Что такое неполный квадрат – Как свернуть не полный квадрат суммы? Как свернуть не полный квадрат суммы?

Неполный квадрат разности | Алгебра

Неполный квадрат разности в алгебре важен в качестве составной части формулы суммы кубов. В процессе изучения формул сокращенного умножения важно научиться видеть формулы полных и неполных квадратов и различать их между собой.

Неполный квадрат разности — это сумма трех слагаемых, два из которых — квадраты некоторых выражений, а третье равно произведению этих выражений (со знаком «минус» перед ним).

В отличие от полного квадрата разности, произведение выражений не удваивается.

С помощью букв неполный квадрат разности можно записать так:

   

С помощью схемы — так:

Примеры неполных квадратов разности:

   

   

На практике неполный квадрат, как правило, свернут, поэтому, чтобы понять, является ли выражение неполным квадратом разности, его нужно проанализировать.

На этапе изучения новой темы есть смысл выражения подробно расписывать.

Как определить, является ли выражение неполным квадратом разности?

Признаки неполного квадрата разности

1) Выражение состоит ровно из трех слагаемых.

2) Два положительных слагаемых представляют собой квадраты некоторых выражений.

3) Третье слагаемое со знаком «минус» перед ним равно произведению этих выражений.

Например,

   

16x²=(4x)², 81y²=(9y)². Проверяем, равно ли третье слагаемое произведению 4x и 9y: 4x∙9y=36xy — да, равно. Следовательно, это выражение — неполный квадрат разности.

С помощью схемы это можно записать так:

   

100c²=(10c)², d² — уже представлен как квадрат, но 10c∙d≠20cd, поэтому выражение неполным квадратом разности не является (так как 20cd=2∙10c∙d, это выражение — полный квадрат разности).

Слагаемые могут стоять в произвольном порядке.

Например,

   

   

   

В некоторых случаях выражение, не являющееся неполным квадратом разности, может быть к нему приведено.

Например,

   

Здесь два слагаемых отрицательны, значит, неполным квадратом разности это выражение быть не может. Но если знак «минус» вынести за скобки, все знаки в скобках изменятся на противоположные:

   

   

   

В скобках — неполный квадрат разности.

   

Вынесем за скобки общий множитель 5x:

   

   

В алгебре очень важно уметь раскладывать многочлены на множители и преобразовывать выражения (в том числе, по формуле суммы кубов, частью которой является неполный квадрат разности).

www.algebraclass.ru

Неполный квадрат суммы | Алгебра

Неполный квадрат суммы в алгебре встречается в качестве составной части формулы разности кубов. Важно при преобразовании многочленов научиться видеть неполный квадрат и не путать его с полным квадратом суммы.

Неполный квадрат суммы — это сумма трех слагаемых, два из которых являются квадратами некоторых выражений, а третье равно произведению этих выражений.

У неполного квадрата суммы, в отличие от полного, произведение выражений не удваивается.

С помощью букв неполный квадрат суммы можно записать так:

   

С помощью схемы —

Примеры неполных квадратов —

   

   

На практике квадраты и произведение записаны в свернутом виде, поэтому, чтобы понять, является ли выражение полным либо неполным квадратом суммы, его надо проанализировать. На первых шагах изучения темы формулы имеет смысл подробно расписывать, в дальнейшем — делать это устно.

Как определить, является ли некоторое выражение неполным квадратом суммы?

Признаки неполного квадрата суммы

1) Выражение состоит ровно из трех положительных слагаемых.

2) Два слагаемых представляют собой квадраты некоторых выражений.

3) Третье слагаемое равно произведению этих двух выражений.

Например,

   

49y²=(7y)², 9b²=(3b)². Проверяем, равно ли третье слагаемое произведению 7y и 3b: 7y∙3b=21ab — да, равно. Значит, это выражение является неполным квадратом суммы.

С помощью схемы это можно записать так:

   

36m²=(6m)², 25n²=(5n)². Проверяем, равно ли третье слагаемое произведению 6m и 5n: 6m∙5n=30mn≠60mn. Значит, это выражение не является неполным квадратом суммы (60mn=2∙6m∙5n, то есть здесь есть полный квадрат суммы).

Слагаемые в выражении могут стоять в произвольном порядке (не обязательно в соответствии с формулой).

Например,

   

   

   

   

   

   

Иногда выражение, не являющееся неполным квадратом суммы, может быть к нему приведено. Например,

   

Здесь все три слагаемые — с «-«, то есть это выражение квадратом суммы быть не может. А что, если вынести «минус» за скобки? При этом знак каждого слагаемого в скобках изменится на противоположный:

   

   

В этом случае в скобках получили неполный квадрат суммы.

   

Вынесем общий множитель 2a за скобки:

   

   

В скобках получили неполный квадрат суммы.

Умение раскладывать многочлены на множители и преобразовывать выражения, в том числе, содержащие разность кубов, в алгебре — обязательно.

www.algebraclass.ru

Формулы сокращённого умножения | Алгебра

При выполнении преобразований разных выражений часто встречаются некоторые частные случаи умножения. Равенства, выражающие эти случаи, называются формулами сокращённого умножения.

Формулы сокращённого умножения – это выражения, в которых пропущены промежуточные вычисления, поэтому их и называют сокращёнными.

a2 + b2 = (a + b)2 — 2ab  –  сумма квадратов

a2b2 = (a + b)(ab)  –  разность квадратов

(a + b)2 = a2 + 2ab + b2  –  квадрат суммы

(ab)2 = a2 — 2ab + b2  –  квадрат разности

a3 + b3 = (a + b)(a2ab + b2)  –  сумма кубов

a3b3 = (ab)(a2 + ab + b2)  –  разность кубов

(a + b

)3 = a3 + 3a2b + 3ab2 + b3  –  куб суммы

(ab)3 = a3 — 3a2b + 3ab2b3  –  куб разности

Обратите внимание, что a и b в формулах сокращённого умножения могут быть как числами, так и выражениями.

Рассмотрим каждую формулу подробнее и приведём доказательство верности формул сокращённого умножения:

  • Сумма квадратов двух чисел равна разности квадрата суммы этих чисел и их удвоенного произведения:

    a2 + b2 = (a + b)2 — 2ab

    Доказательство: выполним преобразование правой части формулы, приведём подобные члены и получим левую часть формулы:

    (a + b)2 — 2ab = (a + b)(a + b) — 2ab =

    = a2 + ab + ab + b2 — 2ab = a2 + b2

  • Разность квадратов двух чисел равна произведению суммы этих чисел на их разность:

    a2b2 = (a + b)(ab)

    Доказательство: выполним умножение многочленов из правой части формулы, приведём подобные члены и получим левую часть формулы:

    (a + b)(ab) = a2ab + abb2 = a2b2

  • Квадрат суммы двух чисел равен сумме квадрата первого числа, удвоенного произведения первого числа на второе и квадрата второго числа:

    (a + b)2 = a2 + 2ab + b2

    Доказательство: представим степень в виде произведения, выполним умножение и приведение подобных членов:

    (a + b)2 = (a + b)(a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2

  • Квадрат разности двух чисел равен квадрату первого числа, минус удвоенное произведение первого числа на второе, плюс квадрат второго числа:

    (ab)2 = a2 — 2ab + b2

    Доказательство: представим степень в виде произведения, выполним умножение и приведение подобных членов:

    (ab)2 = (ab)(ab) = a2abab + b2 = a2 — 2ab + b2

  • Сумма кубов двух чисел равна произведению суммы первого и второго числа на неполных квадрат разности этих чисел:

    a3 + b3 = (a + b)(a2ab + b2)

    Доказательство: выполним умножение многочленов из правой части формулы, приведём подобные члены и получим левую часть формулы:

    (a + b)(a2ab + b2) = a3a2b + ab2 + a2bab2 + b3 = a

    3 + b3

  • Разность кубов двух чисел равна произведению разности первого и второго числа на неполный квадрат суммы этих чисел:

    a3b3 = (ab)(a2 + ab + b2)

    Доказательство: выполним умножение многочленов из правой части формулы, приведём подобные члены и получим левую часть формулы:

    (ab)(a2 + ab + b2) = a3 + a2b + ab2a2bab2b3 = a3b3

  • Куб суммы двух чисел равен сумме четырёх слагаемых: куб первого числа, утроенное произведение квадрата первого числа на второе число, утроенное произведение первого числа на квадрат второго и куб второго числа:

    (a + b)3 = a3 + 3a2b + 3ab2 + b3

    Доказательство: представим степень в виде произведения, выполним умножение и приведение подобных членов:

    (a + b)3 = (a + b)(a + b)2 = (a + b)(a2 + 2ab + b2) =

    = a3 + 2a2b + ab2 + a2b + 2ab2 + b3 = a3 + 3a2b + 3ab2 + b3

  • Куб разности двух чисел равен кубу первого числа, минус утроенное произведение квадрата первого числа на второе число, плюс утроенное произведение первого числа на квадрат второго, минус куб второго числа:

    (ab)3 = a3 — 3a2b + 3ab2b3

    Доказательство: представим степень в виде произведения, выполним умножение и приведение подобных членов:

    (ab)3 = (ab)(ab)2 = (ab)(a2 — 2ab + b2) =

    = a3 — 2a2b + ab2a2b + 2ab2b3 = a3 — 3a2b + 3ab2b3

Неполный квадрат суммы

Выражение:

a2 + 2ab + b2

это квадрат суммы, которое также называется полным квадратом суммы, относительно выражения:

a2 + ab + b2,

которое называется неполным квадратом суммы. Неполный квадрат суммы – это сумма квадратов двух чисел и их произведения. Неполный квадрат суммы отличается от полного только произведением чисел, которое не удваивается.

Неполный квадрат разности

Выражение:

a2 — 2ab + b2

Это квадрат разности, который также называется полным квадратом разности относительно выражения:

a2ab + b2,

которое называется неполным квадратом разности. Неполный квадрат разности двух чисел равен квадрату первого числа, минус произведение первого числа на второе, плюс квадрат второго числа. Неполный квадрат разности отличается от полного только произведением чисел, которое не удваивается.

naobumium.info

Формулы сокращенного умножения — MicroArticles

У истоков создания этого проекта лежит небольшая формула, которую я заметил в этом году. Если говорить точнее, это закономерность между числами. Я долго интересовался тем, что это за формула, но разные люди предполагали абсолютно разные варианты. Поскольку, безусловно, эта формула связана с квадратами чисел и я не знаю, придумал ли ее кто-то до меня, я решил сделать презентацию, в которой помимо этой закономерности рассказывалось о какой-нибудь интересной теме. Так я решил создать этот научно-исследовательский проект.

Квадрат суммы

Начнем с азов. Наверняка, каждый семиклассник (не говоря уже и о более старших школьниках) знает эту формулу. Но все же для закрепления материала стоит проверить эти знания.

(x+y)²=x²+2xy+y²

Что читается, как >.

Квадрат разности

А вот на этой теме уже начинают встречаться сложности. К сожалению, не все ученики помнят эту формулу, некоторые путаются, но я надеюсь, что никто из нашего класса не ошибется ни в записи, ни в формулировке.

(x-y)²=x²-2xy+y²

А читается эта формула: >.

Немного из истории. Вот мы и вспомнили первые две формулы сокращенного умножения. Как оказалось, ничего страшного в этом нет!

А задавались ли вы когда-нибудь вопросом, кто же все-таки придумал эти две формулы: квадрат суммы и квадрат разности? Некоторые источники говорят, что это был древнегреческий математик Евклид. Это было действительно уникальное открытие, поскольку мы знаем, что он жил еще в III веке до нашей эры.

Разность квадратов

Вот мы и дошли до последней формулы, связанной с квадратами чисел. В следующем слайде я докажу, почему она последняя. А пока что попытаемся вспомнить разность квадратов.

x²-y²=(x+y)(x-y)

При этом следует помнить, что множители можно менять местами.

Разность квадратов двух чисел равна произведению суммы и разности этих чисел.

Сумма квадратов

Но в школьном курсе не дается понятие этой формулы сокращенного умножения, потому что ее попросту не существует. А сейчас мы рассмотрим, почему.

  • Квадрат суммы и квадрат разности можно разложить не только по формуле, данной ранее. Их можно представить таким видом: (x+y)²=(x+y)(x+y) и (x-y)²=(x-y)(x-y).
  • На основании того, что первые три формулы сокращенного умножения можно представить в виде произведения из двух многочленов, можно утверждать, что и сумму квадратов можно представить, как произведение из двух многочленов.
  • Но все возможные комбинации уже использованы. Квадрат суммы — это произведение сумм этих чисел, квадрат разности — произведение разностей этих чисел, а разность квадратов — произведение суммы и разности. Значит, сумму квадратов нельзя представить в виде формулы сокращенного умножения.

Неполный квадрат

Для дальнейшего повторения формул сокращенного умножения мы должны также вспомнить еще один термин. Мы рассмотрели понятия квадрат суммы и квадрат разности ((x+y)²=x²+2xy+y² и (x-y)²=x²-2xy+y²). Так что же тогда такое неполный квадрат? Нам понадобятся неполный квадрат суммы и неполный квадрат разности. Неполный квадрат суммы — это x²+xy+y² (сумма квадрата первого числа, произведения первого числа на второе и второго числа), а неполный квадрат разности — это x²-xy+y² (квадрат первого числа минус произведение первого числа на второе плюс квадрат второго числа). Как мы видим, в обоих случаях вместо удвоенного произведения первого числа на второе появляется произведение первого числа на второе.

Сумма кубов

Вот мы и приступили к тому моменту, который, как я подозреваю, мало кто помнит. Время проверить знания.

x³+y³=(x+y)(x²-xy+y²)

Сумма кубов двух чисел равна произведению этих чисел и неполного квадрата их суммы.

Разность кубов

И сейчас мы вспомним еще одну, очень похожую на предыдущую, формулу.

x³-y³=(x-y)(x²+xy+y²)

Читается: >.

Куб суммы

Эту формулу и следующую за ней немного сложно запомнить, но я все же надеюсь, что в нашем классе есть ученики с хорошей памятью, что мы сейчас и проверим.

(x+y)³=x³+3x²y+3xy²+y³

Куб суммы двух чисел равен сумме квадрата первого числа, утроенного произведения квадрата первого числа на второе, утроенного произведения первого числа на квадрат второго и куба второго числа.

Куб разности

И вот наконец мы дошли до последней формулы, изучаемой в седьмом классе.

(x-y)³=x³-3x²y+3xy²-y³

Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго числа.

www.microarticles.ru

Полный квадрат суммы | Алгебра

Полный квадрат суммы  в алгебре может встретиться в ходе решения примеров из самых разных тем. Вот почему важно выработать умение увидеть полный квадрат и свернуть его по формуле.

Как другие формулы сокращенного умножения, квадрат суммы является тождеством, то есть формула может быть использована как для перехода от левой части к правой, так и от правой к левой.

Выражение, стоящее в правой части этого тождества, называется полным квадратом суммы (о неполном квадрате мы будем говорить позже).

Полный квадрат суммы равен сумме трех слагаемых, два из которых — квадраты некоторых выражений, а третье — их удвоенное произведение. Он сворачивается в квадрат суммы этих выражений.

   

Например,

   

На практике, как правило, прежде чем воспользоваться формулой полного квадрата суммы, выражение требуется преобразовать.

В ходе первых шагов работы с формулой полного квадрата может быть полезной следующая схема:Например, для того, чтобы свернуть по формуле выражение

   

сначала его следует представить как сумму квадратов двух выражений и удвоенного произведения этих выражений:

   

   

С помощью схемы это записывается так:

Следует учесть, что слагаемые в формуле полного квадрата суммы могут стоять в произвольном порядке.

Например,

   

   

Как определить полный квадрат суммы?

1) Полный квадрат суммы состоит ровно из трех положительных слагаемых.

2) Два слагаемых являются квадратами некоторых выражений.

3) Третье слагаемое равно удвоенному произведению этих выражений.

Например,

   

Здесь квадраты — первое и второе слагаемые:

   

Проверяем, является ли третье слагаемое удвоенным произведением первого и второго выражений:

   

Да,является. Значит, это выражение — полный квадрат суммы, и его можно свернуть по формуле:

   

   

   

   

Здесь все три слагаемые со знаком «минус», чего в формуле полного квадрата суммы быть не может. А что, если попробовать вынести знак «-» за скобки?

   

(не забываем все знаки в скобках изменить на противоположные).

В скобках получили сумму квадратов двух выражений и их удвоенного произведения, то есть полный квадрат суммы двух выражений:

   

   

Переход от полного квадрата суммы к квадрату суммы — один из способов разложения многочлена на множители. Вынесение общего множителя за скобки — другой. В 5-м примере были применены оба способа одновременно.

Еще один пример на комбинацию двух способов:

   

Общий множитель 2x² выносим за скобки.

   

Выражение в скобках — полный квадрат суммы, так как состоит из суммы квадратов двух выражений и их удвоенного произведения

   

   

www.algebraclass.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *