Реферат — Законы ньютона — Физика
Введение
Законы Ньютона – в зависимости от того, под каким углом на них посмотреть, – представляют собой либо конец начала, либо начало конца классической механики. В любом случае это поворотный момент в истории физической науки – блестящая компиляция всех накопленных к тому историческому моменту знаний о движении физических тел в рамках физической теории, которую теперь принято именовать классической механикой. Можно сказать, что с законов движения Ньютона пошел отсчет истории современной физики и вообще естественных наук.
Первый закон Ньютона
Учитывая столь серьезный, исторически сложившийся провал, первый закон Ньютона сформулирован безоговорочно революционным образом. Он утверждает, что если какую-либо материальную частицу или тело попросту не трогать, оно будет продолжать прямолинейно двигаться с неизменной скоростью само по себе. Если тело равномерно двигалось по прямой, оно так и будет двигаться по прямой с неизменной скоростью. Если тело покоилось, оно так и будет покоиться, пока к нему не приложат внешних сил. Чтобы просто сдвинуть физическое тело с места, к нему нужно обязательно приложить стороннюю силу. Возьмем самолет: он ни за что не стронется с места, пока не будут запущены двигатели. Казалось бы, наблюдение самоочевидное, однако, стоит нам отвлечься от прямолинейного движения, как оно перестает казаться таковым. При инерционном движении тела по замкнутой циклической траектории его анализ с позиции первого закона Ньютона только и позволяет точно определить его характеристики.
Представьте себе что-то типа легкоатлетического молота – ядро на конце струны, раскручиваемое вами вокруг вашей головы. Ядро в этом случае движется не по прямой, а по окружности – значит, согласно первому закону Ньютона, его что-то удерживает; это «что-то» – и есть центростремительная сила, которую вы прилагаете к ядру, раскручивая его. Реально вы и сами можете ее ощутить – рукоять легкоатлетического молота ощутимо давит вам на ладони. Если же вы разожмете руку и выпустите молот, он – в отсутствие внешних сил – незамедлительно отправится в путь по прямой. Точнее будет сказать, что так молот поведет себя в идеальных условиях (например, в открытом космосе), поскольку под воздействием силы гравитационного притяжения Земли он будет лететь строго по прямой лишь в тот момент, когда вы его отпустили, а в дальнейшем траектория полета будет всё больше отклоняться в направлении земной поверхности. Если же вы попробуете действительно выпустить молот, выяснится, что отпущенный с круговой орбиты молот отправится в путь строго по прямой, являющейся касательной (перпендикулярной к радиусу окружности, по которой его раскручивали) с линейной скоростью, равной скорости его обращения по «орбите».
Теперь заменим ядро легкоатлетического молота планетой, молотобойца – Солнцем, а струну – силой гравитационного притяжения: вот вам и ньютоновская модель Солнечной системы.
Такой анализ происходящего при обращении одного тела вокруг другого по круговой орбите на первый взгляд кажется чем-то само собой разумеющимся, но не стоит забывать, что он вобрал в себя целый ряд умозаключений лучших представителей научной мысли предшествующего поколения (достаточно вспомнить Галилео Галилея). Проблема тут в том, что при движении по стационарной круговой орбите небесное (и любое иное) тело выглядит весьма безмятежно и представляется пребывающим в состоянии устойчивого динамического и кинематического равновесия. Однако, если разобраться, сохраняется только модуль (абсолютная величина) линейной скорости такого тела, в то время как ее направление постоянно меняется под воздействием силы гравитационного притяжения. Это и значит, что небесное тело движется равноускоренно. Кстати, сам Ньютон называл ускорение «изменением движения».
Первый закон Ньютона играет и еще одну важную роль с точки зрения нашего естествоиспытательского отношения к природе материального мира. Он подсказывает нам, что любое изменение в характере движения тела свидетельствует о присутствии внешних сил, воздействующих на него. Условно говоря, если мы наблюдаем, как железные опилки, например, подпрыгивают и налипают на магнит, или, доставая из сушилки стиральной машины белье, выясняем, что вещи слиплись и присохли одна к другой, мы можем чувствовать себя спокойно и уверенно: эти эффекты стали следствием действия природных сил (в приведенных примерах это силы магнитного и электростатического притяжения соответственно).
Второй закон Ньютона
Если первый закон Ньютона помогает нам определить, находится ли тело под воздействием внешних сил, то второй закон описывает, что происходит с физическим телом под их воздействием. Чем больше сумма приложенных к телу внешних сил, гласит этот закон, тем большее ускорение приобретает тело. Это раз. Одновременно, чем массивнее тело, к которому приложена равная сумма внешних сил, тем меньшее ускорение оно приобретает. Это два. Интуитивно эти два факта представляются самоочевидными, а в математическом виде они записываются так:
F = ma
где F – сила, m – масса, а – ускорение. Это, наверное, самое полезное и самое широко используемое в прикладных целях из всех физических уравнений. Достаточно знать величину и направление всех сил, действующих в механической системе, и массу материальных тел, из которых она состоит, и можно с исчерпывающей точностью рассчитать ее поведение во времени.
Именно второй закон Ньютона придает всей классической механике ее особую прелесть – начинает казаться, будто весь физический мир устроен, как наиточнейший хронометр, и ничто в нем не ускользнет от взгляда пытливого наблюдателя. Назовите мне пространственные координаты и скорости всех материальных точек во Вселенной, словно говорит нам Ньютон, укажите мне направление и интенсивность всех действующих в ней сил, и я предскажу вам любое ее будущее состояние. И такой взгляд на природу вещей во Вселенной бытовал вплоть до появления квантовой механики
.Третий закон Ньютона
За этот закон, скорее всего, Ньютон и снискал себе почет и уважение со стороны не только естествоиспытателей, но и ученых-гуманитариев и попросту широких масс. Его любят цитировать (по делу и без дела), проводя самые широкие параллели с тем, что мы вынуждены наблюдать в нашей обыденной жизни, и притягивают чуть ли не за уши для обоснования самых спорных положений в ходе дискуссий по любым вопросам, начиная с межличностных и заканчивая международными отношениями и глобальной политикой. Ньютон, однако, вкладывал в свой названный впоследствии третьим закон совершенно конкретный физический смысл и едва ли замышлял его в ином качестве, нежели как точное средство описания природы силовых взаимодействий. Закон этот гласит, что если тело А воздействует с некоей силой на тело В, то тело В также воздействует на тело А с равной по величине и противоположной по направлению силой. Иными словами, стоя на полу, вы воздействуете на пол с силой, пропорциональной массе вашего тела. Согласно третьему закону Ньютона пол в это же время воздействует на вас с абсолютно такой же по величине силой, но направленной не вниз, а строго вверх. Этот закон экспериментально проверить нетрудно: вы постоянно чувствуете, как земля давит на ваши подошвы.
Тут важно понимать и помнить, что речь у Ньютона идет о двух силах совершенно разной природы, причем каждая сила воздействует на «свой» объект. Когда яблоко падает с дерева, это Земля воздействует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно устремляется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с равной силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, это уже следствие второго закона Ньютона. Масса яблока по сравнению с массой Земли низка до несопоставимости, поэтому именно его ускорение заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно. (В случае падения яблока центр Земли смещается вверх на расстояние менее радиуса атомного ядра.)
Вывод
По совокупности же три закона Ньютона дали физикам инструменты, необходимые для начала комплексного наблюдения всех явлений, происходящих в нашей Вселенной. И, невзирая на все колоссальные подвижки в науке, произошедшие со времен Ньютона, чтобы спроектировать новый автомобиль или отправить космический корабль на Юпитер, вы воспользуетесь все теми же тремя законами Ньютона.
Доклад — Законы ньютона — Физика
Введение
Законы Ньютона – в зависимости от того, под каким углом на них посмотреть, – представляют собой либо конец начала, либо начало конца классической механики. В любом случае это поворотный момент в истории физической науки – блестящая компиляция всех накопленных к тому историческому моменту знаний о движении физических тел в рамках физической теории, которую теперь принято именовать классической механикой. Можно сказать, что с законов движения Ньютона пошел отсчет истории современной физики и вообще естественных наук.
Первый закон Ньютона
Учитывая столь серьезный, исторически сложившийся провал, первый закон Ньютона сформулирован безоговорочно революционным образом. Он утверждает, что если какую-либо материальную частицу или тело попросту не трогать, оно будет продолжать прямолинейно двигаться с неизменной скоростью само по себе. Если тело равномерно двигалось по прямой, оно так и будет двигаться по прямой с неизменной скоростью. Если тело покоилось, оно так и будет покоиться, пока к нему не приложат внешних сил. Чтобы просто сдвинуть физическое тело с места, к нему нужно обязательно приложить стороннюю силу. Возьмем самолет: он ни за что не стронется с места, пока не будут запущены двигатели. Казалось бы, наблюдение самоочевидное, однако, стоит нам отвлечься от прямолинейного движения, как оно перестает казаться таковым. При инерционном движении тела по замкнутой циклической траектории его анализ с позиции первого закона Ньютона только и позволяет точно определить его характеристики.
Представьте себе что-то типа легкоатлетического молота – ядро на конце струны, раскручиваемое вами вокруг вашей головы. Ядро в этом случае движется не по прямой, а по окружности – значит, согласно первому закону Ньютона, его что-то удерживает; это «что-то» – и есть центростремительная сила, которую вы прилагаете к ядру, раскручивая его. Реально вы и сами можете ее ощутить – рукоять легкоатлетического молота ощутимо давит вам на ладони. Если же вы разожмете руку и выпустите молот, он – в отсутствие внешних сил – незамедлительно отправится в путь по прямой. Точнее будет сказать, что так молот поведет себя в идеальных условиях (например, в открытом космосе), поскольку под воздействием силы гравитационного притяжения Земли он будет лететь строго по прямой лишь в тот момент, когда вы его отпустили, а в дальнейшем траектория полета будет всё больше отклоняться в направлении земной поверхности. Если же вы попробуете действительно выпустить молот, выяснится, что отпущенный с круговой орбиты молот отправится в путь строго по прямой, являющейся касательной (перпендикулярной к радиусу окружности, по которой его раскручивали) с линейной скоростью, равной скорости его обращения по «орбите».
