полученное уравнение равносильно исходному.
Например, уравнение \(x+2=5x^2\) после прибавления к обеим частям \(-2\) примет вид \(x=5x^2-2\).  

\[{\Large{\text{Линейные уравнения}}}\] Линейное уравнение – это уравнение вида \[ax + b = 0\qquad \qquad (2)\] где \(a\ne 0,b\) – числа, или уравнение, к нему сводящееся.

ОДЗ линейного уравнения \((2)\) — все \(x \in\mathbb{R}\).

Линейное уравнение \(ax+b=0\) преобразуется в \(ax=-b\) и всегда имеет единственное решение \(x=-\dfrac ba\).
Например, \(2x-4=0\) имеет корень \(x=2\).   Замечание: при переносе слагаемых из одной части равенства в другую знак слагаемого меняется на противоположный. Например, выражение \(x-5=8\) преобразуется в выражение \(x=8+5\).
Знак, стоящий перед слагаемым – это и есть его знак, то есть в выражении \(x-5\) два слагаемых: \(x\) и \(-5\). Если перед слагаемым не стоит никакого знака, то подразумевается, что перед ним стоит знак “\(+\)”.
 

\[{\Large{\text{Квадратные уравнения}}}\] Квадратное уравнение – это уравнение вида \[ax^2+bx+c=0 \qquad \qquad (3)\] где \(a, b, c\) – числа, причем \(a\ne 0\), или уравнение, к нему сводящееся.

Число \(a\) называется старшим (первым) коэффициентом, число \(b\) – вторым коэффициентом, число \(c\) – свободным членом.

 

Замечание

 

1) Заметим, что если \(a=0\), то уравнение \((3)\) становится линейным; именно поэтому в определении \(a\ne 0\).

 

2) Выражение \(ax^2+bx+c\) называется квадратичным (квадратным) трехчленом.

 

ВАЖНО! Обращаем ваше внимание на то, что, например, в квадратном трехчлене \(7-x^2+2x\) коэффициент \(a=-1\), \(b=2\) и \(c=7\)! Так как \(7-x^2+2x=-x^2+2x+7\), а по определению \(a\) – коэффициент перед \(x^2\), \(b\) – коэффициент перед \(x\), \(c\) – свободный член.  

Определение

Дискриминантом квадратного уравнения \((3)\) называется выражение \(D=b^2-4ac\).

 

Корни квадратного уравнения

 

1) Если дискриминант квадратного уравнения больше нуля (\(D>0\)), то оно имеет два различных корня \[x_1=\dfrac{-b-\sqrt D}{2a} \qquad \text{и} \qquad x_2=\dfrac{-b+\sqrt D}{2a}\]

2) Если дискриминант квадратного уравнения равен нулю (\(D=0\)), то оно имеет два совпадающих корня (часто говорят, что оно имеет один корень) \[x=-\dfrac b{2a}\]

3) Если дискриминант квадратного уравнения меньше нуля (\(D<0\)), то оно не имеет корней.

 

Пример:
Решите уравнение \[3x^2 — 33x + 90 = 0.\]

Решение.
Найдём дискриминант данного уравнения: \[D = 33^2 — 4\cdot 3\cdot 90 = 9\] Следовательно, уравнение имеет два различных корня, равных \[x_1=\dfrac{33 + 3}{6} = 6 \qquad \text{и} \qquad x_2=\dfrac{33 — 3}{6} = 5\]

Теорема Виета

Пусть квадратное уравнение \(ax^2 + bx + c = 0\), \(a\neq 0\), имеет два корня \(x_1\) и \(x_2\) (возможно, совпадающих), то есть \(D\geqslant 0\). Тогда их сумма равна \[x_1+x_2=-\dfrac{b}{a}\] а их произведение равно \[x_1\cdot x_2=\dfrac{c}{a}\]

 

Доказательство

Сумма корней этого уравнения равна \[\dfrac{-b + \sqrt{D}}{2a} + \dfrac{-b — \sqrt{D}}{2a} = -\dfrac{2b}{2a} = -\dfrac{b}{a}\] Произведение корней этого уравнения равно \[\dfrac{-b + \sqrt{D}}{2a} \cdot \dfrac{-b — \sqrt{D}}{2a} = \dfrac{(-b + \sqrt{D})(-b — \sqrt{D})}{4a^2} = \dfrac{b^2 — D}{4a^2} = \dfrac{4ac}{4a^2} = \dfrac{c}{a}\]

Определение

Квадратное уравнение называется приведенным, если старший коэффициент \(a=1\).
Любое квадратное уравнение можно сделать приведенным: для этого необходимо разделить уравнение на \(a\).

 

Следствие

Для приведенного квадратного уравнения \(x^2+px+q=0\) теорема Виета выглядит следующим образом: \[x_1+x_2=-p, \qquad \qquad x_1\cdot x_2=q\]

Теорема: разложение на множители квадратного трехчлена

Пусть уравнение \(ax^2 + bx + c = 0\), \(a\neq 0\), имеет два корня (возможно, совпадающих), то есть \(D\geqslant 0\). Тогда при любом значении \(x\) выполнено \[ax^2 + bx + c = a(x — x_1)(x — x_2),\] где \(x_1\) и \(x_2\) – корни уравнения \(ax^2 + bx + c = 0\) (возможно, совпадающие).

 

Доказательство

Сделаем преобразования: \[\begin{aligned} &a(x-x_1)(x-x_2)=a\left(x — \dfrac{-b + \sqrt{D}}{2a}\right)\left(x — \dfrac{-b — \sqrt{D}}{2a}\right) =a\left(x^2 — x\left(\dfrac{-b + \sqrt{D}}{2a} + \dfrac{-b — \sqrt{D}}{2a}\right) + \dfrac{b^2 — D}{4a^2}\right)=\\[2ex] &=a\left(x^2-x\cdot \left(-\dfrac ba\right)+\dfrac{b^2-(b^2-4ac)}{4a^2}\right) =a(x^2+\dfrac ba x+\dfrac ca)=ax^2+bx+c \end{aligned}\]

Пример

Разложить на множители квадратный трехчлен \(3x^2-2x-1\).

 

Решение.
Рассмотрим уравнение \(3x^2-2x-1=0\) и найдем его корни.
\(D=(-2)^2-4\cdot 3\cdot (-1)=16\), значит

\[x_1=\dfrac{2-4}{2\cdot 3}=-\dfrac 13 \qquad \qquad x_2=\dfrac{2+4}{2\cdot 3} =1\]

Таким образом, \(3x^2-2x-1=3(x-1)(x+\frac13)=(x-1)(3x+1)\).

 

\[{\Large{\text{Простейшие кубические уравнения}}}\] \(\bullet\) Кубический корень из числа \(a\) – это такое число \(b\), которое при возведении в куб равно \(a\): \[\sqrt[3] a=b\quad \text{то же самое, что }\quad a=b^3\] \(\bullet\) Таблица кубов чисел от 1 до 10: \[\begin{array}{|ll|} \hline 1^3=1 & \quad6^3=216 \\ 2^3=8 & \quad7^3=343\\ 3^3=27 & \quad8^3=512\\ 4^3=64 & \quad9^3=729\\ 5^3=125 & \quad10^3=1000\\ \hline \end{array}\] \(\bullet\) Простейшие кубические уравнения – уравнения, сводящиеся к виду \[x^3=a\] Для любого числа \(a\) такие уравнения имеют единственный корень \[x=\sqrt[3]a\] Пример:
1) решением уравнения \(x^3=-8\) является \(x=\sqrt[3]{-8}=-2\).
2) решением уравнения \(x^3=64\) является \(x=4\).  

shkolkovo.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *