Что такое катод и анод в химии: что это такое, как их определить, применение – Attention Required! | Cloudflare

Содержание

Катод и анод — это плюс или минус: как определить

Анод и катод — два физических термина прикладной электроники, гальванотехнике и химии. Уяснив эти термины, можно понять, почему, например, греется аудиоплеер. Путаница в терминологии спровоцирует аварийные ситуации.

Что это такое

Катоды и аноды — электрические проводники, которые имеют электронную проводимость. Посредством анода электрический заряд втекает в аппаратуру, а катода — наоборот, истекает. На первом возникает окислительная реакция (называют восстановитель) и отсылает заряженные частицы, на втором — восстановительная реакция (называют окислитель) и принимает заряженные частицы.

Анод и катод в диоде

Если перемещение электрических проводников проходит от восстановления к окислению по цепи извне, возникает источник электроэнергии. Прибор, с помощью которого преобразовывается химическая энергия в электроэнергию, получил название «гальванический элемент».

Чтобы не возникло путаницы, стоит четко усвоить и запомнить отличие плюса и минуса в разных процессах:

В гальванотехнике химические реакции происходят внутри элемента. В электричестве извне не нуждается, так как заряд сам потечет во внешнюю цепь из элемента. В этом случаев катод — положительный, анод — отрицательный.

Схема гальванического элемента

В электролизе необходим внешний источник тока, включенный в разрыв проводника внешней цепи. Внешний источник создаст разность потенциалов между электрическими проводниками, и вне устройства будет вкачивать ток в элемент. На аноде будет плюс, а на катоде — противоположно.

Важно! Чтобы определить, катод и анод — это плюс или минус, нужно запомнить: в гальванотехнике отрицательным становится анод, а катод — положительный. У электролитов — противоположно.

Как определить что минус, а что плюс (у диода)

Особенность диодов такова, что они проводят заряд только в одном направлении. Чтобы не ошибиться, обычно на корпусе обозначены маркировки. В случае отсутствия маркировок чтобы узнать, как все-таки определить полярности анода и катода у диодов, применяют следующие методы.

  1. Использование мультиметра. Прибор включается в тест-режим. Если на экране засветились цифровые значения — диод подсоединен по прямому маршруту. Красный провод идет к аноду «+», черный к катоду «-».
  2. Внешние признаки:
  • символы «+» и «-» на корпусе;
  • ближе к аноду нанесены обозначения в форме точек или кольцевых линий;
  • вытянутая форма устройства — плюс, приплюснутый — минус;
  1. Включение питания. Собирается простейшая схема, которая состоит из батарейки и лампы.

Обратите внимание! Если включить лампочку, и она начнет гореть — «+» батарейки соединен с положительной полярностью, это есть анод, и прибор будет пропускать через себя ток. Если свет не загорелся, то значит, соединили с отрицательной полярностью — это катод и, соответственно, тока не будет.

  1. Инструкция по эксплуатации. Производитель вместе с товаром прилагает подробную техническую документацию, где прописаны все необходимые параметры.

Определение полюсов с помощью лампочки

Заряд аккумулятора

Если взглянуть на аккумулятор или обычные батарейки, то можно заметить терминалы, отличающиеся обозначением «+» и «-», которые расположены на противоположных концах.

Аккумулятор имеет металлический или пластиковый каркас. Внутри катод сведен с положительной полярностью, а анод подключен к отрицательной полярности. Отделяет их друг от друга заслон, поэтому они не соприкасаются, а электрический заряд свободно протекает между ними. Помогает этому электролит — специальный раствор серной кислоты.

Схема заряда АКБ

Когда проходит химическая реакция заряда с электролитом на одном из электрических проводников, возникнет окислительная реакция. Если включить гальванический компонент в электросеть, электроны с анода перетекут на катод, производя функционирование пока в электролите возникают химические взаимодействия. Работать химический источник электрического тока прекратить только тогда, когда химические составляющие электролита израсходуются.

На заметку. Когда происходит разряд гальванического элемента, то анод является «-», когда заряд — катод имеет знак «+».

Применение в электронике

В электронике применяют особенности диодов впускать заряд по прямому маршруту, но не отпускать обратно.

Р-n переход тока

Работа светодиода заключается в свойстве кристаллов, которые светятся при пропускании через p-n переход тока по прямой.

В электрохимии электрические проводники необходимы при создании автономных источников питания (аккумуляторные батареи), а также при воспроизведении технологических процессов. Аноды, катоды участвуют в электролизе, электроэкстракции, гальваностегии и гальванопластике.

Гальваника — восстановления металла при химических процессах под воздействием электротока. Такая процедура приводит к устойчивости от коррозии узлов и агрегатов механизмов.

Что такое электролиз? Анод и катод. Физико-химический процесс

Долгое время людям не удавалось получать многие чистые вещества в свободном виде. Такие, например, как:

  • металлы;
  • щелочи;
  • хлор;
  • водород;
  • перекись водорода;
  • хлорорганика и прочие.

Их получали либо с большим содержанием примесей, от которых невозможно было избавиться, либо не синтезировали вовсе. А ведь соединения очень важные для использования в промышленности и быту. Но с открытием такого процесса, как электролиз, задача огромного масштаба была решена. Сегодня он применяется не только для синтеза, но и для многих других процессов.

что такое электролиз

Что такое электролиз? Как он происходит, из каких этапов складывается, в чем заключается основное преимущество данного метода, попробуем разобраться в ходе статьи.

Что такое электролиз?

Чтобы ответить на данный вопрос, следует сначала обратиться к терминологии и уяснить некоторые основные физико-химические понятия.

  1. Постоянный ток — это направленный поток электронов, исходящий от любого источника электричества.
  2. Электролит — вещество, раствор которого способен проводить электрический ток.
  3. Электроды — пластинки из определенных материалов, соединенные между собой, которые пропускают электричество через себя (анод и катод).
  4. Окислительно-восстановительная реакция — это процесс, при котором происходит изменение степеней окисления участников. То есть одни ионы окисляются и повышают значение степени окисления, другие, напротив, восстанавливаются, понижая ее.

Уяснив все эти термины, можно ответить на вопрос о том, что такое электролиз. Это окислительно-восстановительный процесс, заключающийся в пропускании постоянного тока через раствор электролита и завершающийся выделением разных продуктов на электродах.

Простейшая установка, которую можно назвать электролизером, включает в себя всего несколько компонентов:

  • два стакана с электролитом;
  • источник тока;
  • два электрода, соединенных между собой.

В промышленности использует гораздо более сложные автоматизированные конструкции, позволяющие получать большие массы продуктов — электролизные ванны.

Процесс электролиза достаточно сложный, подчиняется нескольким теоретическим законам и протекает по установленным порядкам и правилам. Чтобы правильно предсказать его исход, необходимо четко усвоить все закономерности и возможные варианты прохождения.

электролиз водного раствора

Теоретические основы процесса

Самые главные основополагающие каноны, на которых держится электролиз, — законы Майкла Фарадея — знаменитого ученого-физика, известного своими работами в области изучения электрического тока и всех сопровождающих его процессов.

Всего таких правил два, каждое из которых описывает суть происходящих при электролизе процессов.

Первый закон

Первый закон Фарадея, формула которого записывается как m=kI*Δt, звучит следующим образом.

Масса вещества, выделяющегося на электроде, прямо пропорциональна тому электричеству, которое прошло через электролит.

Из формулы видно, что m — это масса вещества, I — сила тока, Δt — время, в течение которого он пропускался. Также имеется значение k, которое называется электрохимическим эквивалентом соединения. Эта величина зависит от природы самого соединения. Численно k равно массе вещества, которое выделяется на электроде при пропускании через электролит одной единицы электрического заряда.

катод это

Второе правило электролиза

Второй закон Фарадея, формула которого — m=M*I*Δt/n*F, звучит следующим образом. Электрохимический эквивалент соединения (k) прямо пропорционален его молярной массе и обратно пропорционален валентности вещества.

Приведенная формула является результатом вывода из всех объединенных. Она отражает суть второго закона электролиза. М — молярная масса соединения, I — сила тока, пропущенного за весь процесс, Δt — время всего электролиза, F — постоянная Фарадея, n — электроны, которые участвовали в процессе. Их число равно заряду иона, принимавшего участие в процессе.

Законы Фарадея помогают понять, что такое электролиз, а также рассчитать возможный выход продукта по массе, спрогнозировать необходимый результат и повлиять на ход процесса. Они и составляют теоретическую основу рассматриваемых преобразований.

закон фарадея формула

Понятие об аноде и его типы

Очень важное значение в электролизе имеют электроды. Весь процесс зависит от материала, из которого они изготовлены, от их специфических свойств и характера. Поэтому рассмотрим более подробно каждый из них.

Анод — плюс, или положительный электрод. То есть такой, который присоединяется к «+» полюсу источника питания. Соответственно, к нему из раствора электролита будут двигаться отрицательные ионы или анионы. Они будут окисляться здесь, приобретая более высокую степень окисления.

Поэтому можно изобразить небольшую схему, которая поможет запомнить анодные процессы: анод «плюс» — анионы — окисление. При этом существует два основных типа данного электрода, в зависимости от которых, будет получаться тот или иной продукт.

  1. Нерастворимый, или инертный анод. К такому типу относят электрод, который служит лишь для передачи электронов и процессов окисления, однако сам он при этом не расходуется и не растворяется. Таковыми анодами являются изготовленные из графита, иридия, платины, угля и так далее. Используя такие электроды, можно получать металлы в чистом виде, газы (кислород, водород, хлор и так далее).
  2. Растворимый анод. При окислительных процессах он сам растворяется и влияет на исход всего электролиза. Основные материалы, из которых изготавливаются подобного типа электроды: никель, медь, кадмий, свинец, олово, цинк и прочие. Использование таких анодов необходимо для процессов электрорафинирования металлов, гальванопластике, нанесения защитных покрытий от коррозии и так далее.

Суть всех происходящих процессов на положительном электроде сводится к тому, чтобы разрядились наиболее электроотрицательные по значению потенциала ионы. ИВот почему это делают анионы бескислородных кислот и гидроксид-ион, а потом вода, если речь идет о растворе. Кислородсодержащие анионы в водном растворе электролита вообще на аноде не разряжаются, так как вода делает это быстрее, высвобождая кислород.

анод плюс

Катод и его характеристика

Катод — это отрицательно заряженный электрод (за счет скопления на нем электронов при пропускании электрического тока). Именно поэтому к нему движутся положительно заряженные ионы — катионы, которые претерпевают восстановление, то есть понижают степень окисления.

Здесь для запоминания также уместна схема: катод «минус» — катион — восстановление. В качестве материала для катода могут служить:

  • нержавейка;
  • медь;
  • углерод;
  • латунь;
  • железо;
  • алюминий и прочие.

Именно на этом электроде происходит восстановление металлов до чистых веществ, что является одним из основных способов получения их в промышленности. Также возможен переход электронов от анода к катоду, а если первый — растворимый, то его ионы восстанавливаются на отрицательном электроде. Здесь же происходит восстановление катионов водорода до газа Н2. Поэтому катод — это одна из самых важных частей в общей схеме процесса электролиза веществ.

электролиз меди

Электролиз расплавов

С точки зрения химии рассматриваемый процесс имеет свое уравнение. При помощи него можно изобразить всю схему на бумаге и предугадать результат. Самое главное, на что следует обращать внимание, — наличие или отсутствие водной среды и тип анода (растворимый или нет).

Если необходимо получение следующих продуктов: щелочных и щелочноземельных металлов, щелочей, алюминия, бериллия, газы из кислородсодержащих анионов, тогда не может идти речь об электролизе раствора электролита. Только расплав, потому что иначе требуемых соединений не получится. Именно поэтому часто в промышленности синтезируют перечисленные вещества, используя их безводные сухие соли и гидроксиды.

В целом уравнение электролиза расплава выглядит достаточно просто и стандартно. Например, если рассмотреть и записать его для йодида калия, то вид будет следующий:

KI = K+ + I

Катод (К) «-«: К+ + 1е = К0

Анод (А) «+»: 2I — 2e = I20

Итог процесса: KI = K + I2.

Точно так же будет записываться электролиз любого металла, независимо от значения его электродного потенциала.

Электролиз водного раствора

Если речь идет о растворах электролитов, то исход процесса будет совсем другой. Ведь вода становится активным участником. Она способна также диссоциировать на ионы и разряжаться у электродов. Поэтому в подобных случаях важное значение имеет электродный потенциал ионов. Чем его отрицательное значение ниже, тем больше вероятность более быстрого окисления или восстановления.

Электролиз водного раствора подчиняется нескольким правилам, которые следует запомнить.

  1. Анодные процессы: разряжаются только анионы бескислородных кислот (кроме фтороводородной). Если ион кислородсодержащий или фторид-ион, то окисляться будет вода с высвобождением кислорода.
  2. Катодные процессы: металлы в электрохимическом ряду напряжений (до алюминия включительно) на катоде не восстанавливаются вследствие высокой химической активности. Это делает вода с высвобождением водорода. Металлы от алюминия до водорода восстанавливаются одновременно с водой до простых веществ. Те же, что стоят после водорода в ряду напряжений (малоактивные), легко подвергаются восстановлению до простых веществ.

Если следовать этим правилам, то можно изобразить любой электролиз и просчитать выход продукта. В случае с растворимым анодом схема меняется и становится гораздо более сложной.

процесс электролиза

Электролиз солей

Данные процессы используют для получения чистых металлов и газов, так как это технологически просто и экономически выгодно. К тому же продукты выходят с большой долей чистоты, что немаловажно.

Например, электролиз меди позволяет быстро получать ее в чистом виде из раствора любой соли. Чаще всего используется медный купорос или сульфат меди (II) — CuSO4.

Как из расплава, так и из раствора данной соли можно извлечь чистый металл, который так необходим практически во всех отраслях электротехники и металлостроительстве.

Значение и применение процесса

Электролиз — очень важный процесс. На его основе базируются такие необходимые технические операции, как:

  1. Рафинирование металлов.
  2. Электроэкстракция.
  3. Гальванотехника.
  4. Электросинтез.
  5. Нанесение антикоррозионных покрытий и другие.

Катодная защита — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 июля 2018; проверки требуют 14 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 июля 2018; проверки требуют 14 правок.
Катодная защита днища судна с использованием жертвенных анодов

Катодная защита — это электрохимическая защита от коррозии, основанная на наложении отрицательного потенциала на защищаемую деталь[1][2]. Катодную защиту, как правило, совмещают с нанесением защитных покрытий.

Сдвиг потенциала защищаемого металлического объекта осуществляется с помощью внешнего источника постоянного тока (станции катодной защиты) или же соединением с протекторным анодом, изготовленным из металла, более электроотрицательного относительно объекта. При этом поверхность защищаемого образца (детали конструкции) становится эквипотенциальной и на всех её участках протекает только катодный процесс. Обусловливающий коррозию анодный процесс перенесён на вспомогательные электроды. Отсюда названия —

жертвенный анод, жертвенный электрод. Если, однако, сдвиг потенциала в отрицательную сторону превысит определённое значение, возможна так называемая перезащита, связанная с выделением водорода, изменением состава приэлектродного слоя и другими явлениями, что может привести к деградации защитного (изоляционного) покрытия и протеканию процесса стресс-коррозии катодно защищаемого объекта.

Катодная защита была впервые описана сэром Гемфри Дэви в серии докладов, представленных Лондонскому королевскому обществу[3] по развитию знаний о природе в 1824 году. После продолжительных испытаний впервые катодную защиту применили в 1824 г. на судне HMS Samarang[4]. Анодные протекторы из железа были установлены на медную обшивку корпуса судна ниже ватерлинии, что значительно снизило скорость корродирования меди. Медь, корродируя, высвобождает ионы меди, которые обладают антиобрастающим эффектом. В связи с чрезмерным обрастанием корпуса и снижением эффективности корабля Королевский военно-морской флот Великобритании принял решение отказаться от протекторной защиты, чтобы получить преимущества от антифоулингового эффекта вследствие корродирования меди.

Катодная защита широко применяется для защиты от коррозии наружной поверхности:

  • больших металлоемких объектов энергетического комплекса, таких как подземные и наземные магистральные и промысловые трубопроводы нефти, газа и нефтепродуктов, тепловые сети, крупные резервуары и т. д. В случае невозможности или нецелесообразности применения катодной защиты для защиты от коррозии небольших объектов может применяться протекторная защита.
  • металлических свайных фундаментов в грунте.
  • морских причалов, оснований нефтегазовых платформ, опор мостов или любых других металлических конструкций в морской воде, причём для разных зон контакта сооружения с морской водой (зона переменного смачивания, зона полного погружения и зона погружения в морской грунт) необходимо применять разные технические решения по катодной защите.
  • судов от коррозии в морской воде (преимущественно протекторная защита).
  • стальной арматуры в железобетоне для свай, фундаментов, дорожных сооружений (в том числе горизонтальных покрытий) и зданий.

Не очень известным, но очень эффективным способом электрохимической защиты от коррозии является катодная защита внутренней поверхности трубопроводов и резервуаров (сосудов) любой ёмкости и назначения, имеющих контакт с агрессивным водным электролитом (промышленными сточными водами или просто водой с высоким содержанием минеральных солей и кислорода). В этом случае применение катодной защиты позволяет продлить срок безремонтной эксплуатации объекта в несколько раз.

Основным вредным последствием работы систем катодной защиты подземных сооружений (преимущественно трубопроводов), возникающим вследствие ошибок при проектировании и строительстве подобных систем, может быть ускоренная электрокоррозия (коррозия блуждающими токами) соседних с защищаемым металлических объектов. Для ее предотвращения обычно используется дренажная защита при помощи устройств с источником наложенного (принудительного) тока и устройств без источника тока (поляризованный дренаж).

  • DNV-RP-B401 — Cathodic Protection Design — Det Norske Veritas
  • EN 12068:1999 — Cathodic protection. External organic coatings for the corrosion protection of buried or immersed steel pipelines used in conjunction with cathodic protection. Tapes and shrinkable materials
  • EN 12473:2000 — General principles of cathodic protection in sea water
  • EN 12474:2001 — Cathodic protection for submarine pipelines
  • EN 12495:2000 — Cathodic protection for fixed steel offshore structures
  • EN 12499:2003 — Internal cathodic protection of metallic structures
  • EN 12696:2000 — Cathodic protection of steel in concrete
  • EN 12954:2001 — Cathodic protection of buried or immersed metallic structures. General principles and application for pipelines
  • EN 13173:2001 — Cathodic protection for steel offshore floating structures
  • EN 13174:2001 — Cathodic protection for harbour installations
  • EN 13509:2003 — Cathodic protection measurement techniques
  • EN 13636:2004 — Cathodic protection of buried metallic tanks and related piping
  • EN 14505:2005 — Cathodic protection of complex structures
  • EN 15112:2006 — External cathodic protection of well casing
  • EN 50162:2004 — Protection against corrosion by stray current from direct current systems
  • BS 7361-1:1991 — Cathodic Protection
  • NACE SP0169:2007 — Control of External Corrosion on Underground or Submerged Metallic Piping Systems
  • NACE TM 0497 — Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Piping Systems
  • ГОСТ 26251-84 — Протекторы для защиты от коррозии. Технические условия
  • ГОСТ 9.056-75 — Единая система защиты от коррозии и старения. Стальные корпуса кораблей и судов. Общие требования к электрохимической защите при долговременном стояночном режиме
  • ГОСТ Р 51164-98 — Трубопроводы стальные магистральные. Общие требования к защите от коррозии
  • ГОСТ 9.602-2016 — Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии
  1. ↑ Защита металлов от коррозии (ГРИГОРЬЕВ В. П., 1999), ХИМИЯ
  2. ↑ Электрохимическая защита
  3. ↑ Davy, H., Phil. Trans. Roy. Soc., 114,151,242 and 328 (1824)
  4. ↑ Ashworth V., Corrosion Vol. 2, 3rd Ed., 1994, 10:3

определение, принцип работы и обзор

Вы, вероятно, слышали термин «анод», когда говорили о батарее. В этом уроке мы определим, что такое анод, как он функционирует как часть системы, и несколько простых способов вспомнить, что такое анод.

Определение

Анод является частью компонента, который составляет электрическую цепь. Итак, давайте начнем с некоторых основ электрической цепи, чтобы мы могли по-настоящему понять, что такое анод и как он вписывается в общую картину.

Очень просто, электрическая цепь — это система, в которой электрический ток, который определяется как поток электрического заряда, протекает через проводник. Проводник обычно является чем-то простым, например, медным проводом, но может быть и более сложным, например, жидким или газообразным раствором, который называется электролитом.

Но что вызывает электрический ток? Если бы я подключил конец провода к концу в петле, электроны текли бы через провод?

Ответ — нет, и причина в том, что, имея только проводник, у нас нет ничего, что заставляет электрический заряд течь. Итак, как нам заставить электрический заряд течь? Мы делаем это, добавляя в схему компонент, который обеспечивает то, что называется электрическим потенциалом.

Электрический потенциал — это упрощенный способ описания потенциальной энергии, которую электрическая частица имеет благодаря своему расположению. Чтобы действительно понять этот принцип, мы можем провести аналогию с гравитацией.

Давайте подумаем о гравитации очень просто как об энергетическом поле. Находясь рядом с Землей, объекты с массой, включая нас самих, испытывают воздействие этого гравитационного энергетического поля каждый день. Мы потянулись к Земле. У нас есть способ количественного определения этих эффектов путем расчета энергии, необходимой для достижения определенных физических мест в гравитационном поле, и это уравнение для потенциальной энергии ( PE ), которое:

PE = m * g * h (Уравнение 1)

где m — масса объекта, g — ускорение силы тяжести объекта, а h — высота объекта.

Итак, что говорит нам это уравнение? Это говорит нам о том, что если мы с нашей массой ( m ) находимся на определенной высоте ( h ), у нас будет определенное количество потенциальной энергии ( PE ). Другой способ думать об этом заключается в том, что если вы хотите поднять свою массу на определенную высоту, что-то должно обеспечить необходимое количество энергии, чтобы вы туда попали. Думайте об этом как о восхождении на гору — если вы находитесь на вершине, вы вкладываете много энергии, чтобы добраться туда, потому что вы боролись с гравитационным полем Земли все время!

Электрический потенциал очень похож на гравитационный потенциал. Он описывает количество энергии, которое частица имеет в зависимости от ее местоположения. Это способ количественно определить, сколько энергии было дано частице, чтобы заставить ее двигаться против электрического поля. В случае нашей электрической цепи это поле является полем, созданным отталкиванием электрической частицы к другим подобным частицам. Итак, как и в ситуации с альпинизмом, мы описываем частицу, которая пробилась сквозь электрическое поле, чтобы добраться туда, где она есть!

Как аноды вписываются в электрическую цепь

Какое отношение это имеет к аноду? Анод — это одна часть устройства в электрической цепи, в которой электроны накапливаются и уходят через проводник.

Давайте поговорим об очень конкретном примере, с которым мы все, вероятно, знакомы — о батарее.

Батарея работает за счет размещения электролитического раствора и двух проводников на каждом конце, как показано на рисунке 1 ниже. Для наших целей мы скажем, что нижний конец — это анод, а верхний конец — это противоположность анода, которую мы называем катодом.

размещения электролитического раствора и двух проводников на каждом концеразмещения электролитического раствора и двух проводников на каждом конце

Химическая реакция внутри батареи приводит к тому, что электроны, которые заряжены отрицательно, собираются на аноде, а протоны, которые заряжены положительно, собираются на катоде, как показано на рисунке 2 ниже:

Химическая реакция внутри батареиХимическая реакция внутри батареи

Как видите, мы приближаемся к тому, чтобы иметь все компоненты, которые нам нужны для нашей электрической цепи. Электролит в батарее создает разность электрических потенциалов и движущую силу для протекания тока. Все, что нам нужно сделать, это подключить два конца батареи, и у нас будет поток электронов от анода к катоду, как вы видите на рисунке 3 ниже:

поток электронов от анода к катодупоток электронов от анода к катоду

Теперь, когда мы настроили нашу электрическую цепь, мы можем действительно понять, что такое анод.

что это такое, применение, сущность, правила, примеры

Вопрос о том, что такое электролиз, рассматривается еще в школьном курсе физике, и для большинства людей не является секретом. Другое дело – его важность и практическое применение. Этот процесс с большой пользой используется в различных отраслях и может пригодиться для домашнего мастера.

Что такое электролиз и где он применяется?

Что такое электролиз и где он применяется?

Что такое электролиз?

Электролиз представляет собой комплекс специфических процессов в системе электродов и электролита при протекании по ней постоянного электрического тока. Его механизм основывается на возникновении ионного тока. Электролит – это проводник 2-го типа (ионная проводимость), в котором происходит электролитическая диссоциация. Она связана с разложением на ионы с положительным (катион) и отрицательным (анион) зарядом.

Электролизная система обязательно содержит положительный (анод) и отрицательный (катод) электрод. При подаче постоянного электрического тока катионы начинают двигаться к катоду, а анионы – к аноду. Катионами в основном являются ионы металлов и водород, а анионами – кислород, хлор. На катоде катионы присоединяют к себе избыточные электроны, что обеспечивает протекание восстановительной реакции Men+ + ne → Me (где n – валентность металла). На аноде, наоборот, электрон отдается из аниона с протеканием окислительной реакции.

Таким образом, в системе обеспечивается окислительно-восстановительный процесс. Важно учитывать, что для его протекания необходима соответствующая энергия. Ее должен обеспечить внешний источник тока.

Законы электролиза Фарадея

Великий физик М.Фарадей своими исследованиями позволил не только понять природу электролиза, но и производить необходимые расчеты для его осуществления. В 1832 г. появились его законы, связавшие основные параметры происходящих процессов.

Первый закон

Первый закон Фарадея гласит, что масса восстанавливающегося на аноде вещества прямо пропорциональна электрическому заряду, наведенному в электролите: m = kq = k*I*t, где q — заряд, k – коэффициент или электрохимический эквивалент вещества, I – сила тока, протекающего через электролит, t – время прохождения тока.

Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

Второй закон

Второй закон Фарадея позволил определить коэффициент пропорциональности k. Он звучит следующим образом: электрохимический эквивалент любого вещества прямо пропорционален его молярной массе и обратно пропорционален валентности. Закон выражается в виде:

Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

k = 1/F*A/z, где F – постоянная Фарадея, А- молярная масса вещества, z – его химическая валентность.

С учетом обоих законов можно вывести окончательную формулу для расчета массы, оседающего на электроде вещества: m = A*I*t/(n*F), где n – количество электронов, участвующих в электролизе. Обычно n соответствует заряду иона. С практической точки зрения важна связь массы вещества с подаваемым током, что позволяет контролировать процесс, изменяя его силу.

Электролиз расплавов

Один из вариантов электролиза – использование в качестве электролита расплав. В этом случае в электролизном процессе участвуют только ионы расплава. В качестве классического примера можно привести электролиз солевого расплава NaCl (поваренная соль). К аноду устремляются отрицательные ионы, а значит, выделяется газ (Cl). На катоде будет происходить восстановление металла, т.е. оседание чистого Na, образующегося из положительных ионов, притянувших избыточные электроны. Аналогично можно получать другие металлы (К, Са, Li и т.д.) из расправа соответствующих солей.

Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

При электролизе в расплаве электроды не подвергаются растворению, а участвуют только в качестве источника тока. При их изготовлении можно использовать металл, графит, некоторые полупроводники. Важно, чтобы материал имел достаточную проводимость. Один из наиболее распространенных материалов – медь.

Особенности электролиза в растворах

Электролиз в водном растворе существенно отличается от расплава. Здесь имеют место 3 конкурирующих процесса: окисление воды с выделением кислорода, окисление аниона и анодное растворение металла. В процессе задействованы ионы воды, электролита и анода. Соответственно, на катоде может происходить восстановление водорода, катионов электролита и металла анода.

Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

Возможность протекания указанных конкурирующих процессов зависит от величины электрических потенциалов системы. Протекать будет только тот процесс, который требует меньше внешней энергии. Следовательно, на катоде будут восстанавливаться катионы, имеющие максимальный электродный потенциал, а на аноде – окисляться анионы с наименьшим потенциалом. Электродный потенциал водорода принят за «0». Для примера, у калия он равен (-2,93 В), натрия – (-2,71 В), свинца (-0,13 В), а у серебра – (+0,8 В).

Электролиз в газах

Газ может исполнить роль электролита только при наличии ионизатора. В этом случае ток, проходя через ионизированную среду, вызывает необходимый процесс на электродах. При этом законы Фарадея не распространяются на газовый электролиз. Для его осуществления необходимы такие условия:

  1. Без искусственной ионизации газа не поможет ни высокое напряжение, ни большой ток.
  2. Для электролиза подходят лишь кислоты, не содержащие кислорода и находящиеся в газообразном состоянии, и некоторые газы.

Важно! При выполнении необходимых условий процесс протекает аналогично электролизу в жидком электролите.

Особенности процессов, происходящих на катоде и аноде

Для практического применения электролиза важно понимать, что происходит на обоих электродах при подаче электрического тока. Характерны такие процессы:

  1. Катод. К нему устремляются положительно заряженные ионы. Здесь происходит восстановление металлов или выделение водорода. Можно выделить несколько категорий металлов по катионной активности. Такие металлы, как Li, K, Ba, St, Ca, Na, Mg, Be, Al, хорошо восстанавливаются только из расплава солей. Если используется раствор, то выделяется водород за счет электролиза воды. Можно обеспечить восстановление в растворе, но при достаточной концентрации катионов, у следующих металлов — Mn, Cr, Zn, Fe, Cd, Ni, Ti, Co, Mo, Sn, Pb. Процесс протекает наиболее легко для Ag, Cu, Bi, Pt, Au, Hg.
  2. Анод. К этому электроду поступают отрицательно заряженные ионы. Окисляясь, они отбирают электроны у металла, что приводит к их анодному растворению, т.е. переходу в положительно заряженные ионы, которые направляются к катоду. Анионы также подразделяются по своей активности. Только из расплавов могут разряжаться такие анионы PO4, CO3, SO4, NO3, NO2, ClO4, F. В водных растворах электролизу подвергаются не они, а вода с выделением кислорода. Наиболее легко реагируют такие анионы, как ОН, Cl, I, S, Br.
Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

При обеспечении электролиза важно учитывать склонность материала электродов к окислению. В этом отношении выделяются инертные и активные аноды. Инертные электроды делаются из графита, угля или платины и не участвуют в снабжении ионами.

Факторы, влияющие на процесс электролиза

Процесс электролиза зависит от следующих факторов:

  1. Состав электролита. Значительное влияние оказывают различные примеси. Они подразделяются на 3 типа – катионы, анионы и органика. Вещества могут быть более или менее отрицательными, чем основной металл, что и мешает процессу. Среди органических примесей выделяются загрязнители (например масла) и ПАВ. Их концентрация имеет предельно допустимые значения.
  2. Плотность тока. В соответствии с законами Фарадея, масса осаждаемого вещества увеличивается с увеличением силы тока. Однако возникают неблагоприятные обстоятельства – концентрированная поляризация, повышенное напряжение, интенсивный разогрев электролита. С учетом этого существуют оптимальные значения плотности тока для каждого конкретного случая.
  3. рН электролита. Кислотность среды также выбирается с учетом металлов. Например оптимальное значение кислотности электролита для цинка – 140 г/куб.дм.
  4. Температура электролита. Она влияет неоднозначно. С увеличением температуры растет скорость электролиза, но повышается и активность примесей. Для каждого процесса есть оптимальная температура. Обычно она находится в пределах 38-45 градусов.

Важно! Электролиз можно ускорить или замедлить путем различных воздействий и выбора состава электролита. Для каждого варианта применения существует свой режим, который следует строго соблюдать.

Где применяется электролиз?

Электролиз применяется во многих сферах. Можно выделить несколько основных направлений использования для получения практических результатов.

Гальваническое покрытие

Тонкое, прочное гальваническое покрытие из металла можно наложить путем электролиза. Покрываемое изделие устанавливается в ванну в виде катода, а электролит содержит соль нужного металла. Так можно покрыть сталь цинком, хромом или оловом.

Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

Электроочистка — рафинирование меди

Примером электроочистки может служить такой вариант: катод – чистая медь, анод – медь с примесями, электролит – водный раствор медного сульфата. Медь из анода переходит в ионы и оседает в катоде уже без примесей.

Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

Добыча металлов

Для получения металлов из солей они переводятся в расплав, а затем обеспечивается электролиз в нем. Достаточно эффективен такой способ для получения алюминия из бокситов, натрия и калия.

Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

Анодирование

При этом процессе покрытие выполняется из неметаллических соединений. Классический пример – анодирование алюминия. Алюминиевая деталь устанавливается, как анод. Электролит – раствор серной кислоты. В результате электролиза на аноде оседает слой из оксида алюминия, обладающего защитными и декоративными свойствами. Указанные технологии широко используются в различных отраслях промышленности. Можно осуществить процессы и своими руками с соблюдением техники безопасности.

Энергетические затраты

Электролиз требует больших энергетических затрат. Процесс будет иметь практическую ценность при достаточной величине анодного тока, а для этого необходимо приложить значительный постоянный ток от источника электроэнергии. Кроме того, при его проведении возникают побочные потери напряжения – анодное и катодное перенапряжение, потери в электролите за счет его сопротивления. Эффективность работы установки определяется путем отнесения мощности энергозатрат к единице полезной массы полученного вещества.

Электролиз давно и с высокой эффективностью используется в промышленности. Анодированные и гальванические покрытия стали обычным явлением в повседневной жизни, а добыча и обогащение материалов помогает добывать многие металлы из руды. Процесс можно запланировать и рассчитать, зная основные его закономерности.

Ответы Mail.ru: про катод и анод

Катод отдает электроны — остаютя, + заряженные частицы, Анод принимает электроны, следовательно, на нем избыток отрицательного заряда, то есть — .

Движение электронов от анода к катоду. Да подсоединяют Анод+,Катод-

я те вот тут ответил как есть: <a rel=»nofollow» href=»http://otvet.mail.ru/question/24302061/» target=»_blank» >http://otvet.mail.ru/question/24302061/</a>

Чисто по физике — всё правильно. Ну вот нравится Химикам, что любая пластина, опущенная в электролит — АНОД. Отсюда и непонятки…

Задача n 157

Составьте схему гальванического элемента, напишите электронные уравнения электродных процессов и суммарное уравнение соответствующей окислительно-восстановительной реакции. Вычислите концентрацию раствора электролита или ЭДС.

Номер

задачи

Ме-талл

1-го элек-трода

Электролит 1-го электрода

Концентрация электролита

1-го электрода, моль/л

Ме-талл

2-го элек-трода

Электролит 2-го электрода

Концентрация электролита

2-го электрода, моль/л

ЭДС, В

157

Hg

HgCl2

0,01

Al

AlCl3

1,00

?

Решение

Гальванический элемент — это электрохимическая система, в которой энергия окислительно-восстановительной реакции трансформируется в электрическую энергию, т.е. такая система служит в качестве химического источника тока.

Анодный процесс заключается в окислении металла, характеризующегося более отрицательной величиной электродного потенциала Е0, в катодном процессе участвует частица-окислитель, присутствующая в катодном электролите.

Для металлов, приведенных в условии задачи:

Электрод

Al3+, Аl

-1,662

Нg2+, Нg

+0,854

Более отрицательной величиной электродного потенциала характеризуется металл Аl, поэтому именно он и будет участником анодного процесса.

Металл анода окисляется, что можно представить в виде электронного уравнения вида:

Ме0 m e= Mem+

Для данного металла:

Аl 0 — 3 e= Аl 3+

Катодный процесс заключается в восстановлении катионов металла, входящих в состав соли – электролита катода.

Соответствующее электронное уравнение имеет вид:

Men+ + n e = Me0

Для системы, описанной в условии задачи:

Нg2+ + 2e = Нg 0

Электрохимическая схема — это условная запись, в которой представлена информация о аноде и катоде с указанием металлов, состава электролитов, а также особенностях конструкции данного

гальванического элемента:

Металл I | Электролит I || Электролит II | Металл II

(с более .. (с менее

отриц.Е0) отриц.Е0)

Анод катод

Для рассматриваемого в задаче гальванического элемента электрохимическая схема имеет вид:

Аl | AlCl3 || HgCl2| Нg

а н о д к а т о д

Чтобы вычислить ЭДС гальванического элемента, необходимо найти разность потенциалов катода и анода:

ЭДС = Е катода — Е анода

Каждый из указанных потенциалов можно вычислить по формуле Нернста:

где Е0 – стандартный электродный потенциал металла анода или катода, n — число электронов, отдаваемых восстановителем или принимаемых окислителем, С — концентрация электролита, моль/л.

Следовательно, ЭДС гальванического элемента может быть представлена следующей формулой:

ЭДС = (Емет. катода + lg Cэл-та катода)мет. анода + lgCэл-та анода)

Подставляем численные данные условия задачи и производим необходимые вычисления:

Емет. катода = 0.854 В

Cэл-та катода = 1 моль/л

lg Cэл-та катода = 0

n =2 для катодного процесса)

Емет. анода = -1.662 В

Cэл-та анода = 0.01 моль/л

lgCэл-та анода = …….….

n = 3(для анодного процесса)

ЭДС = (0.854+ 0) – (-1.662 + -2)

ЭДС = 2.549

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *