Что такое радиоактивность в химии: радиоактивность — Химическая энциклопедия – Радиоактивный распад — Википедия

Открытая Химия. Радиоактивность

Открытие радиоактивности связывают с именем А. Беккереля, который в 1896 г. обнаружил самопроизвольное испускание ураном ранее неизвестного излучения. Термин радиоактивность (лат. radio – излучаю, activus – действенный) был предположен в 1898 г. М. Кюри. В последующие два года работами Э. Резерфорда было установлено, что это излучение состоит из трех видов – положительно заряженных α-лучей, отрицательно заряженных β-лучей и незаряженных γ-лучей, которые вскоре были идентифицированы соответственно как пучки ядер гелия He24 (α-лучи), пучки электронов (β-лучи) и электромагнитное излучение (фотоны) с частотами, значительно превышающими частоты рентгеновского излучения (γ-лучи). Испускание α- и β-лучей сопровождается превращением химических элементов: R88226a→R86222n+h34e,      C614→N714+e-10. На основании изучения этих типов радиоактивного превращения было сформулировано правило смещения (К. Фаянс, Ф. Содди, 1913 г.): α-распад сопровождается образованием изотопа элемента с массой на 4 единицы меньше, смещенного в периодической таблице на два номера к началу, а β-распад приводит к образованию изотопа элемента, смещенного на один номер к концу периодической системы (без изменения массового числа).

Кроме основного β-распада известны еще два его варианта – испускание позитрона (e10,β+) и электронный захват. Испускание позитрона сопровождается превращением протона в нейтрон, в результате чего атомный номер элемента уменьшается на единицу: p11→n01+e10;C611→B511+e10.

Электронный захват обусловлен захватом электрона из электронной оболочки атома протоном: p11+e-10→n01 В результате электронного захвата атомный номер элемента уменьшается на единицу: R3781b+e-10 (орбитальный электрон) →K3681r.

Кроме природных (естественных) радиоактивных изотопов (U92238, U92235, T90232h, K1940, C614), начиная с 1934 года получено более 1200 искусственных изотопов. Супруги Ирен и Фредерик Жолио-Кюри получили первые искусственные изотопы A1327l(α, n)P1531;B510(α, n)N713.

Устойчивость атомного ядра зависит от отношения числа нейтронов к числу протонов, а также четности или нечетности их числа, при этом ядра с четными числами протонов и нейтронов, как правило, устойчивее ядер с нечетными числами нуклонов (табл. 11.1).

Число устойчивых изотоповЧисло протоновЧисло нейтронов
157четноечетное
52четноенечетное
50нечетноечетное
5нечетноенечетное
Число устойчивых изотопов с разными числами нуклонов

На рис. 11.1 приведен пояс устойчивости атомных ядер. Видно, что с возрастанием атомного номера отношение числа протонов к числу нейтронов для устойчивых ядер возрастает. Большинство радиоактивных изотопов расположено вне пояса устойчивости.

Зависимость числа нейтронов от числа протонов в ядрах устойчивых изотопов

Ядра с числом протонов 84 и более неустойчивы. Ядра с числом нуклонов 2, 8, 20, 28, 50, 82, 126 более устойчивы, чем ядра элементов, расположенных рядом в периодической системе. Эти числа называют магическими.

Стабильность ядер

Спонтанное деление – еще один тип радиоактивного распада. Оно представляет собой самопроизвольный распад тяжелых ядер с Z ≥ 92 на два (реже на три или четыре) осколочных ядра, соответствующих середине периодической системы. Поскольку отношение N/Z для изотопов тяжелых элементов больше, чем для устойчивых изотопов середины периодической системы, спонтанное деление сопровождается испусканием 2–4 нейтронов и последующими β-распадами осколочных ядер.

Радиоактивное превращение природных радиоактивных изотопов тяжелых элементов, начинающееся с одного родоначальника и заканчивающееся стабильным изотопом, объединены в так называемые радиоактивные ряды. Теоретически возможны четыре радиоактивных ядра с массовыми числами A = 4n, 4n + 1, 4n + 2 и 4n + 3, где n – целое число. В природе обнаружены три радиоактивных ряда: ряд урана-238 (A = 4n + 2; n = 51–59), завершающийся свинцом-206, ряд тория-232 (A = 4n, n = 52–58), завершающийся свинцом-208, ряд актиноурана (A = 4n + 3, n = 51–58), начинающийся с урана-235 и завершающийся свинцом-207. Эти ряды существуют потому, что их родоначальники имеют периоды полураспада T1/2 (т. е. время, за которое распадается половина исходного количества радиоактивного изотопа), соизмеримые со временем существования Земли*). Четвертый радиоактивный ряд (

A = 4n + 1, n = 52–59) называют иногда рядом нептуния (T1/2 = 2,2 млн. лет), завершается он висмутом-209.

*) Время жизни Земли оценивается в 4,5 млрд лет.

Счетчик Гейгера

Выше упоминалось, что все элементы тяжелее Bi83 радиоактивны, все их изотопы претерпевают радиоактивный распад (Z = 84–109). Известны только два более легких полностью радиоактивных элемента, 43Tc и 61Pm. В природной смеси изотопов следующих элементов содержатся радиоактивные изотопы: 40K, 50V, 87Rb, 115In, 138La, 142Ce, 144Nd, 147Sm, 152Gd, 176Lu, 174Hf, 180Ta, 180W, 187Re, 190Pt, 192Pt. К ним следует добавить C614, который образуется в атмосфере под действием космического излучения и всегда присутствует в живых организмах. После их гибели поступление углерода-14 прекращается и начинается его распад C614→N714+e-10 (β-). Поскольку T1/2 углерода-14 составляет 5500 лет, радиоуглеродный метод дает возможность определять возраст биологических объектов.

Радиоактивное излучение воздействует на вещество и, передавая веществу энергию, вызывает в нем электронное возбуждение, ионизацию и разрыв химических связей. Особенно опасно радиоактивное излучение для биологических объектов, поскольку оно может нарушить нормальное функционирование клеток, приводя к необратимым последствиям и даже к летальным исходам. Воздействие радиоактивного излучения на организм зависит от проникающей способности излучения. Из трех видов внешнего радиоактивного излучения наименьшей проникающей способностью обладает α-излучение, которое практически полностью поглощается кожным покровом. Бета-излучение способно проникать под кожный покров на глубину до 1 см. Попадание в организм носителей этих радиоактивных излучений весьма опасно. Наибольшую опасность представляет собой гамма-излучение, поскольку оно обладает весьма высокой проникающей способностью.

Радиоактивность — это… Что такое Радиоактивность?

Радиоакти́вность (от лат. radio — «излучаю», radius — «луч» и activus — «действенный»), радиоакти́вный распа́д — явление спонтанного превращения атомного ядра в другое ядро или ядра. Радиоактивный распад сопровождается испусканием одной или нескольких частиц (например, электронов, нейтрино, альфа-частиц, фотонов). Радиоактивностью называют также свойство вещества, содержащего радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).

Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.

Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.

Энергетические спектры α-частиц и γ-квантов, излучаемых радиоактивными ядрами, прерывистые («дискретные»), а спектр β-частиц — непрерывный.

Распад, сопровождающийся испусканием альфа-частиц, назвали альфа-распадом; распад, сопровождающийся испусканием бета-частиц, был назван бета-распадом (в настоящее время известно, что существуют типы бета-распада без испускания бета-частиц, однако бета-распад всегда сопровождается испусканием нейтрино или антинейтрино). Термин «гамма-распад» применяется редко; испускание ядром гамма-квантов называют обычно изомерным переходом. Гамма-излучение часто сопровождает другие типы распада.

В настоящее время, кроме альфа-, бета- и гамма-распадов, обнаружены распады с эмиссией нейтрона, протона (а также двух протонов), кластерная радиоактивность, спонтанное деление. Электронный захват, позитронный распад (или β + -распад), а также двойной бета-распад (и его виды) обычно считаются различными типами бета-распада.

Некоторые изотопы могут испытывать одновременно два или более видов распада. Например, висмут-212 распадается с вероятностью 64 % в таллий-208 (посредством альфа-распада) и с вероятностью 36 % в полоний-212 (посредством бета-распада).

Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро, а последовательность возникающих при этом нуклидов называется радиоактивным рядом. В частности, для радиоактивных рядов, начинающихся с урана-238, урана-235 и тория-232, конечными (стабильными) нуклидами являются соответственно свинец-206, свинец-207 и свинец-208.

История

Радиоактивность открыта в 1896 г. А. Беккерелем, который обнаружил проникающее излучение солей урана, действующее на фотоэмульсию. Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. То есть это свойство присуще не соединениям, а химическому элементу — урану.

В 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы полоний и радий.

Э. Резерфорд экспериментально установил (1899), что соли урана испускают лучи трёх типов, которые по-разному отклоняются в магнитном поле:

  • лучи первого типа отклоняются так же, как поток положительно заряженных частиц; их назвали α-лучами;
  • лучи второго типа отклоняются в магнитном поле так же, как поток отрицательно заряженных частиц (в противоположную сторону), их назвали β-лучами;
  • лучи третьего типа, которые не отклоняются магнитным полем, назвали γ-излучением.

Альфа-распад

α-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4He).

α-распад, как правило, происходит в тяжёлых ядрах с массовым числом А≥140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его (см. Туннельный эффект) и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера экспоненциально уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше.

Правило смещения Содди для α-распада:

{}^{A}_{Z}\textrm{X}\rightarrow {}^{A-4}_{Z-2}\textrm{Y} + {}^{4}_{2}\textrm{He}.

Пример:

{}^{238}_{92}\textrm{U}\rightarrow {}^{234}_{90}\textrm{Th} + {}^{4}_{2}\textrm{He}.

В результате α-распада элемент смещается на 2 клетки к началу таблицы Менделеева, массовое число дочернего ядра уменьшается на 4.

Бета-распад

Беккерель доказал, что β-лучи являются потоком электронов. β-распад — это проявление слабого взаимодействия.

β-распад (точнее, бета-минус-распад, β -распад) — это радиоактивный распад, сопровождающийся испусканием из ядра электрона и антинейтрино.

β-распад является внутринуклонным процессом. Он происходит вследствие превращения одного из d-кварков в одном из нейтронов ядра в u-кварк; при этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:

{}^{1}_{0}\textrm{n}\rightarrow {}^{1}_{1}\textrm{p} + {}^{0}_{-1}\textrm{e} + \bar\nu_e

Правило смещения Содди для β -распада:

{}^{A}_{Z}\textrm{X}\rightarrow {}^{A}_{Z+1}\textrm{Y} + {}^{0}_{-1}\textrm{e} + \bar\nu_e

Пример:

{}^{3}_{1}\textrm{H}\rightarrow {}^{3}_{2}\textrm{He} + {}^{0}_{-1}\textrm{e} + \bar\nu_e

После β -распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.

Существуют также другие типы бета-распада. В позитронном распаде (бета-плюс-распаде) ядро испускает позитрон и нейтрино. При этом заряд ядра уменьшается на единицу (ядро смещается на одну клетку к началу таблицы Менделеева). Позитронный распад всегда сопровождается конкурирующим процессом — электронным захватом (когда ядро захватывает электрон из атомной оболочки и испускает нейтрино, при этом заряд ядра также уменьшается на единицу). Однако обратное неверно: многие нуклиды, для которых позитронный распад запрещён, испытывают электронный захват. Наиболее редким из известных типов радиоактивного распада является двойной бета-распад, он обнаружен на сегодня лишь для десяти нуклидов, и периоды полураспадов превышают 1019 лет. Все типы бета-распада сохраняют массовое число ядра.

Гамма-распад (изомерный переход)

Почти все ядра имеют, кроме основного квантового состояния, дискретный набор возбуждённых состояний с большей энергией (исключением являются ядра ¹H, ²H, ³H и ³He). Возбуждённые состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер. Большинство возбуждённых состояний имеют очень малые времена жизни (менее наносекунды). Однако существуют и достаточно долгоживущие состояния (чьи времена жизни измеряются микросекундами, сутками или годами), которые называются изомерными, хотя граница между ними и короткоживущими состояниями весьма условна. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). При этом излучаются один или несколько гамма-квантов; возбуждение ядра может сниматься также посредством вылета конверсионных электронов из атомной оболочки. Изомерные состояния могут распадаться также и посредством обычных бета- и альфа-распадов.

Специальные виды радиоактивности

Литература

  • Сивухин Д. В. Общий курс физики. — 3-e издание, стереотипное. — М.: Физматлит, 2002. — Т. V. Атомная и ядерная физика. — 784 с. — ISBN 5-9221-0230-3

См. также

  • Единицы измерения радиоактивности

Wikimedia Foundation. 2010.

Радиоактивность — это… Что такое Радиоактивность?

                  Захват электронов происходит с одной из атомных оболочек, чаще всего с ближайшей к ядру К-оболочки (К-захват), реже — со следующих, L- и М-оболочек (L- и М-захваты), β-распад характерен для нейтроноизбыточных ядер, в которых число нейтронов больше, чем в устойчивых ядрах (а для ядер с Z > 83, если число нейтронов больше, чем в β-стабильных ядрах, испытывающих только α-распад). β+-распад и электронный захват свойственны нейтронодефицитным ядрам, более лёгким, чем устойчивые или β-стабильные ядра. Энергия при β-распаде распределяется между 3 частицами: электроном или позитроном, антинейтрино или нейтрино и конечным ядром; поэтому спектр β-частиц сплошной. Бета-радиоактивные изотопы встречаются у всех элементов периодической системы. Особенностью электронного захвата является слабая зависимость его скорости от химического состояния превращающихся атомов. Ядро захватывает электрон с какой-либо из электронных оболочек атома, а вероятность подобного захвата определяется строением не только внутренней оболочки, отдающей ядру электрон, но и (в меньшей степени) более отдалённых оболочек, в том числе и валентных. Изменение заряда ядра при β-распаде влечёт за собой последующую перестройку («встряску») электронных атомных оболочек, возбуждение, ионизацию атомов и молекул, разрыв химических связей. Химические последствия β-распада (и в меньшей степени др. радиоактивных превращений) являются предметом многочисленных исследований (см. Радиохимия).          Спонтанное деление представляет собой самопроизвольный распад тяжёлых ядер на два (реже — 3 или 4) осколка — ядра элементов середины периодической системы. Спонтанное деление и α-распад ограничивают возможности получения новых трансурановых элементов (См. Трансурановые элементы).          Протонная и двупротонная Р. должны представлять собой самопроизвольный распад нейтронодефицитных ядер с испусканием 1 или одновременно 2 протонов, проникающих сквозь кулоновский барьер путём туннельного эффекта (См. Туннельный эффект). Причиной возможности двупротонной Р. служит спаривание в ядре протонов с противоположно направленными спинами, сопровождающееся выделением энергии около 2 Мэв. В результате этого испускание из ядра одновременно пары протонов может потребовать затраты меньшей энергии, чем отрыв одного из них от другого, а в ряде случаев может идти даже с выделением энергии (причём за время > 10-12сек), тогда как испускание одиночного протона потребовало бы, наоборот, затраты энергии.

         Трудности наблюдения протонной и двупротонной Р. обусловлены как коротким (по сравнению с др. типами Р.) временем жизни р- и 2р-радиоактивных ядер, так и тем, что эти ядра характеризуются очень сильным дефицитом нейтронов и потому могут быть получены в ядерных реакциях, сопровождающихся вылетом большого числа нейтронов и поэтому маловероятных. Протонную Р. до сих пор удалось наблюдать (см. выше) лишь при распаде не основного, а возбуждённого (изомерного) состояния ядра 53MCo. Двупротонная Р. так же, как и двунейтронный распад, экспериментально пока не обнаружены.

         Гамма-лучи. Ядерные изомеры. Испускание γ-квантов сопровождает Р. в тех случаях, когда «дочерние» ядра образуются в возбуждённых состояниях. Время жизни ядер в таких возбуждённых состояниях определяется свойствами (Спином, Чётностью, энергией) данного уровня и нижележащих уровней, на которые могут происходить переходы с испусканием γ-квантов. Длительность γ-переходов резко возрастает с уменьшением их энергии и с увеличением разности моментов исходного и конечного состояний ядра. В ряде случаев эта длительность существенно превышает 10—10—10—9сек, т. е. наряду с основным состоянием данного стабильного или радиоактивного ядра может относительно долго (иногда годы) существовать его метастабильное возбуждённое (изомерное) состояние. Для многих ядерных изомеров наблюдается явление внутренней электронной конверсии: возбуждённое ядро, не излучая γ-квантов, передаёт свою избыточную энергию электронным оболочкам, вследствие чего один из электронов вылетает из атома. После внутренней конверсии возникает вторичное излучение рентгеновского и оптического диапазона вследствие заполнения одним из электронов освободившегося места и последующих переходов. Участие электронных оболочек в конверсионных переходах приводит к тому, что время жизни соответствующих изомеров зависит (хотя и очень слабо) от химического состояния превращающихся атомов.          Известны изомеры, для которых преобладает не γ-излучение с образованием др. состояния того же изотопа, но распад по какому-либо из основных типов Р. Так, изомер T1/2 = 3,7 ч) испытывает, как и основной изотоп T1/2 = 45 сек), как и основной изотоп T1/2 = 14 мсек) спонтанное деление.

         Радиоактивные ряды (семейства). Во многих случаях продукты радиоактивного распада сами оказываются радиоактивными и тогда образованию стабильного изотопа предшествует цепочка из нескольких актов радиоактивного распада. Примерами таких цепочек являются радиоактивные ряды природных изотопов тяжёлых элементов, которые начинаются нуклидами 238U, 235U, 232Th и заканчиваются стабильными изотопами свинца 206РЬ, 207РЬ, 208РЬ. Многие радиоактивные изотопы могут распадаться по 2 или нескольким из перечисленных выше основных типов Р. В результате такой конкуренции разных путей распада возникают разветвления радиоактивных превращений. Для природных радиоактивных изотопов характерны разветвления, обусловленные возможностью α- и β-распадов. Для изотопов трансурановых элементов наиболее распространены разветвления, связанные с конкуренцией α (реже β-) распадов и спонтанного деления. У нейтронодефицитных ядер зачастую наблюдается конкуренция β+-распада и электронного захвата. Для многих изотопов с нечётными Z и чётными А оказываются энергетически возможными два противоположных варианта β-распада: β-распад и электронный захват или β— и β+-распады.

         Заключение. Открытие Р. оказало огромное влияние на развитие науки и техники. Оно ознаменовало начало эпохи интенсивного изучения свойств и структуры вещества. Новые перспективы, возникшие в энергетике, промышленности и многих др. областях человеческой деятельности благодаря овладению ядерной энергией, были вызваны к жизни обнаружением способности химических элементов к самопроизвольным превращениям. За работы, связанные с исследованием и применением Р., было присуждено более 10 Нобелевских премий по физике и химии, в том числе А. Беккерелю, П. и М. Кюри, Э. Ферми, Э. Резерфорду, Ф. и И. Жолио-Кюри, Д. Хевеши, О. Гану, Э. Макмиллану и Г. Сиборгу, У. Либби и др.

         Лит.: Кюри М., Радиоактивность, пер. с франц., 2 изд., М. — Л., 1960; Мурин А. Н., Введение в радиоактивность, Л., 1955; Давыдов А. С., Теория атомного ядра, М., 1958; Гайсинский М. Н., Ядерная химия и ее приложения, пер. с франц., М., 1961; Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 3, М., 1961; Учение о радиоактивности. История и современность, М., 1973.

         В. И. Гольданский, Е. М. Лейкин.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

15 Основные понятия ядерной физики. Радиоактивность. Виды радиоактивного распада.

Ядерная  физика  — это  раздел  физики,  в котором  изучаются структура  и свойства атомных ядер. Ядерная  физика  занимается  также  изучением взаимопревращения атомных  ядер, совершающиеся  как  в результате радиоактивных распадов, так и в результате различных ядерных реакций. Основная  ее задача связана с выяснением природы ядерных сил, воздействующих между нуклонами, и особенностей  движения нуклонов в ядрах. Протоны  и нейтроны — это основные  элементарные частицы, из которых  состоит ядро атома. Нуклон — это частица, обладающая двумя различными зарядовыми состояниями:  протон и нейтрон. Заряд ядра — количество протонов в ядре, одинаковое с атомным номером элемента в периодической системе Менделеева. Изотопы — ядра, имеющие один и тот же заряд, если массовое число нуклонов различно.

Изобары — это ядра, обладающие одним и тем же числом нуклонов, при разных зарядах.

Нуклид — это конкретное ядро со значениями. Удельная энергия связи — это энергия связи, приходящаяся  на один нуклон ядра. Ее определяют экспериментально. Основное состояние ядра — это состояние ядра, имеющего наименьшую возможную энергию, равную энергии связи. Возбужденное состояние ядра — это состояние ядра, имеющего энергию, большую энергии связи. Корпускулярно-волновой дуализм. Фотоэффект Свет имеет двойственную  корпускулярно-волновую  природу, т. е. корпускулярно-волновой дуализм: во-первых: он имеет волновые свойства; во-вторых: он выступает в роли потока частиц — фотонов. Электромагнитное  излучение  не только испускается квантами, но распространяется и поглощается в виде частиц (корпускул) электромагнитного  поля — фотонов. Фотоны  являются  реально существующими  частицами  электромагнитного поля. Квантование — это  метод отбора орбит электронов,  соответствующих стационарным  состояниям  атома.