Теперь заменим ядро легкоатлетического молота планетой, молотобойца – Солнцем, а струну – силой гравитационного притяжения: вот вам и ньютоновская модель Солнечной системы.
Такой анализ происходящего при обращении одного тела вокруг другого по круговой орбите на первый взгляд кажется чем-то само собой разумеющимся, но не стоит забывать, что он вобрал в себя целый ряд умозаключений лучших представителей научной мысли предшествующего поколения (достаточно вспомнить Галилео Галилея). Проблема тут в том, что при движении по стационарной круговой орбите небесное (и любое иное) тело выглядит весьма безмятежно и представляется пребывающим в состоянии устойчивого динамического и кинематического равновесия. Однако, если разобраться, сохраняется только модуль (абсолютная величина) линейной скорости такого тела, в то время как ее направление постоянно меняется под воздействием силы гравитационного притяжения. Это и значит, что небесное тело движется равноускоренно. Кстати, сам Ньютон называл ускорение «изменением движения».
Первый закон Ньютона играет и еще одну важную роль с точки зрения нашего естествоиспытательского отношения к природе материального мира. Он подсказывает нам, что любое изменение в характере движения тела свидетельствует о присутствии внешних сил, воздействующих на него. Условно говоря, если мы наблюдаем, как железные опилки, например, подпрыгивают и налипают на магнит, или, доставая из сушилки стиральной машины белье, выясняем, что вещи слиплись и присохли одна к другой, мы можем чувствовать себя спокойно и уверенно: эти эффекты стали следствием действия природных сил (в приведенных примерах это силы магнитного и электростатического притяжения соответственно).
Второй закон Ньютона
Если первый закон Ньютона помогает нам определить, находится ли тело под воздействием внешних сил, то второй закон описывает, что происходит с физическим телом под их воздействием. Чем больше сумма приложенных к телу внешних сил, гласит этот закон, тем большее ускорение приобретает тело. Это раз. Одновременно, чем массивнее тело, к которому приложена равная сумма внешних сил, тем меньшее ускорение оно приобретает. Это два. Интуитивно эти два факта представляются самоочевидными, а в математическом виде они записываются так:
F = ma
где F – сила, m – масса, а – ускорение. Это, наверное, самое полезное и самое широко используемое в прикладных целях из всех физических уравнений. Достаточно знать величину и направление всех сил, действующих в механической системе, и массу материальных тел, из которых она состоит, и можно с исчерпывающей точностью рассчитать ее поведение во времени.
Именно второй закон Ньютона придает всей классической механике ее особую прелесть – начинает казаться, будто весь физический мир устроен, как наиточнейший хронометр, и ничто в нем не ускользнет от взгляда пытливого наблюдателя. Назовите мне пространственные координаты и скорости всех материальных точек во Вселенной, словно говорит нам Ньютон, укажите мне направление и интенсивность всех действующих в ней сил, и я предскажу вам любое ее будущее состояние. И такой взгляд на природу вещей во Вселенной бытовал вплоть до появления квантовой механики .
Третий закон Ньютона
За этот закон, скорее всего, Ньютон и снискал себе почет и уважение со стороны не только естествоиспытателей, но и ученых-гуманитариев и попросту широких масс. Его любят цитировать (по делу и без дела), проводя самые широкие параллели с тем, что мы вынуждены наблюдать в нашей обыденной жизни, и притягивают чуть ли не за уши для обоснования самых спорных положений в ходе дискуссий по любым вопросам, начиная с межличностных и заканчивая международными отношениями и глобальной политикой. Ньютон, однако, вкладывал в свой названный впоследствии третьим закон совершенно конкретный физический смысл и едва ли замышлял его в ином качестве, нежели как точное средство описания природы силовых взаимодействий. Закон этот гласит, что если тело А воздействует с некоей силой на тело В, то тело В также воздействует на тело А с равной по величине и противоположной по направлению силой. Иными словами, стоя на полу, вы воздействуете на пол с силой, пропорциональной массе вашего тела. Согласно третьему закону Ньютона пол в это же время воздействует на вас с абсолютно такой же по величине силой, но направленной не вниз, а строго вверх. Этот закон экспериментально проверить нетрудно: вы постоянно чувствуете, как земля давит на ваши подошвы.
Тут важно понимать и помнить, что речь у Ньютона идет о двух силах совершенно разной природы, причем каждая сила воздействует на «свой» объект. Когда яблоко падает с дерева, это Земля воздействует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно устремляется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с равной силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, это уже следствие второго закона Ньютона. Масса яблока по сравнению с массой Земли низка до несопоставимости, поэтому именно его ускорение заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно. (В случае падения яблока центр Земли смещается вверх на расстояние менее радиуса атомного ядра.)
Вывод
По совокупности же три закона Ньютона дали физикам инструменты, необходимые для начала комплексного наблюдения всех явлений, происходящих в нашей Вселенной. И, невзирая на все колоссальные подвижки в науке, произошедшие со времен Ньютона, чтобы спроектировать новый автомобиль или отправить космический корабль на Юпитер, вы воспользуетесь все теми же тремя законами Ньютона.
Первый закон Ньютона просто и понятно: определение, примеры, формула
Определение первого закона НьютонаВеликий английский физик Исаак Ньютон (1643-1727) навеки вписал свое имя в историю науки, сделав множество важных научных открытий, поняв вещи, которые сейчас кажутся вполне себе очевидными. Но для времени, когда жил ученый это было большим прорывом. Среди наиболее значимых открытий Ньютона, разумеется, стоит упомянуть закон всемирного тяготения, о котором мы уже писали. Но помимо него именно Ньютон сформировал основы классической механики, которая зиждется на трех основных законах, названых по имени ученого – законами Ньютона. И в нашей сегодняшней статье мы детально разберем первый закон Ньютона и его значение для физики.
Определение первого закона Ньютона
Если сформулировать первый закон Ньютона кратко, то он будет звучать так:
Существуют такие системы отсчета, называемые инерциальными, в которых тела движутся равномерно и прямолинейно, если на них не действуют никакие силы или действие других сил скомпенсировано.
Другими словами суть первого закона Ньютона можно пояснить простым примером – если мы толкнем тележку на абсолютно ровной дороге и представим, что на нее не действуют никакие другие силы, кроме нашего толчка, в том числе сила трения, сила сопротивления воздуха и т. д., то такая тележка будет катиться бесконечно. (Причем будет катиться с неизменно одинаковой скоростью).
Первый закон Ньютона еще называют законом инерции. Напомним, что инерция это способность тел сохранять движение при отсутствии воздействия внешних сил.
Эта картинка отлично иллюстрирует, что такое инерция.
Разумеется, в реальности таких систем, где на тело не действуют никакие другие внешние силы, не существует. Так, например, все тела на Земле находятся под постоянным воздействием силы земного притяжения (чтобы убедится в этом, достаточно отпустить любой предмет и он неизменно упадет вниз). Или, например, во время ходьбы на нас действует множество разных внешних сил: все та же сила притяжения, сила трения, сила сопротивления воздуха и т. д.
Интересный факт: Ньютон был не первым, кто сформулировал этот закон, до него он был высказан, пускай и в менее четкой форме, другим великим ученым Галилео Галилеем. Согласно закону инерции Галилея при отсутствии внешних сил тело либо будет покоиться на месте, либо будет двигаться равномерно. Заслуга Ньютона в том, что он смог соединить принцип относительности Галилея с работами других ученых, и, конечно же, с собственными трудами.
Формула первого закона Ньютона
Формулу этого закона можно записать следующим образом:
F = 0 → V = const, a = 0
Где F – суммарные силы, действующие на тело, в инерциальной системе Ньютона (существующей только теоретически) они равны 0. V – скорость движения тела, a – его ускорение.
Скорость движения тела (V), является константой, то есть постоянной величиной, если представить, что на тело не действуют другие силы, ускорение же также равно 0, поскольку опять таки скорость тела у нас константа.
Пример первого закона Ньютона и инерциальная система отсчета
Сам Ньютон под своей идеальной инерциальной системой отсчета (ИСО), представлял не много не мало, а нашу гелиоцентрическую систему с Солнцем в ее центре, и планетами, которые движутся вокруг светила.
Непрерывное движение планет вокруг Солнца с неизменно постоянной скоростью по Ньютону и является самым важным примером осуществления первого закона Ньютона или закона инерции в нашей Вселенной.
Стоит заметить, что именно благодаря ИСО ученый и открыл свой не менее знаменитый закон всемирного тяготения (а вовсе не потому, что ему на голову упало яблоко, как говорит популярная легенда об ученом).
При помощи инерциальной системы отсчета и первого закона имени себя Исаак Ньютон объяснил законы небесной механики, казавшиеся загадкой для людей его времени.
Был долго этот мир глубокой тьмой окутан
Да будет свет, и тут явился Ньютон.
(Эпиграмма XVIII века).
Но стоит заметить, что законы небесной механики в действительности оказались гораздо более сложными, чем видел их Ньютон. И когда на смену ему в ХХ век пришел другой гениальный физик по имени Альберт Эйнштейн со своей теорией относительности, человечеству вновь пришлось пересмотреть свои взгляды на устройство Вселенной, в частности выяснилось, что движение Земли (как впрочем, и других планет) вокруг Солнца все-таки не является инерциальной системой отсчета. На самом деле все гораздо сложнее.
Но сатана недолго ждал реванша –
Пришел Эйнштейн, и стало все как раньше.
(Эпиграмма XХ века).
Рекомендованная литература и полезные ссылки
- Лич Дж. У. Классическая механика. М.: Иностр. литература, 1961.
- Спасский Б. И.. История физики. М., «Высшая школа», 1977.
- Кудрявцев П. С. Курс истории физики. — М.: Просвещение, 1974.
- Crowell, Benjamin (2011), Light and Matter (2011, Light and Matter), especially at Section 4.2, Newton’s First Law, Section 4.3, Newton’s Second Law, and Section 5.1, Newton’s Third Law.
- Feynman, R. P. (англ.)русск.; Leighton, R. B.; Sands, M. The Feynman Lectures on Physics (неопр.). — 2nd. — Pearson/Addison-Wesley, 2005. — Т. Vol. 1. — ISBN 0-8053-9049-9.
Первый закон Ньютона, видео
И в завершении образовательное видео по теме нашей статьи.
Открытие законов Ньютона: история — Великие физики
Исаака Ньютона называют одним из создателей классической физики. Его открытия объясняют многие явления, причину которых до него не удалось разгадать никому.
Принципы классической механики формировались в течение длительного времени. Многие века учёные пытались создать законы движения материальных тел. И только Ньютон обобщил все накопленные к тому времени знания о движении физических тел с точки зрения классической механики. В 1867 г. им была опубликована работа «Математические начала натуральной философии». В этой работе Ньютон систематизировал все знания о движении и силе, подготовленные до него Галилеем, Гюгенсом и другими учёными, а также знания, известные ему самому. На основе всех этих знаний им были открыты известные законы механики и закон всемирного тяготения. В этих законах устанавливаются количественные зависимости между характером движения тел и силами, действующими на них.
Закон всемирного тяготения
Существует легенда, что к открытию закона тяготения Ньютона подтолкнуло наблюдение падающего с дерева яблока. По крайне мере, об этом упоминает Уильям Стьюкли, биограф Ньютона. Говорят, что ещё в молодости Ньютон задумывался над тем, почему яблоко падает вниз, а не в сторону. Но решить эту задачу ему удалось намного позже. Ньютон установил, что движение всех предметов подчиняется общему закону всемирного тяготения, который действует между всеми телами.
«Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними».
Яблоко падает на землю под воздействием силы, с которой Земля воздействует на него силой своего гравитационного притяжения. А какое ускорение оно получает, Ньютон объяснил с помощью трёх своих законов.
Первый закон Ньютона
Сам великий Ньютон сформулировал этот закон так: «Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние».
То есть, если тело неподвижно, то оно так и останется в таком состоянии до тех пор, пока на него не начнёт действовать какая-то внешняя сила. И, соответственно, если тело движется равномерно и прямолинейно, то оно будет продолжать своё движение до момента начала воздействия внешней силы.
Первый закон Ньютона называют ещё Законом инерции. Инерция – это сохранение телом скорости движения, когда на него не оказывают действие никакие силы.
Второй закон Ньютона
Если первый закон Ньютона описывает, как ведёт себя тело, если на него не действуют силы, то второй закон помогает понять, что происходит с телом, когда сила начинает действовать.
Величина силы, действующей на тело, равна произведению массы тела на ускорение, которое получает тело, когда на него начинает действовать сила.
В математическом виде этот закон выгляди так:
F = ma
Где F – сила, действующая на тело;
m – масса тела;
a – ускорение, которое получает тело под воздействием приложенной силы.
a = F/m
Из этого уравнения видно, что чем больше величина силы, воздействующей на тело, тем большее ускорение оно получит. И чем больше масса тела, на которое воздействует эта сила, тем меньше ускорит своё движение тело.
Третий закон Ньютона
Закон гласит, что если тело А воздействует на тело В с какой-то силой, то и тело В воздействует с такой же силой на тело А. Иными словами сила действия равна силе противодействия.
Например, ядро, вылетающее из пушки, действует на пушку с силой, равной силе, с какой пушка выталкивает ядро. В результате действия этой силы после выстрела пушка откатывается назад.
Из своих общих законов движения Ньютон вывел множество следствий, которые позволили сделать теоретическую механику практически совершенной. Открытый им закон всемирного тяготения связал все планеты, находящиеся на огромном расстоянии друг от друга, в единую систему и положил начало небесной механике, которая изучает движение планет.
С момента создания Ньютоном его законов прошло много времени. Но все эти законы актуальны до сих пор.
Доклад на тему Законы Ньютона 9 класс
Законы Ньютона — законы классической механики в количестве трёх штук, которые позволяют составить равенство системы, основанной на механике, при условии, что то, что действует на тела внутри системы, то есть сила, известна как величина. Сформулировал их в своё время Исаак Ньютон в написанной им книге о начале математики в философской науке. Ссылаясь на этого учёного, современные люди воспринимают эти законы как нерушимую аксиому.
Закон инерции
Этот закон говорит о существовании инерциальных систем отсчета. Согласно данному закону, инерция представляет собой способность тела не только сохранять постоянную скорость своего движения на одном уровне и в одном направлении без действия других сил, но и сопротивление тела во время этого перемещения. Если к телу приложить некоторую силу, то оно изменит свою скорость, при этом результат будет зависеть от характера вещества тела больше, чем от приложенной силы, ведь каждое тело обладает своей индивидуальной инерцией, которая косвенно зависит от массы. Первый закон начинает общее формирование тезиса механики.
Закон движения
Вторым законом является дифференциальным законом движения, который описывает взаимодействие силы, которая прилагается к точке и скорости, которую развивает эта точка из-за приложенной к ней силы. Понятие «масса» в этом законе воспринимается как проявление инертности объекта в указанной системе. Масса измеряемой точки воспринимается как постоянная величина-константа, которая никогда не изменится независимо от факторов и условий. Второй закон продолжает полное формирование механического тезиса.
Закон взаимодействия
Здесь описаны связи и результаты взаимодействия материалов двух точек. В простой системе с двумя объектами, при условии, что эти объекты воздействуют друг на друга с определённой силой. По закону, который формулируется длинно и развёрнуто, следует, что у этих двух сил равен модуль, но направления противоположны.
Для этой заключительной установки существует и исключение: лоренцова сила. Только при сильной переформулировке с несколькими точными и конкретными условиями можно приравнять её к этому закону.
Как уже говорилось, эти законы представляют собой не что иное, как базис механики и систем механики, который воспринимается как нерушимый свод правил.
9 класс
Законы Ньютона
Популярные темы сообщений
- Хамелеон
Самое удивительное животное на нашей планете — хамелеон (лат. сhamaeleonidae) — принадлежит к классу пресмыкающихся, отряду чешуйчатые. Эта ящерица известна тем, что она способна менять свою окраску и сливаться с окружающей природой.
- Химический элемент
Цинк это один из самых первых открытых химических элементов. Он был известен еще в древнем Египте, Риме и Греции. В переводе с греческого языка, цинк означает «белый налет». Сам по себе относится к группе активных металлом,
- Город Челябинск
Челябинск – это город, расположенный на границе между Уралом и Сибирью по берегам реки Миасс. Город является крупным административным, экономическим, трудовым и культурным центром региона, а так же неофициальной столицей Южного Урала
Законы механики Ньютона • Джеймс Трефил, энциклопедия «Двести законов мироздания»
Законы Ньютона — в зависимости от того, под каким углом на них посмотреть, — представляют собой либо конец начала, либо начало конца классической механики. В любом случае это поворотный момент в истории физической науки — блестящая компиляция всех накопленных к тому историческому моменту знаний о движении физических тел в рамках физической теории, которую теперь принято именовать классической механикой. Можно сказать, что с законов движения Ньютона пошел отсчет истории современной физики и вообще естественных наук.
Однако Исаак Ньютон взял названные в его честь законы не из воздуха. Они, фактически, стали кульминацией долгого исторического процесса формулирования принципов классической механики. Мыслители и математики — упомянем лишь Галилея (см. Уравнения равноускоренного движения) — веками пытались вывести формулы для описания законов движения материальных тел — и постоянно спотыкались о то, что лично я сам для себя называю непроговоренными условностями, а именно — обе основополагающие идеи о том, на каких принципах зиждется материальный мир, которые настолько устойчиво вошли в сознание людей, что кажутся неоспоримыми. Например, древним философам даже в голову не приходило, что небесные тела могут двигаться по орбитам, отличающимся от круговых; в лучшем случае возникала идея, что планеты и звезды обращаются вокруг Земли по концентрическим (то есть вложенным друг в друга) сферическим орбитам. Почему? Да потому, что еще со времен античных мыслителей Древней Греции никому не приходило в голову, что планеты могут отклоняться от совершенства, воплощением которой и является строгая геометрическая окружность. Нужно было обладать гением Иоганна Кеплера, чтобы честно взглянуть на эту проблему под другим углом, проанализировать данные реальных наблюдений и вывести из них, что в действительности планеты обращаются вокруг Солнца по эллиптическим траекториям (см. Законы Кеплера).
Первый закон Ньютона
Учитывая столь серьезный, исторически сложившийся провал, первый закон Ньютона сформулирован безоговорочно революционным образом. Он утверждает, что если какую-либо материальную частицу или тело попросту не трогать, оно будет продолжать прямолинейно двигаться с неизменной скоростью само по себе. Если тело равномерно двигалось по прямой, оно так и будет двигаться по прямой с неизменной скоростью. Если тело покоилось, оно так и будет покоиться, пока к нему не приложат внешних сил. Чтобы просто сдвинуть физическое тело с места, к нему нужно обязательно приложить стороннюю силу. Возьмем самолет: он ни за что не стронется с места, пока не будут запущены двигатели. Казалось бы, наблюдение самоочевидное, однако, стоит нам отвлечься от прямолинейного движения, как оно перестает казаться таковым. При инерционном движении тела по замкнутой циклической траектории его анализ с позиции первого закона Ньютона только и позволяет точно определить его характеристики.
Представьте себе что-то типа легкоатлетического молота — ядро на конце струны, раскручиваемое вами вокруг вашей головы. Ядро в этом случае движется не по прямой, а по окружности — значит, согласно первому закону Ньютона, его что-то удерживает; это «что-то» — и есть центростремительная сила, которую вы прилагаете к ядру, раскручивая его. Реально вы и сами можете ее ощутить — рукоять легкоатлетического молота ощутимо давит вам на ладони. Если же вы разожмете руку и выпустите молот, он — в отсутствие внешних сил — незамедлительно отправится в путь по прямой. Точнее будет сказать, что так молот поведет себя в идеальных условиях (например, в открытом космосе), поскольку под воздействием силы гравитационного притяжения Земли он будет лететь строго по прямой лишь в тот момент, когда вы его отпустили, а в дальнейшем траектория полета будет всё больше отклоняться в направлении земной поверхности. Если же вы попробуете действительно выпустить молот, выяснится, что отпущенный с круговой орбиты молот отправится в путь строго по прямой, являющейся касательной (перпендикулярной к радиусу окружности, по которой его раскручивали) с линейной скоростью, равной скорости его обращения по «орбите».
Теперь заменим ядро легкоатлетического молота планетой, молотобойца — Солнцем, а струну — силой гравитационного притяжения: вот вам и ньютоновская модель Солнечной системы.
Такой анализ происходящего при обращении одного тела вокруг другого по круговой орбите на первый взгляд кажется чем-то само собой разумеющимся, но не стоит забывать, что он вобрал в себя целый ряд умозаключений лучших представителей научной мысли предшествующего поколения (достаточно вспомнить Галилео Галилея). Проблема тут в том, что при движении по стационарной круговой орбите небесное (и любое иное) тело выглядит весьма безмятежно и представляется пребывающим в состоянии устойчивого динамического и кинематического равновесия. Однако, если разобраться, сохраняется только модуль (абсолютная величина) линейной скорости такого тела, в то время как ее направление постоянно меняется под воздействием силы гравитационного притяжения. Это и значит, что небесное тело движется равноускоренно. Кстати, сам Ньютон называл ускорение «изменением движения».
Первый закон Ньютона играет и еще одну важную роль с точки зрения нашего естествоиспытательского отношения к природе материального мира. Он подсказывает нам, что любое изменение в характере движения тела свидетельствует о присутствии внешних сил, воздействующих на него. Условно говоря, если мы наблюдаем, как железные опилки, например, подпрыгивают и налипают на магнит, или, доставая из сушилки стиральной машины белье, выясняем, что вещи слиплись и присохли одна к другой, мы можем чувствовать себя спокойно и уверенно: эти эффекты стали следствием действия природных сил (в приведенных примерах это силы магнитного и электростатического притяжения соответственно).
Второй закон Ньютона
Если первый закон Ньютона помогает нам определить, находится ли тело под воздействием внешних сил, то второй закон описывает, что происходит с физическим телом под их воздействием. Чем больше сумма приложенных к телу внешних сил, гласит этот закон, тем большее ускорение приобретает тело. Это раз. Одновременно, чем массивнее тело, к которому приложена равная сумма внешних сил, тем меньшее ускорение оно приобретает. Это два. Интуитивно эти два факта представляются самоочевидными, а в математическом виде они записываются так:
F = ma
где F — сила, m — масса, а — ускорение. Это, наверное, самое полезное и самое широко используемое в прикладных целях из всех физических уравнений. Достаточно знать величину и направление всех сил, действующих в механической системе, и массу материальных тел, из которых она состоит, и можно с исчерпывающей точностью рассчитать ее поведение во времени.
Именно второй закон Ньютона придает всей классической механике ее особую прелесть — начинает казаться, будто весь физический мир устроен, как наиточнейший хронометр, и ничто в нем не ускользнет от взгляда пытливого наблюдателя. Назовите мне пространственные координаты и скорости всех материальных точек во Вселенной, словно говорит нам Ньютон, укажите мне направление и интенсивность всех действующих в ней сил, и я предскажу вам любое ее будущее состояние. И такой взгляд на природу вещей во Вселенной бытовал вплоть до появления квантовой механики.
Третий закон Ньютона
За этот закон, скорее всего, Ньютон и снискал себе почет и уважение со стороны не только естествоиспытателей, но и ученых-гуманитариев и попросту широких масс. Его любят цитировать (по делу и без дела), проводя самые широкие параллели с тем, что мы вынуждены наблюдать в нашей обыденной жизни, и притягивают чуть ли не за уши для обоснования самых спорных положений в ходе дискуссий по любым вопросам, начиная с межличностных и заканчивая международными отношениями и глобальной политикой. Ньютон, однако, вкладывал в свой названный впоследствии третьим закон совершенно конкретный физический смысл и едва ли замышлял его в ином качестве, нежели как точное средство описания природы силовых взаимодействий. Закон этот гласит, что если тело А воздействует с некоей силой на тело В, то тело В также воздействует на тело А с равной по величине и противоположной по направлению силой. Иными словами, стоя на полу, вы воздействуете на пол с силой, пропорциональной массе вашего тела. Согласно третьему закону Ньютона пол в это же время воздействует на вас с абсолютно такой же по величине силой, но направленной не вниз, а строго вверх. Этот закон экспериментально проверить нетрудно: вы постоянно чувствуете, как земля давит на ваши подошвы.
Тут важно понимать и помнить, что речь у Ньютона идет о двух силах совершенно разной природы, причем каждая сила воздействует на «свой» объект. Когда яблоко падает с дерева, это Земля воздействует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно устремляется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с равной силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, это уже следствие второго закона Ньютона. Масса яблока по сравнению с массой Земли низка до несопоставимости, поэтому именно его ускорение заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно. (В случае падения яблока центр Земли смещается вверх на расстояние менее радиуса атомного ядра.)
По совокупности же три закона Ньютона дали физикам инструменты, необходимые для начала комплексного наблюдения всех явлений, происходящих в нашей Вселенной. И, невзирая на все колоссальные подвижки в науке, произошедшие со времен Ньютона, чтобы спроектировать новый автомобиль или отправить космический корабль на Юпитер, вы воспользуетесь все теми же тремя законами Ньютона.
См. также:
Читать реферат по физике: «Законы ньютона»
(Назад) (Cкачать работу)
Функция «чтения» служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!
Введение Законы Ньютона – в зависимости от того, под каким углом на них посмотреть, – представляют собой либо конец начала, либо начало конца классической механики. В любом случае это поворотный момент в истории физической науки – блестящая компиляция всех накопленных к тому историческому моменту знаний о движении физических тел в рамках физической теории, которую теперь принято именовать классической механикой. Можно сказать, что с законов движения Ньютона пошел отсчет истории современной физики и вообще естественных наук. Первый закон Ньютона Учитывая столь серьезный, исторически сложившийся провал, первый закон Ньютона сформулирован безоговорочно революционным образом. Он утверждает, что если какую-либо материальную частицу или тело попросту не трогать, оно будет продолжать прямолинейно двигаться с неизменной скоростью само по себе. Если тело равномерно двигалось по прямой, оно так и будет двигаться по прямой с неизменной скоростью. Если тело покоилось, оно так и будет покоиться, пока к нему не приложат внешних сил. Чтобы просто сдвинуть физическое тело с места, к нему нужно обязательно приложить стороннюю силу. Возьмем самолет: он ни за что не стронется с места, пока не будут запущены двигатели. Казалось бы, наблюдение самоочевидное, однако, стоит нам отвлечься от прямолинейного движения, как оно перестает казаться таковым. При инерционном движении тела по замкнутой циклической траектории его анализ с позиции первого закона Ньютона только и позволяет точно определить его характеристики.
Представьте себе что-то типа легкоатлетического молота – ядро на конце струны, раскручиваемое вами вокруг вашей головы. Ядро в этом случае движется не по прямой, а по окружности – значит, согласно первому закону Ньютона, его что-то удерживает; это «что-то» – и есть центростремительная сила, которую вы прилагаете к ядру, раскручивая его. Реально вы и сами можете ее ощутить – рукоять легкоатлетического молота ощутимо давит вам на ладони. Если же вы разожмете руку и выпустите молот, он – в отсутствие внешних сил – незамедлительно отправится в путь по прямой. Точнее будет сказать, что так молот поведет себя в идеальных условиях (например, в открытом космосе), поскольку под воздействием силы гравитационного притяжения Земли он будет лететь строго по прямой лишь в тот момент, когда вы его отпустили, а в дальнейшем траектория полета будет всё больше отклоняться в направлении земной поверхности. Если же вы попробуете действительно выпустить молот, выяснится, что отпущенный с круговой орбиты молот отправится в путь строго по прямой, являющейся касательной (перпендикулярной к радиусу окружности, по которой его раскручивали) с линейной скоростью, равной скорости его обращения по «орбите».
Теперь заменим ядро легкоатлетического молота планетой, молотобойца – Солнцем, а струну – силой гравитационного притяжения: вот вам и ньютоновская модель Солнечной системы.
Такой анализ происходящего при обращении одного тела вокруг другого по круговой орбите на первый взгляд кажется чем-то само собой разумеющимся, но не стоит забывать, что он вобрал в себя целый ряд умозаключений лучших представителей научной мысли предшествующего поколения (достаточно вспомнить Галилео Галилея). Проблема тут в том, что