Что такое линейное уравнение с. Линейные уравнения. Полное руководство (2019)
И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.
Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.
Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .
Навигация по странице.
Что такое линейное уравнение?
Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.
Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:
Определение.
Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .
Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором — b=3,33 .
А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.
В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:
Определение.
Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.
К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .
Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это
Как решать линейные уравнения?
Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.
Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет
- единственный корень при a≠0 ,
- не имеет корней при a=0 и b≠0 ,
- имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.
Поясним, как были получены эти результаты.
Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:
- перенос слагаемого из одной части уравнения в другую с противоположным знаком,
- а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.
Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .
А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.
Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .
Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .
Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.
Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и да
Линейные уравнения — это… Что такое Линейные уравнения?
- Линейные уравнения
Линейные уравнения [linear equations] — уравнения, в которые неизвестные входят в 1-й степени (линейно) и нет членов, содержащих произведения неизвестных или экспоненты. Система линейных уравнений может иметь либо единственное решение, либо бесконечное множество решений (неопределенная система), либо ни одного решения (несовместная система). Общий вид системы Л.у.:
a11x1 + a12x2 +…+ a1nxn = b1
a21x1 + a22x
2 +…+ a2nxn = b2…………………………….
аi1 + ai2 + … + ainxn = bi
…………………………….
am1x1 + am2x2 +…+ amnxn = bm.
Здесь aij, bi (i = 1, …, m; j = 1, …, n) — произвольные числовые коэффиценты, числа bi обычно называют свободными членами. В случае, если все bi = 0 , систему называют однородной. При решении системы уравнений широко применяются определители, составленные из коэффициентов aij при неизвестных.
В векторно-матричной записи
или Ax = b.
Здесь A = [aij] — матрица, состоящая из коэффициентов при неизвестных системы («матрица системы«). О применении Л.у. в экономике см. в ст. Межотраслевой баланс (МОБ).
Экономико-математический словарь: Словарь современной экономической науки. — М.: Дело. Л. И. Лопатников. 2003.
- Линейные операторы
- Линейный метод амортизации
Смотреть что такое «Линейные уравнения» в других словарях:
линейные уравнения — Уравнения, в которые неизвестные входят в 1 й степени (линейно) и нет членов, содержащих произведения неизвестных или экспоненты. Система линейных уравнений может иметь либо единственное решение, либо бесконечное множество решений (неопределенная … Справочник технического переводчика
уравнения строительной механики канонические — Составленные в определённой форме линейные уравнения, обладающие свойством взаимности коэффициентов и служащие для определения основных неизвестных в статически неопределимой системе. [Терминологический словарь по строительству на 12 языках… … Справочник технического переводчика
УРАВНЕНИЯ — Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера
Уравнения математической физики — дифференциальные уравнения с частными производными, а также некоторые родственные уравнения иных типов (интегральные, интегро дифференциальные и т.д.), к которым приводит математический анализ физических явлений. Для теории У. м. ф.… … Большая советская энциклопедия
УРАВНЕНИЯ СТРОИТЕЛЬНОЙ МЕХАНИКИ КАНОНИЧЕСКИЕ — составленные в определённой форме линейные уравнения, обладающие свойством взаимности коэффициентов и служащие для определения основных неизвестных в статически неопределимой системе (Болгарский язык; Български) канонични уравнения на… … Строительный словарь
Уравнения строительной механики канонические — Уравнение строительной механики каноническое – составленные в определённой форме линейные уравнения, обладающие свойством взаимности коэффициентов и служащие для определения основных неизвестных в статически неопределимой системе.… … Энциклопедия терминов, определений и пояснений строительных материалов
Линейные корабли типа «Делавэр» — Delaware class battleship … Википедия
Линейные обыкновенные дифференциальные уравнения и системы
линейные алгебраические уравнения — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN linear algebraic equations … Справочник технического переводчика
Линейные дифференциальные уравнения — дифференциальные уравнения вида y(n) + p1(x) у(n 1) + … + pn(x)y = f(x), (1) где у = y(x) искомая функция, y(n), у(n 1),…, y её производные, a p1(x), p2(x),…, pn(x) (коэффициенты) и f(x) (свободный член) заданные… … Большая советская энциклопедия
Линейные уравнения — это… Что такое Линейные уравнения?
- Линейные уравнения
Линейные уравнения [linear equations] — уравнения, в которые неизвестные входят в 1-й степени (линейно) и нет членов, содержащих произведения неизвестных или экспоненты. Система линейных уравнений может иметь либо единственное решение, либо бесконечное множество решений (неопределенная система), либо ни одного решения (несовместная система). Общий вид системы Л.у.:
a11x1 + a12x2 +…+ a1nxn = b1
a21x1 + a22x2 +…+ a2nxn = b2
…………………………….
аi1 + ai2 + … + ainxn = bi
…………………………….
am1x1 + am2x2 +…+ amnxn = bm.
Здесь aij, bi (i = 1, …, m; j = 1, …, n) — произвольные числовые коэффиценты, числа bi обычно называют свободными членами. В случае, если все bi = 0 , систему называют однородной. При решении системы уравнений широко применяются определители, составленные из коэффициентов aij при неизвестных.
В векторно-матричной записи
или Ax = b.
Здесь A = [aij] — матрица, состоящая из коэффициентов при неизвестных системы («матрица системы«). О применении Л.у. в экономике см. в ст. Межотраслевой баланс (МОБ).
Экономико-математический словарь: Словарь современной экономической науки. — М.: Дело. Л. И. Лопатников. 2003.
- Линейные операторы
- Линейный метод амортизации
Смотреть что такое «Линейные уравнения» в других словарях:
линейные уравнения — Уравнения, в которые неизвестные входят в 1 й степени (линейно) и нет членов, содержащих произведения неизвестных или экспоненты. Система линейных уравнений может иметь либо единственное решение, либо бесконечное множество решений (неопределенная … Справочник технического переводчика
уравнения строительной механики канонические — Составленные в определённой форме линейные уравнения, обладающие свойством взаимности коэффициентов и служащие для определения основных неизвестных в статически неопределимой системе. [Терминологический словарь по строительству на 12 языках… … Справочник технического переводчика
УРАВНЕНИЯ — Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера
Уравнения математической физики — дифференциальные уравнения с частными производными, а также некоторые родственные уравнения иных типов (интегральные, интегро дифференциальные и т.д.), к которым приводит математический анализ физических явлений. Для теории У. м. ф.… … Большая советская энциклопедия
УРАВНЕНИЯ СТРОИТЕЛЬНОЙ МЕХАНИКИ КАНОНИЧЕСКИЕ — составленные в определённой форме линейные уравнения, обладающие свойством взаимности коэффициентов и служащие для определения основных неизвестных в статически неопределимой системе (Болгарский язык; Български) канонични уравнения на… … Строительный словарь
Уравнения строительной механики канонические — Уравнение строительной механики каноническое – составленные в определённой форме линейные уравнения, обладающие свойством взаимности коэффициентов и служащие для определения основных неизвестных в статически неопределимой системе.… … Энциклопедия терминов, определений и пояснений строительных материалов
Линейные корабли типа «Делавэр» — Delaware class battleship … Википедия
Линейные обыкновенные дифференциальные уравнения и системы — Линейное однородное уравнение первого порядка y + p(x)y = 0 Общ … Википедия
линейные алгебраические уравнения — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN linear algebraic equations … Справочник технического переводчика
Линейные дифференциальные уравнения — дифференциальные уравнения вида y(n) + p1(x) у(n 1) + … + pn(x)y = f(x), (1) где у = y(x) искомая функция, y(n), у(n 1),…, y её производные, a p1(x), p2(x),…, pn(x) (коэффициенты) и f(x) (свободный член) заданные… … Большая советская энциклопедия
линейные уравнения — это… Что такое линейные уравнения?
- линейные уравнения
линейные уравнения
Уравнения, в которые неизвестные входят в 1-й степени (линейно) и нет членов, содержащих произведения неизвестных или экспоненты. Система линейных уравнений может иметь либо единственное решение, либо бесконечное множество решений (неопределенная система), либо ни одного решения (несовместная система). Общий вид системы Л.у.: a11x1 + a12x2 +…+ a1nxn = b1 a21x1 + a22x2 +…+ a2nxn = b2 ……………………………. аi1 + ai2 + … + ainxn = bi ……………………………. am1x1 + am2x2 +…+ amnxn = bm. Здесь aij, bi (i = 1, …, m; j = 1, …, n) — произвольные числовые коэффиценты, числа bi обычно называют свободными членами. В случае, если все bi = 0 , систему называют однородной. При решении системы уравнений широко применяются определители, составленные из коэффициентов aij при неизвестных. В векторно-матричной записи или Ax = b. Здесь A = [aij] — матрица, состоящая из коэффициентов при неизвестных системы («матрица системы«). О применении Л.у. в экономике см. в ст. Межотраслевой баланс (МОБ).
[http://slovar-lopatnikov.ru/]Справочник технического переводчика. – Интент. 2009-2013.
- линейные сооружения местной телефонной сети
- линейные условия
Смотреть что такое «линейные уравнения» в других словарях:
Линейные уравнения — [linear equations] уравнения, в которые неизвестные входят в 1 й степени (линейно) и нет членов, содержащих произведения неизвестных или экспоненты. Система линейных уравнений может иметь либо единственное решение, либо бесконечное множество… … Экономико-математический словарь
уравнения строительной механики канонические — Составленные в определённой форме линейные уравнения, обладающие свойством взаимности коэффициентов и служащие для определения основных неизвестных в статически неопределимой системе. [Терминологический словарь по строительству на 12 языках… … Справочник технического переводчика
УРАВНЕНИЯ — Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера
Уравнения математической физики — дифференциальные уравнения с частными производными, а также некоторые родственные уравнения иных типов (интегральные, интегро дифференциальные и т.д.), к которым приводит математический анализ физических явлений. Для теории У. м. ф.… … Большая советская энциклопедия
УРАВНЕНИЯ СТРОИТЕЛЬНОЙ МЕХАНИКИ КАНОНИЧЕСКИЕ — составленные в определённой форме линейные уравнения, обладающие свойством взаимности коэффициентов и служащие для определения основных неизвестных в статически неопределимой системе (Болгарский язык; Български) канонични уравнения на… … Строительный словарь
Уравнения строительной механики канонические — Уравнение строительной механики каноническое – составленные в определённой форме линейные уравнения, обладающие свойством взаимности коэффициентов и служащие для определения основных неизвестных в статически неопределимой системе.… … Энциклопедия терминов, определений и пояснений строительных материалов
Линейные корабли типа «Делавэр» — Delaware class battleship … Википедия
Линейные обыкновенные дифференциальные уравнения и системы — Линейное однородное уравнение первого порядка y + p(x)y = 0 Общ … Википедия
линейные алгебраические уравнения — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN linear algebraic equations … Справочник технического переводчика
Линейные дифференциальные уравнения — дифференциальные уравнения вида y(n) + p1(x) у(n 1) + … + pn(x)y = f(x), (1) где у = y(x) искомая функция, y(n), у(n 1),…, y её производные, a p1(x), p2(x),…, pn(x) (коэффициенты) и f(x) (свободный член) заданные… … Большая советская энциклопедия
Система линейных алгебраических уравнений — это… Что такое Система линейных алгебраических уравнений?
Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛА́У) в линейной алгебре — это система уравнений вида
(1) |
Здесь — количество уравнений, а — количество неизвестных. x1, x2, …, xn — неизвестные, которые надо определить. a11, a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными[1]. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[2].
Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.
Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.
Решение системы (1) — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все её уравнения в тождества.
Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.
Совместная система вида (1) может иметь одно или более решений.
Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:
c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2). |
Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой.
Матричная форма
Система линейных уравнений может быть представлена в матричной форме как:
или:
- .
Здесь — это матрица системы, — столбец неизвестных, а — столбец свободных членов. Если к матрице приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.
Эквивалентные системы линейных уравнений
Системы линейных уравнений называются эквивалентными, если множество их решений совпадает, то есть любое решение одной системы одновременно является решением другой, и наоборот.
Систему, эквивалентную данной, можно получить, в частности, заменив одно из уравнений на это уравнение, умноженное на любое отличное от нуля число. Эквивалентную систему можно получить также, заменив одно из уравнений суммой этого уравнения с другим уравнением системы. В общем, замена уравнения системы на линейную комбинацию уравнений даёт систему, эквивалентную исходной.
Система линейных алгебраических уравнений
эквивалентна системе
- ,
где — невырожденная матрица.
В частности, если сама матрица — невырожденная, и для неё существует обратная матрица , то решение системы уравнений можно формально записать в виде
- .
Методы решения
Прямые (или точные) методы позволяют найти решение за определённое количество шагов. Итерационные методы основаны на использовании повторяющегося процесса и позволяют получить решение в результате последовательных приближений.
Прямые методы
Итерационные методы
Итерационные методы устанавливают процедуру уточнения определённого начального приближения к решению. При выполнении условий сходимости они позволяют достичь любой точности просто повторением итераций. Преимущество этих методов в том, что часто они позволяют достичь решения с заранее заданной точностью быстрее, а также позволяют решать большие системы уравнений. Суть этих методов состоит в том, чтобы найти неподвижную точку матричного уравнения
- ,
эквивалентного начальной системе линейных алгебраических уравнений. При итерации в правой части уравнения заменяется, например, в методе Якоби (метод простой итерации) приближение, найденное на предыдущем шаге:
- .
Среди итерационных методов можно отметить самые популярные:
См. также
Примечания
- ↑ В рамках данной статьи коэффициенты системы, свободные члены и неизвестные считаются действительными числами, хотя они могут быть комплексными или даже сложными математическими объектами с условием, что для них определены операции умножения и сложения.
- ↑ Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов. — 6-е изд., стер. — М.: ФИЗМАТЛИТ, 2004. — 280 с.
- ↑ Вержбицкий В. М. Основы численных методов. — М.: Высшая школа, 2009. — С. 80—84. — 840 с. — ISBN 9785060061239
Ссылки
Линейное дифференциальное уравнение — это… Что такое Линейное дифференциальное уравнение?
В математике линейное дифференциальное уравнение имеет вид
где дифференциальный оператор L линеен, y — неизвестная функция , а правая часть — функция от той же переменной, что и y.
Линейный оператор L можно рассматривать в форме
Уравнения с переменными коэффициентами
Линейное дифференциальное уравнение порядка n с переменными коэффициентами имеет общий вид
Пример
Уравнение Коши — Эйлера, используемое в инженерии, является простым примером линейного дифференциального уравнения с переменными коэффициентами
Уравнение первого порядка
Пример |
---|
Решение уравнения с начальными условиями Имеем решение в общем виде Решение неопределённого интеграла Можно упростить до где 4/3, после подстановки начальных условий в решение. |
Линейное дифференциальное уравнение первого порядка с переменными коэффициентами имеет общий вид
Уравнения в такой форме могут быть решены путём умножения на интегрирующий множитель
получим
используем правило дифференцирования произведения
что, после интегрирования обеих частей, дает нам
Таким образом, решение линейного дифференциального уравнения первого порядка
(в частности, с постоянными коэффициентами) имеет вид
где является константой интегрирования.
Пример
Возьмём дифференциальное уравнение первого порядка с постоянными коэффициентами:
Это уравнение имеет особое значение для систем первого порядка, таким как RC-схемы и масс-демпфер[неизвестный термин] системы.
В этом случае, p(x) = b, r(x) = 1.
Следовательно, решение будет:
Система линейных уравнений — это… Что такое Система линейных уравнений?
система линейных уравнений с N неизвестными — — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=4667] Тематики защита информации EN system of linear equations in N unknowns … Справочник технического переводчика
Система одновременных уравнений — Система одновременных уравнений совокупность эконометрических уравнений (часто линейных), определяющих взаимозависимость экономических переменных. Важным отличительным признаком системы «одновременных» уравнений от прочих систем уравнений… … Википедия
Система линейных алгебраических уравнений — Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛАУ) в линейной алгебре это система уравнений вида (1) … Википедия
система линейных нормальных уравнений — (решение которых представляет собой среденеквадратическое приближение к желаемому сигналу) [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN normal equations … Справочник технического переводчика
Автономная система дифференциальных уравнений — (другое название: стационарная система дифференциальных уравнений) частный случай системы дифференциальных уравнений, когда аргумент системы не входит явным образом в функции, задающие систему. Автономная система в нормальном виде имеет вид … Википедия
Прямоугольная система линейных алгебраических уравнений — Определение Для системы из уравнений с неизвестными ( ) любые переменных называются базисными, если определитель составленный из коэффициентов при этих неизвестных отличен от нуля (остальные переменных называются свободными). Базисным решением… … Википедия
Система уравнений — У этого термина существуют и другие значения, см. Система (значения). Система уравнений это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных. Формальная запись общего вида… … Википедия
Система компьютерной алгебры — Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Добавить иллюстрации. Викифицировать список литературы, используя … Википедия
ЖЕСТКАЯ ДИФФЕРЕНЦИАЛЬНАЯ СИСТЕМА — система обыкновенных дифференциальных уравнений, при численном решении к рой явными методами типа Рунге Кутта или Адамса, несмотря на медленное изменение искомых переменных, шаг интегрирования обязан оставаться малым. Попытки уменьшить время… … Математическая энциклопедия
ПЕРЕОПРЕДЕЛЕННАЯ СИСТЕМА — система, число уравнений к рой больше числа неизвестных. В линейном случае такие системы задаются прямоугольной матрицей, m<n, где m число уравнений, а п число неизвестных. Для П. с. первоочередным является вопрос ее разрешимости, выражаемый в … Математическая энциклопедия