РАДИОАКТИВНОСТЬ

Радиоактивностью — называется способность атомного ядра самопроизвольно распадаться с испусканием частиц. Спонтанный распад изотопов ядер в условиях природной среды называют  естественной радиоактивностью — это  радиоактивность,  которую можно наблюдать у существующих в природе неустойчивых изотопов. А в условиях лабораторий в результате деятельности человека – искусственной радиоактивностьюэто радиоактивность изотопов, приобретенных  в результате ядерных  реакций.  Радиоактивность  сопровождается

превращением  одного  химического  элемента в другой и всегда сопровождается выделением энергии. Для каждого радиоактивного элемента установлены количественные оценки. Так, вероятность распада одного атома в одну секунду характеризуется постоянной распада данного элемента, а время, за которое распадается половина радиоактивного образца, называется периодом полураспада. Число радиоактивных распадов в образце за одну секунду называют активностью радиоактивного препарата.  Единица активности в системе СИ – Беккерель (Бк): 1 Бк=1распад/1с.

Радиоактивный  распад  — это  процесс,  являющийся  статическим,  при  котором  ядра радиоактивного  элемента  распадаются независимо друг от друга. ВИДЫ РАДИОАКТИВНОГО РАСПАДА

Основными видами радиоактивного распада являются:

Альфа — распад

Альфа-частицы испускаются только тяжелыми ядрами, т.е. содержащими большое число протонов и нейтронов. Прочность тяжелых ядер мала. Для того, чтобы покинуть ядро, нуклон должен преодолеть ядерные силы, а для этого он должен обладать достаточной энергией. При объединении двух протонов и двух нейтронов в альфа-частицу ядерные силы в подобном сочетании являются наиболее крепкими, а связи с другими нуклонами слабее, поэтому альфа-частица способна «выйти» из ядра. Вылетевшая альфа-частица уносит положительный заряд в 2 единицы и массу в 4 единицы. В результате альфа-распада радиоактивный элемент превращается в другой элемент, порядковый номер которого на 2 единицы, а массовое число на 4 единицы, меньше.То ядро, которое распадается, называют материнским, а образовавшееся дочерним.  Дочернее ядро оказывается обычно тоже радиоактивным и через некоторое время распадается. Процесс радиоактивного распада происходит до тех пор, пока не появится стабильное ядро, чаще всего ядро свинца или висмута.

Бета-распад

Явление бета-распада состоит в том, что ядра некоторых элементов самопроизвольно испускают электроны и элементарную частицу очень малой массы — антинейтрино. Так как электронов в ядрах нет, то появление бета-лучей из ядра атома можно объяснить способностью нейтронов ядра распадаться на протон, электрон и антинейтрино. Появившийся протон переходит во вновь образующееся ядро. Электрон, вылетающий из ядра, и является частицей бета-излучения. Такой процесс распада нейтронов характерен для ядер с большим количеством нейтронов. В результате бета-распада образуется новое ядро с таким же массовым числом, но с большим на единицу зарядом.

Гамма — распад — не существует. В процессе радиоактивного излучения ядра атомов могут испускать гамма-кванты. Испускание гамма-квантов не сопровождается распадом ядра атома. Гамма излучение зачастую сопровождает явления альфа- или бета-распада. При альфа- и бета-распаде новое возникшее ядро первоначально находится в возбужденном состоянии и , когда оно переходит в нормальное состояние, то испускает гамма-кванты. Так как радиоактивное излучение состоит из альфа-частиц, бета-частиц и гамма-квантов, то явление радиоактивности сопровождается  потерей массы и энергии  ядра, атома и вещества в целом.

γ-распад – испускание атомным ядром γ-квантов;

спонтанное деление – распад атомного ядра на два или три осколка сравнимой массы.

16 Химия это одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы), образуемые ими простые и сложные вещества (молекулы), их превращения и законы, которым подчиняются эти превращения.

Химия — наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Она изучает, из каких веществ состоит тот или иной предмет; почему и как ржавеет железо, и почему олово не ржавеет; что происходит с пищей в организме; почему раствор соли проводит электрический ток, а раствор сахара — нет; почему одни химические изменения происходят быстро, а другие — медленно.

Химия — Наука о составе, строении, изменениях и превращениях, а также об образовании новых простых и сложных веществ. Химию, говорит Энгельс, можно назвать наукой о качественных изменениях тел, происходящих под влиянием изменения количественного состава.

Химия.— греч. наука о разложении и составлении веществ, тел, об отыскании неразлагаемых стихий, основ.

Химию довольно произвольно делят на несколько разделов, которые нельзя четко отграничить ни от других областей химии, ни от других наук (физики, геологии, биологии). Неорганическая химия занимается изучением химической природы элементов и их соединений, за исключением большинства соединений углерода.

Органическая химия изучает соединения, состоящие в основном из углерода и водорода. Поскольку атомы углерода могут соединяться друг с другом с образованием колец и длинных цепочек, как линейных, так и разветвленных, таких соединений существует сотни тысяч. Из органических соединений состоят уголь и нефть, они составляют основу живых организмов. Химики-органики научились получать из угля, нефти, растительных материалов синтетические волокна, пестициды, красители, лекарства, пластики и множество других полезных вещей

Радиохимия это наука о химическом воздействии высокоэнергетического излучения на вещества; она занимается также изучением поведения радиоактивных изотопов Физическая химия использует физические методы для изучения химических систем. Большое место в ней занимают вопросы энергетики химических процессов; соответствующий раздел химии называется химической термодинамикой. К важнейшим направлениям относятся химическая кинетика и строение молекул. Электрохимия изучает химические процессы, протекающие под действием электрического тока, а также способы получения электричества химическими методами. Среди других направлений следует отметить коллоидную химию (она занимается исследованием поведения дисперсных систем), химию поверхностных явлений, статистическую механику.

Аналитическая химия старейшая область химии. Она занимается разложением сложных веществ на более простые, анализом самих веществ и их составляющих. Сегодня в ней широко используются сложное физическое оборудование и компьютеры, позволяющие автоматизировать рутинные процессы, сбор и обработку данных.

Биохимия изучает сложнейшие химические процессы, протекающие в живых организмах. Биохимик должен детально знать органическую химию, владеть многими химическими и физическими методами анализа. К биохимии примыкают биофизика и молекулярная биология.

 Геохимия занимается исследованием химических процессов, протекающих в земной коре. Она изучает образование минералов, метаморфоз скальных пород, образование нефти, пересекается с органической химией и биохимией, а также физикой и физической химией.

Химический элемент – это простое вещество, состоящее из одинаковых атомов.

Природа разных химических элементов различна, так например, многие химические элементы содержатся в природе в чистом виде, некоторые из химических элементов можно вычленить из сложного вещества путем разложения, а можно и вовсе синтезировать новый химический элемент искусственным путем.

Атомы химических элементов – это своего рода строительный материал, из которого выстраиваются все окружающие нас с вами тела.

В природе существует около ста различных химических элементов. И именно эта сотня элементов является фундаментом всего, что нас окружает. Атомы могут соединяться в молекулы, совершенно разнообразными способами, которым нет числа.

Кроме всего прочего, каждый химический элемент имеет свое название. Все, наверное, слышали такие названия как: сера, водород, ртуть, мышьяк и другие. Это и есть названия химических элементов. Но помимо своих русскоязычных наименований химические элементы имеют еще и международные стандартные обозначения. Например, водород обозначается, как H, кислород – O и т.д.

Вещества чаще всего классифицируют по двум самым важным показателям — их строению и составу.

молекулярные и немолекулярные. Молекулярных веществ, т. е. веществ, состоящих из молекул, — подавляющее большинство. В немолекулярных веществах атомы сразу образуют макроскопические тела, не объединяясь перед этим в молекулы.

Для веществ немолекулярного строения характерны только эмпирические формулы, показывающие, какие атомы и в каком количестве содержатся в повторяющемся фрагменте. В нашем примере эмпирическая формула вещества — SiO2, и это ни что иное, как самый обыкновенный песок.

органические и неорганические. Слово органи́ческий происходит от слова организм, т. е. живой, живущий. И действительно, вся живая материя на Земле состоит из огромного разнообразия органических веществ. Несколько столетий назад считали, что органические вещества могут содержаться только в растениях и животных, однако сегодня мы встречаемся с ними и далеко за пределами живой природы: это пластмассы, пластики, клеи, краски, синтетические ткани и многие другие материалы.

Органические вещества обязаны своему существованию одному единственному элементу — углероду. В отличие от остальных элементов, именно углерод обладает удивительным свойством: его атомы способны соединяться непосредственно друг с другом, образуя всевозможные цепи и кольца.

углеродная цепьуглеродное кольцо

Вещества, основу которых составляют углеродные цепи и кольца, и называются органическими. Например, приведенная выше цепь может лечь в основу вот такой органической молекулы

Все остальные вещества, т. е. не содержащие углеродных цепей и колец, называются неорганическими. Однако, неправильно было бы думать, что они не могут входить в состав живых организмов. Так, вода — вещество, без которого жизнь вообще немыслима, является, очевидно, неорганическим. На схеме (рис. 2) видно, что неорганических веществ значительно меньше, чем органических: всего около 700 тысяч, при том, что они приходятся на долю всех остальных химических элементов. Неорганические вещества, в свою очередь, образуют две обширные группы: простые и сложные.

Простыми называются вещества, состоящие из атомов только одного элемента, например H2, O2, Fe, Au. Как правило, элемент и простое вещество, образованное им, имеют одно и то же название: водород, кислород, железо, золото. Простые вещества, а также соответствующие им химические элементы, делятся на два класса: металлы и неметаллы. Металлы отличаются от неметаллов хорошей тепло- и электропроводностью, ковкостью, характерным блеском (рис. 3) и рядом других свойств.

Сложными называются неорганические вещества, образованные атомами разных элементов. Сложные вещества, или, как их еще называют — химические соединения, — невероятно разнообразны по строению и свойствам. Они составляют основную часть неживой природы (рис. 4), хотя, как мы уже знаем, могут встречаться и в составе живых организмов.

Радиоактивность в химии — Справочник химика 21


из «Общая химия»

До конца XIX в. атомы рассматривали как неделимые и неизменные. частицы, поскольку не было известно ни одного случая превращения элементов друг в друга. Допускалось, что каждый элемент состоит из идентичных атомов, обладающих одинаковой массой и имеющих одинаковые физические и химические свойства. Атомы, из которых состоят все элементы, считали простейшей формой материи. [c.575]
В 1896 г. Беккерель обнаружил, что соли урана испускают какие-то лучи, которые проходят через черную бумагу и засвечивают фотопластинку, подобно известным уже в то время лучам Рентгена. Эти же лучи вызывают флуоресценцию некоторых веществ, а также появление электропроводности в воздухе. Открытое явление было названо радиоактивностью. Беккерель установил, что радиоактивность — это свойство элемента урана, не зависящее от его агрегатного состояния или формы химических соединений, в состав которых он входит. [c.575]
В 1903 г. Резерфорд и Содди показали, что радиоактивное излучение появляется при распаде атомов радиоактивных элементов с превращением их в атомы других элементов. После того как было установлено строение атома, стало ясно, что радиоактивность — это свойство ядер атомов. [c.575]
Виды радиоактивного распада. Атомные ядра радиоактивных элементов могут испытывать различные превращения. Некоторые из них рассматриваются ниже. [c.575]
Массовое число ядра (т. е. количество нуклонов) при всех видах р-распада остается неизменным ядро превращается в изобар (один нейтрон превращается в протон или наоборот). [c.576]
При таком распаде образуются разнообразнейшие осколки, которые могут испытывать дальнейшие радиоактивные превращения, сопровождающиеся а-, р- и у-излучениями, так что приведенное уравнение весьма условно. [c.576]
Образующиеся в результате радиоактивного распада ядра находятся в возбужденном состоянии. Такое состояние ядра может возникнуть также при бомбардировке ядер ускоренными частицами. [c.577]
Из возбужденного состояния ядро самопроизвольно переходит в менее возбужденное, или основное, состояние излучением у-кванта. -Излучателями являются практически все дочерние ядра — продукты а- и р-радиоактивных ядер, так как они образуются не только в основном, но и в возбужденном состояниях. Энергия -квантов лежит в пределах от 0,5 до 2,5 МэВ. [c.577]
Таким образом, постоянная распада однозначно связана с так называемым периодом полураспада Т. Зная одну величину, легко рассчитать вторую. [c.578]
В качестве примера на рис. 19.2 показана последовательность, радиоактивных превращений природного урана. Над стрелками обозначен тип распада, а под ними приведен период полураспада. Разветвления свидетельствуют о наличии изомерных ядер в этом случае указана доля атомов, распадающихся по данному типу. [c.578]
Таким образом, зная период полураспада хотя бы одного члена ряда и количественные соотношения их при радиоактивном равновесии, можно рассчитывать периоды полураспада всех остальных членов. Именно таким образом по периоду полураспада радия был определен период полураспада урана, который невозможно измерить непосредственно из-за слишком медленного распада. [c.580]
Строгое постоянство величины Я и, следовательно, Т и независимость ее от внешних условий (активационный барьер, или энергия активации, при а-распаде, например, составляет 25—30 МэВ/атом, или —2,5 млрд кДж/моль) позволяют использовать измерение скорости радиоактивного распада для определения возраста минералов или других веществ. [c.580]
Один из методов основан на количественном определении очень небольшого содержания гелия в минералах урана или тория. а-Частицы, излучаемые этими элементами, превращаются в гелий. В плотных породах, например в граните, он остается в виде включений, так что по количеству обнаруженного газа можно вычислить время его образования. 1 г урана в равновесии с продуктами своего распада образует 10 см гелия в год. В табл. 19.2 приведены примеры для некоторых минералов, образовавшихся в различные геологические эпохи. Приведенные цифры минимальны, так как не исключено, что часть гелия потеряна. [c.580]
Одним из наиболее интересных прикладных радиоактивных методов является определение возраста углеродсодержащих материалов. Метод основан на предположении о том, что отношение количеств радиоактивного изотопа углерода С и стабильно- Таблица 19.2 ГО В живых организмах (в растениях, усваивающих углекислый газ из воздуха, и в животных, питающихся этими растениями) равно их отношению в атмосфере (Ю ), где оно не меняется во времени. [c.581]
Предметом ядерной химии являются реакции, в которых происходит превращение элементов, т. е. изменение ядер их атомов. Самопроизвольный распад радиоактивных атомов, рассмотренный выше, представляет собой ядерную реакцию, в которой исходным является одно ядро. Известны и другие реакции, в которых с ядром реагируют протон р, дейтрон (ядро атома дейтерия Н) й, альфа-частица а, нейтрон п или фотон у (обычно гамма-лучи). Удалось вызвать атомные превращения и под действием очень быстрых электронов. Вместо а-частиц (ядер Не) иногда используют ядра более легкого изотопа гелия Не. В последнее время все шире применяют для бомбардировки атомных ядер ускоренные ядра более тяжелых элементов вплоть до неона. [c.581]
В этой реакции ядро азота реагирует с ядром гелия, обладающим значительной кинетической энергией. В результате соударения образуются два новых ядра кислорода Ю и водорода Н. Ядро 0 стабильно, так что данная р

Радиоактивность — это что такое?

В данной статье мы ознакомимся с термином «радиоактивность». Это понятие мы рассмотрим в общем виде, с точки зрения протекания процесса распада. Проанализируем главные виды излучения закон распада, исторические данные и многое другое. Отдельно остановимся на понятии «изотоп» и ознакомимся с явлением электронного распада.

Введение

Радиоактивность – это качественный параметр атомов, который позволяет некоторым изотопам распадаться в самопроизвольном порядке и испускать при этом излучение. Первое подтверждение этому утверждению было сделано Беккерелем, проводившим опыты над ураном. Именно по этой причине, лучи, испускаемые ураном, наименовывались в его честь. Явление радиоактивности – это выброс альфа- или бета-частички из ядра атома. Радиоактивность выражает себя в виде разложения атомного ядра определенного элемента и позволяет последнему превращаться из атома одного элемента в другой.

В ходе данного процесса происходит распад исходного атома с последующим превращением в атом, характеризующий другой элемент. Результатом выбрасывания четырех альфа-частиц из атомного ядра станет уменьшение массового числа, которое образует сам атом, на четыре единицы. Это приводит к сдвигу в таблице Менделеева на пару позиций влево. Данное явление вызвано тем, что в ходе «альфа-выстрела» были выброшены 2 протона и 2 нейтрона. А номер элемента, как мы помним, соответствует количеству протонов в ядре. Если выброшена была бета-частица (е) то следом происходит трансформация нейтрона из ядра в один протон. Это приводит к сдвигу в таблице Менделеева на одну клеточку вправо. Масса изменяется на крайне малые значения. Выброс отрицательно заряженных электронов сопряжен с излучением гамма-лучей.

естественная радиоактивность

Закон распада

Радиоактивность – это явление, в ходе которого происходит распад изотопа в радиоактивном виде. Этот процесс подчинен закону: чисто атомов (n), которое распадаются за единицу времени, пропорционально количеству атомов (N), которые имеются в конкретный временной момент:

n = λN.

В этой формуле под коэффициентом λ подразумевают постоянную величину распада радиоактивного характера, которая связана с длительностью полураспада изотоп (T) и соответствует следующему утверждению: λ =0.693/T. Из этого закона вытекает то, что после истечения отрезка времени, равного периоду полураспада, количественная величина изотопа станет меньше в два раза. Если атомы, которые образовались в ходе радиоактивного (р-ного) распада, станут обладать такой же природой, то начнется их накопление, которое длиться будет до момента установления радиоактивного равновесия между двумя изотопами: дочерним и материнским.

Теория и радиоактивный распад

Радиоактивность и распад – это взаимосвязанные объекты изучения. Первое (р-ность) становится возможным благодаря второму (процесс распада).

Понятие радиоактивного распада характеризует себя, как преображение состава или структуры строения атомного нестабильного ядра. Причем, явление это спонтанное. Происходит испускание элементарной частицы (ч-цы) или гамма кванта, а также выброс ядерных фрагментов. Соответствующие этому процессу нуклиды называют радиоактивными. Однако данным термином также называют вещества, ядра которых также относятся к радиоактивным.

Естественная радиоактивность – это распад ядер атомов, что встречаются в природе в самопроизвольном порядке. Искусственной р-тью называют тот же процесс, что мы упомянули выше, но он осуществляется человеком с применением искусственных путей, которые соответствуют особым ядерным реакциям.

Материнским и дочерним называют те ядра, которые распадаются, и те, которые образуются как конечный продукт этого распада. Массовое число и заряд дочерней структуры описывается в правиле смещения Содди.

Явление радиоактивности включает в себя разные спектры, которые зависят от типа энергии. При этом спектр альфа-частиц и y-кварков относятся к прерывистому (дискретному) типу спектра, а бета-частицы – непрерывные.

класс радиоактивности

На сегодняшний день, нам известны не только альфа- гамма- и бета-распады, но и было обнаружено испускание протонов, нейтронов. Также было открыто понятие кластерной радиоактивности и спонтанного деления. Захват электронов, позитронов и двойной распад бета-частиц входят в раздел бета-распада и рассматривают как его разновидность.

Существуют изотопы, которые могут подвергаться одновременно двум или более видам распада. Примером может служить висмут 212, который с 2/3 вероятности образует таллий 208 (при применении распада альфа типа) и 1/3 приведет к возникновению полония 212 (при эксплуатации бета-распада).

Ядро, которое образовалось в ходе такого распада, иногда может обладать такими же радиоактивными свойствами, и через некоторое время будет разрушено. Явление р-ного распада происходит проще при отсутствии стабильного ядра. Цепочкой распада называют последовательность подобных процессов, а возникающие при этом нуклеотиды именуют радиоактивными ядрами. Ряды таких элементов, которые начинаются с урана 238 и 235, а также тория 232, в конечном итоге приходят в состояние стабильных нуклеотидов, соответственно свинец 206 и 207 и 208.

Явление радиоактивности позволяет некоторым ядрам (изобарам) с одинаковым массовым числом превращаться друг в друга. Это возможно благодаря бета-распаду. Каждая изобарная цепочка включает в себя от одного до трех стабильных нуклидов бета-типа (у них нет способностей к бета-распаду, однако они могут быть нестабильным, например, по отношению к иным видам р-ного распада). Весь остальной набор ядер данной цепи является бета-нестабильным. Посредством применения β-минус- или β-плюс распада, можно превратить ядро в нуклид со β-стабильной формой. Если в изобарной цепи находятся такие нуклиды, то ядро может начать подвергаться бета- положительному или отрицательному распаду. Это явление называют электронным захватом. Примером может служить распад радионуклида калий 40 на соседние β-стабильные состояния аргона 40 и кальция 40.

Об изотопах

виды радиоактивности

Радиоактивность – это, в первую очередь, распад изотопов. В настоящее время человеку известно более сорока изотопов, обладающих радиоактивность и находящихся в естественных условиях. Преобладающее количество расположилось в р-ных рядах: уран-радий, торий и актиний. Все эти частички существуют и распространяются в природе. Они могут присутствовать в горной породе, водах мирового океана, растениях и животных и т.д., а также они обуславливают явление естественной природной радиоактивности.

Помимо естественного ряда р-ных изотопов, человеком было создано более тысячи искусственных видов. Способ получения чаще всего реализует себя в ядерных реакторах.

Множество р-ных изотопов используют и применяют в медицинских целях, например, для борьбы с раком. Очень большое значение они имеют в области диагностики.

Общие сведения

Суть радиоактивности заключается в том, что атомы могут самопроизвольно превращаться из одних в другие. При этом они приобретают более устойчивую или стабильную структуру ядра. Р-ное ядро в ходе трансформации активно выделяет энергетические ресурсы атома, которые принимают вид заряженных частиц или доходят до состояния гамма-квантов; последние в свою очередь образуют либо соответствующее (гамма), либо электромагнитное излучение.

Мы уже знаем о существовании радиоактивных изотопов искусственной и естественной природы. Важно понимать, что между ними нет особого и/или принципиального различия. Это обуславливается свойствами ядер, которые определяться могут только в соответствие структурированием ядра, и они не зависят путей создания.

Из истории

единица радиоактивности

Как и говорилось ранее, открытие радиоактивности произошло благодаря трудам Беккереля, которые были совершены в 1896 году. Этот процесс был выявлен в ходе проведения экспериментов над ураном. Если конкретнее, то ученый старался вызвать эффект почернения фотоэмульсии и подвергнуть воздух ионизации. Мадам Кюри-Склодовская была первой особой, которая измерила величину интенсивности излучения U. А одновременно с ученым из Германии Шмидтом, она выявила р-ность тория. Именно супружеская пара Кюри, после открытия невидимого излучения, наименовала его радиоактивным. В 1898 году ими же было совершено обнаружение полония – еще одного р-ного элемента, который залегал в урановых смоляных рудах. Радий были открыт супругами Кюри также в 1898 г., но немного ранее. Работа была совершена вместе с Бемоном.

После того как было открыто множество р-ных элементов, немалым количеством авторов было доказано и продемонстрировано, что все они обуславливают излучение трех видов, которые изменяют свое поведение в условиях магнитного поля. Единицей радиоактивности служит беккерель (Бк, или Bq). Резерфорд предложил назвать обнаруженные лучи альфа-, бета- и гамма-лучами.

Альфа-излучение – это набор частиц с положительным зарядом. Бета-лучи образуются при помощи электронов, частиц с отрицательным зарядом и малой массой. Гамма-лучи являются аналогом рентгеновских лучей и представлены в виде электромагнитных квантов.

суть радиоактивности

В 1902 году Резерфордом и Содди было объяснено явление радиоактивности посредством произвольной трансформации атома одного элемента в другой. Данный процесс подчинялся законам случайности и сопровождался выделением энергетических ресурсов, которые приняли вид гамма-, бета- и альфа-лучей.

Естественную радиоактивность исследовала М. Кюри совместно с Дебьерном. Они получили в 1910 году металл – радий – в чистом виде, и исследовали его свойства. В частности, внимание уделялось измерению постоянного распада. Дебьерн и Гизель совершили открытие актиния, а Ган обнаружил такие атомы, как радиотории и мезотории. Болтвудом был описан ионий, а Ган и Майтнер совершили открытие протактиния. Каждый изотоп упомянутых элементов, которые были отрыты, обладает радиоактивными свойствами. Пьером Кюри и Лабордом в 1903 году было описано явление распада радия. Они показали, что продукты реакции 1 грамма Ra за один час распада выделяют около ста сорока ккал. В том же году Рамзаем и Содди было установлено, что запаянная ампула с радием содержит в себе и гелий в газообразном виде.

Труды таких ученых, как Резерфорд, Дорн, Дебьерн и Гизель, показывают нам, что в общий список продуктов распада U и Th включает в себя некоторые быстрораспадающиеся вещества – газы. Они обладают собственной радиоактивностью, а называют их ториевыми или радиевыми эманациями. Также это касается актиния. Они доказали, что при распаде радий создает гелий и радон. Закон радиоактивности о превращении элементов был впервые сформулирован Содди, Расселом и Фаянсом.

Виды излучения

Открытием явления, которое мы изучаем в этой статье, впервые занялся Беккерель. Именно он обнаружил явление распада. Потому единицы радиоактивности называют беккерелями (Бк). Однако, один из самых больших вкладов в развитие учения об р-ности сделал Резерфорд. Он сосредоточил собственные ресурсы внимания на анализе изучаемого распада и смог установить природу данных превращений, а также определить излучение, которое им сопутствует.

законы радиоактивности

Основу его умозаключений составляет постулирование о наличии альфа-, гамма- и бета-излучения, которые испускаются естественными радиоактивными элементами, а измерение радиоактивности позволило вычленить следующие их виды:

  • Β-излучение наделено сильными свойствами проникающей способности. Оно гораздо мощнее альфа-излучения, но точно так же поддается отклонению в магнитном и/или электрическом поле в сторону, противоположную большему расстоянию. Это служит объяснением и доказательством того, что данные частицы – отрицательно заряженные е. Сделать выводы о том, что излучаются именно электроны, Резерфорд смог на основе анализа соотношения массы к заряду.
  • Α-излучение – волны лучей, которые в условиях атмосферного давления способны преодолеть только маленькие расстояния (обычно не более 7.5 сантиметра). Если поместить его в х вакуум, то можно будет наблюдать, как магнитное и электрическое поле воздействуют на альфа-излучение и приводят к его отклонению от исходной траектории. Анализируя направление и величину отклонения, а также учитывая соотношение между зарядом и массой (e/m), мы можем прийти к выводу, что данное излучение является потоком частиц с положительным зарядом. Соотношение параметров веса и заряда является идентичным значению дважды ионизированного гелиевого атома. На основе своих работ и с использованием спектроскопических исследований, Резерфорд установил, что альфа-излучение образуется ядрами гелия.
  • γ-излучение – вид радиоактивности, который обладает самой большой проникающей способностью среди других видов излучения. Оно не поддается отклонению посредством влияния магнитного поля, а также не обладает зарядом. Это «жесткое» излучение, которое самым нежелательным образом способно воздействовать на живую материю.

Радиоактивное превращение

Еще одним моментом в становлении и конкретизации определения радиоактивности является открытие Резерфордом ядерных структур атомов. Что не менее важно, так это установление взаимосвязи между рядом свойств атома и структурой его ядра. Ведь именно «сердцевина» частицы определяет структуру оболочки электронов и все свойства химического характера. Именно это позволило в полной мере расшифровать принципы и механизм, посредством которых происходит радиоактивное превращение.

Первое успешное превращение ядра было совершено в 1919 году Эрнестом Резерфордом. Он использовал «бомбардировку» ядра атома N с применением альфа-частиц полония. Следствием этого стало испускание азотом протонов с последующим превращением в кислородные ядра – O17.

В 1934 году супруги Кюри получили радиоактивные изотопы фосфора посредством искусственной радиоактивности. Они воздействовали на алюминий альфа-частичками. Полученные ядра P30 имели некоторые отличия от естественных р-ных форм того же элемента. Например, в ходе распада испускались не электронные частички, а позитронные. Далее они трансформировались в стабильные кремниевые ядра (Si30). В 1934 было совершено открытие искусственной радиоактивности и явление позитронного распада.

Захват электрона

Одним из классов радиоактивности является электронный захват (К-захват). В нем электроны захватываются прямо с оболочек атомов. Как правило, К-оболочка испускает некоторое количество нейтронов, а далее преобразуется в новую «сердцевину» атома с таким же показателем массового числа (А). Однако номер атома (Z) становится меньше на 1, в сравнение с исходным ядром.

Процесс превращения ядра в ходе электронного захвата и позитронного распада является действием, аналогичным друг другу. Потому их можно увидеть одновременно в ходе наблюдения за набором атомов одного вида. Электронный захват всегда сопровождается выделением излучения в рентгеновском виде. Это объясняется переходом электрона от более удаленной ядерной орбитали к ближе лежащей. Данное явление, в свою очередь, объясняется тем, что электроны вырываются с орбит, которые расположены ближе к ядру, а их место стремятся заполнить частички с удаленных уровней.

явление радиоактивности

Понятие изомерного перехода

Явление изомерного перехода основано на том, что испускание альфа- и/или бета-частичек приводит к возбуждению некоторых ядер, которые находятся в состоянии избыточных энергий. Испускаемые ресурсы «вытекают» в виде возбужденных гамма-квантов. Изменение состояния ядра в ходе р-ного распада приводит к образованию и выделению всех трех типов частиц.

Изучение изотопа стронция 90 позволило определить, что им испускаются только β-частички, а ядра, например, натрия 24, могут выделять также гамма-кванты. Преобладающее множество атомов пребывают в возбужденном состоянии крайне мало. Это значение столь краткосрочное (10-9) и малое, что его еще нельзя измерить. Соответственно, лишь небольшой процент ядер способен находиться в состоянии возбуждения сравнительно длительный период времени (вплоть до месяцев).

Ядра способные «жить» так долго, именуют изомерами. Сопутствующие переходы, которые наблюдаются при трансформации из одного состояния в другое и сопровождаются испусканием гамма-квантовых частичек, называют изомерными. Радиоактивность излучения в данном случае приобретает высокие и опасные для жизни значения. Ядра, которые испускают лишь бета- и/или альфа-частицы, именуют чистыми ядрами. Если в ядре наблюдается испускание гамма-квантов в ходе его распада, то его называют гамма-излучателем. Чистым излучателем последнего вида можно назвать только ядро, претерпевающее множество изомерных переходов, что возможно лишь при длительном существовании в возбужденном состоянии.

РАДИОАКТИВНОСТЬ — это… Что такое РАДИОАКТИВНОСТЬ?


РАДИОАКТИВНОСТЬ
РАДИОАКТИВНОСТЬ

Свойство некотор. тел испускать особого рода невидимые лучи, отличающиеся особыми свойствами.

Словарь иностранных слов, вошедших в состав русского языка.- Чудинов А.Н., 1910.

радиоакти́вность
(радио… + лат. acti-vus деятельный) радиоактивный распад — самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов, сопровождающееся испусканием ядерных излучений: альфа-лучей (альфа-распад), бета-лучей (бета-распад), протонов (протонная р.), а также делением ядер. основная характеристика радиоактивности — период полураспада (см. период 8), единицей радиоактивности служит беккерель (устаревшие единицы — кюри, резер-

Новый словарь иностранных слов.- by EdwART, , 2009.

радиоактивность

[] – самопроизвольный распад атомных ядер некоторых химических элементов, сопровождающийся выделением излучения в виде потока атомных ядер гелия (альфа-лучи), потока электронов (бета-лучи), жёсткого электромагнитного излучения (гамма-лучи) и приводящий к образованию новых атомов других элементов

Большой словарь иностранных слов.- Издательство «ИДДК», 2007.

.

Синонимы:
  • РАДИОЭКОЛОГИЯ
  • РАДИОФОН

Смотреть что такое «РАДИОАКТИВНОСТЬ» в других словарях:

  • радиоактивность — радиоактивность …   Орфографический словарь-справочник

  • РАДИОАКТИВНОСТЬ — (от лат. radio излучаю, radius луч и activus действенный), способность нек рых ат. ядер самопроизвольно (спонтанно) превращаться в др. ядра с испусканием ч ц. К радиоактивным превращениям относятся: альфа распад, все виды бета распада (с… …   Физическая энциклопедия

  • РАДИОАКТИВНОСТЬ — РАДИОАКТИВНОСТЬ, свойство нек рых хим. элементов самопроизвольно превращаться в другие элементы. Это превращение или радиоактивный распад сопровождается выделением энергии в виде различных корпускулярных и лучистых радиации. Явление Р. было… …   Большая медицинская энциклопедия

  • Радиоактивность — (от радио… и латинского activus деятельный), свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд ядра Z, число нуклонов A) путем испускания элементарных частиц, g квантов или ядерных фрагментов. Некоторые из… …   Иллюстрированный энциклопедический словарь

  • РАДИОАКТИВНОСТЬ — (от лат. radio испускаю лучи и activus действенный) самопроизвольное превращение неустойчивых атомных ядер в ядра др. элементов, сопровождающееся испусканием частиц или ? кванта. Известны 4 типа радиоактивности: альфа распад, бета распад,… …   Большой Энциклопедический словарь

  • Радиоактивность — способность некоторых атомных ядер самопроизвольно распадаться с испусканием элементарных частиц и образованием ядра другого элемента. Р. урана была впервые открыта Беккерелем в 1896 г. Несколько позднее М. и П. Кюри и Резерфордом было доказано… …   Геологическая энциклопедия

  • радиоактивность — сущ., кол во синонимов: 1 • гамма радиоактивность (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • Радиоактивность — самопроизвольное превращение неустойчивых изотопов одного химического элемента в изотопы обычно другого элемента, сопровождающееся испусканием элементарных частиц или ядер (альфа и бетα излучение), а также гаммα излучением. Бывает естественной и… …   Морской словарь

  • Радиоактивность — свойство нестабильных атомных ядер (радиоактивных изотопов) превращаться в стабильные, сопровождающееся ионизирующим излучением. Различают естественную Р. (природных изотопов) и искусственную наведённую радиоактивность. Понятие Р. связано с… …   Словарь черезвычайных ситуаций

  • РАДИОАКТИВНОСТЬ — РАДИОАКТИВНОСТЬ, процесс распада ядра РАДИОИЗОТОПА, например, урана 238, обычно с выделением АЛЬФА ЧАСТИЦ (ядра гелия) или БЕТА ЧАСТИЦ (ЭЛЕКТРОНЫ), часто сопровождается ГАММА ИЗЛУЧЕНИЕМ. В процессе альфа или бета распада радиоизотоп превращается… …   Научно-технический энциклопедический словарь


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *